1
|
Mai J, Stubbe M, Hofmann S, Masser S, Dobner T, Boutell C, Groitl P, Schreiner S. PML Alternative Splice Products Differentially Regulate HAdV Productive Infection. Microbiol Spectr 2022; 10:e0078522. [PMID: 35699431 PMCID: PMC9431499 DOI: 10.1128/spectrum.00785-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) were considered to maintain antiviral capacity, as these spherical complexes are antagonized by viruses. Actual work provides evidence, that PML-NB-associated factors might also be beneficial for distinct viral processes indicating why genomes and replication centers of nuclear replicating viruses are often found juxtaposed to PML-NBs. Several early HAdV proteins target PML-NBs, such as E4orf3 that promotes redistribution into track-like structures. PML-associated dependency factors that enhance viral gene expression, such as Sp100A remain in the nuclear tracks while restrictive factors, such as Daxx, are inhibited by either proteasomal degradation or relocalization to repress antiviral functions. Here, we did a comprehensive analysis of nuclear PML isoforms during HAdV infection. Our results show cell line specific differences as PML isoforms differentially regulate productive HAdV replication and progeny production. Here, we identified PML-II as a dependency factor that supports viral progeny production, while PML-III and PML-IV suppress viral replication. In contrast, we identified PML-I as a positive regulator and PML-V as a restrictive factor during HAdV infection. Solely PML-VI was shown to repress adenoviral progeny production in both model systems. We showed for the first time, that HAdV can reorganize PML-NBs that contain PML isoforms other then PML-II. Intriguingly, HAdV was not able to fully disrupt PML-NBs composed out of the PML isoforms that inhibit viral replication, while PML-NBs composed out of PML isoforms with beneficial influence on the virus formed tracks in all examined cells. In sum, our findings clearly illustrate the crucial role of PML-track formation in efficient viral replication. IMPORTANCE Actual work provides evidence that PML-NB-associated factors might also be beneficial for distinct viral processes indicating why genomes and replication centers of nuclear replicating viruses are often found juxtaposed to PML-NBs. Alternatively spliced PML isoforms I-VII are expressed from one single pml gene containing nine exons and their transcription is tightly controlled and stimulated by interferons and p53. Several early HAdV proteins target PML-NBs, such as E4orf3, promoting redistribution into track-like structures. Our comprehensive studies indicate a diverging role of PML isoforms throughout the course of productive HAdV infection in either stably transformed human lung (H1299) or liver (HepG2) cells, in which we observed a multivalent regulation of HAdV by all six PML isoforms. PML-I and PML-II support HAdV-mediated track formation and efficient formation of viral replication centers, thus promoting HAdV productive infection. Simultaneously, PML-III, -IV,-V, and -VI antagonize viral gene expression and particle production.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miona Stubbe
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Samuel Hofmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sawinee Masser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christopher Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland, United Kingdom
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Abstract
Replication of the adenovirus genome is catalysed by adenovirus DNA polymerase in which the adenovirus preterminal protein acts as a protein primer. DNA polymerase and preterminal protein form a heterodimer which, in the presence of the cellular transcription factors NFI/CTFI and NFIII/Oct-1, binds to the origin of DNA replication. DNA replication is initiated by DNA polymerase mediated transfer of dCMP onto preterminal protein. Further DNA synthesis is catalysed by DNA polymerase in a strand displacement mechanism which also requires adenovirus DNA binding protein. Here, we discuss the role of individual proteins in this process as revealed by biochemical analysis, mutagenesis and molecular modelling.
Collapse
Affiliation(s)
- H Liu
- Centre for Biomolecular Science, Biomolecular Science Building, The University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | | | | |
Collapse
|
3
|
Liu H, Naismith JH, Hay RT. Identification of conserved residues contributing to the activities of adenovirus DNA polymerase. J Virol 2000; 74:11681-9. [PMID: 11090167 PMCID: PMC112450 DOI: 10.1128/jvi.74.24.11681-11689.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus codes for a DNA polymerase that is a member of the DNA polymerase alpha family and uses a protein primer for initiation of DNA synthesis. It contains motifs characteristic of a proofreading 3'-5'-exonuclease domain located in the N-terminal region and several polymerase motifs located in the C-terminal region. To determine the role of adenovirus DNA polymerase in DNA replication, 22 site-directed mutations were introduced into the conserved DNA polymerase motifs in the C-terminal region of adenovirus DNA polymerase and the mutant forms were expressed in insect cells using a baculovirus expression system. Each mutant enzyme was tested for DNA binding activity, the ability to interact with pTP, DNA polymerase catalytic activity, and the ability to participate in the initiation of adenovirus DNA replication. The mutant phenotypes identify functional domains within the adenovirus DNA polymerase and allow discrimination between the roles of conserved residues in the various activities carried out by the protein. Using the functional data in this study and the previously published structure of the bacteriophage RB69 DNA polymerase (J. Wang et al., Cell 89:1087-1099, 1997), it is possible to envisage how the conserved domains in the adenovirus DNA polymerase function.
Collapse
Affiliation(s)
- H Liu
- Centre for Biomolecular Science, The University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | | | | |
Collapse
|
4
|
Parker EJ, Botting CH, Webster A, Hay RT. Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. Nucleic Acids Res 1998; 26:1240-7. [PMID: 9469832 PMCID: PMC147410 DOI: 10.1093/nar/26.5.1240] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.
Collapse
Affiliation(s)
- E J Parker
- School of Biomedical Science, Irvine Building, University of St Andrews, North Street, St Andrews, Fife KY16 9AL, UK
| | | | | | | |
Collapse
|
5
|
Schiedner G, Doerfler W. Insufficient levels of NFIII and its low affinity for the origin of adenovirus type 12 (Ad12) DNA replication contribute to the abortive infection of BHK21 hamster cells by Ad12. J Virol 1996; 70:8003-9. [PMID: 8892924 PMCID: PMC190873 DOI: 10.1128/jvi.70.11.8003-8009.1996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human adenovirus type 12 (Ad12) induces undifferentiated sarcomas in neonate Syrian hamsters and hence presents a suitable model for studies of the molecular mechanism of viral oncogenesis. Since we submit that an understanding of the early steps in the interaction between Ad12 and hamster cells might shed light on the initiation of malignant transformation, the abortive infection of BHK21 hamster cells with Ad12 has been investigated in detail. Ad12 replication in these cells is blocked in early stages, while Ad2 can replicate to moderate titers. Early Ad12 genes are expressed in BHK21 hamster cells, but there is a total block in Ad12 DNA replication and late gene transcription. The Ad5-transformed hamster cell line BHK297-C131, with the left terminus of Ad5 DNA chromosomally integrated and constitutively expressed, allows limited levels of Ad12 DNA replication and late transcription, probably through Ad5 E1 functions, but not the translation of late Ad12 gene products. We have now investigated the capacities of binding of nuclear proteins NFI and NFIII from permissive human KB cells, nonpermissive hamster BHK21 cells, and complementing BHK297-C131 cells to the origin of replication (ori) of Ad2 or Ad12 DNA. The electrophoretic mobility shift assay has been used to assess these binding reactions. The data support the notions that NFIII of BHK21 cells has a lower affinity for the ori of Ad12 DNA than for the ori of Ad2 DNA and that the levels of NFIII in BHK21 cells are markedly reduced compared with the levels in the permissive human KB cells or the complementing BHK297-C131 hamster cells. These deficiencies are contributing factors for the abortive infection of BHK21 hamster cells with Ad12. The lack of sufficient levels of NFIII in BHK21 cells is also consistent with the decreased replication capacity of Ad2 in hamster compared with human cell lines.
Collapse
Affiliation(s)
- G Schiedner
- Institut für Genetik, Universität zu Köln, Cologne, Germany
| | | |
Collapse
|
6
|
Ramachandra M, Sasaguri Y, Nakano R, Padmanabhan R. Heterologous expression, purification, and characterization of adenovirus DNA polymerase and preterminal protein. Methods Enzymol 1996; 275:168-94. [PMID: 9026638 DOI: 10.1016/s0076-6879(96)75012-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Ramachandra
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
7
|
Hay RT, Freeman A, Leith I, Monaghan A, Webster A. Molecular interactions during adenovirus DNA replication. Curr Top Microbiol Immunol 1995; 199 ( Pt 2):31-48. [PMID: 7555069 DOI: 10.1007/978-3-642-79499-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R T Hay
- School of Biological and Medical Sciences, University of St. Andrews, Scotland, UK
| | | | | | | | | |
Collapse
|
8
|
Webster A, Leith IR, Hay RT. Activation of adenovirus-coded protease and processing of preterminal protein. J Virol 1994; 68:7292-300. [PMID: 7933113 PMCID: PMC237170 DOI: 10.1128/jvi.68.11.7292-7300.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adenoviruses code for a protease that is essential for infectivity and is activated by a disulfide-linked peptide, derived from the C terminus of the virus structural protein pVI (pVI-CT). The protease was synthesized at relatively high levels late in infection and was detected in both cytoplasmic and nuclear fractions of adenovirus-infected cells. DNA was not found to be a cofactor of the protease, as previously proposed (W. F. Mangel, W. J. McGrath, D. Toledo, and C. W. Anderson, Nature [London] 361:274-275, 1993), but a role for DNA in facilitating the activation of the protease by pVI-CT in vivo cannot be ruled out. Adenovirus preterminal protein is a substrate for the virus-coded protease, with digestion to the mature terminal protein proceeding via the formation of two intermediates. Each of the three cleavage sites in the preterminal protein was identified by N-terminal sequencing and shown to conform to the substrate specificity of adenovirus protease, (M,L,I)XGX-X. Functional studies revealed that preterminal protein and intermediates but not mature terminal protein associated with adenovirus polymerase, while only the intact preterminal protein and none of its digestion products bound to DNA. These results suggest that the virus-coded protease may influence viral DNA replication by cleavage of both genome-bound and freely soluble preterminal protein, with consequent alterations to their functional properties.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Sciences, University of St. Andrews, Fife, United Kingdom
| | | | | |
Collapse
|
9
|
Monaghan A, Webster A, Hay RT. Adenovirus DNA binding protein: helix destabilising properties. Nucleic Acids Res 1994; 22:742-8. [PMID: 8139913 PMCID: PMC307877 DOI: 10.1093/nar/22.5.742] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adenovirus DNA binding protein is a multifunctional protein essential for viral DNA replication. To investigate the role of the DNA binding protein in this process its interaction with partial DNA duplexes was examined. Duplex regions of DNA, created when a short DNA strand is annealed to its complementary sequence present in the single stranded form of M13 phage DNA, were efficiently unwound by DNA binding protein in a reaction that required neither ATP nor MgCl2. The unwinding activity of DNA binding protein was reduced by conditions which increased the stability of DNA duplexes. DNA unwinding by DNA binding protein was highly co-operative and required the single stranded DNA to be completely coated with the protein. Completely double stranded DNA could also be unwound by DNA binding protein but this reaction was sensitive to the G+C content of the DNA and could only be observed with relatively short DNA duplexes up to 45 base pairs in length. When these short double stranded DNA molecules contained binding sites for the transcription factors NFI and NFIII addition of the cognate factor blocked DNA binding protein mediated unwinding of the particular DNA duplex. Cleavage of DNA binding protein with chymotrypsin and isolation of the 39,000 molecular weight C-terminal fragment indicated that the unwinding activity was located in this domain of the protein. In support of this contention a monoclonal antibody, which had previously been mapped to this region, specifically inhibited the DNA unwinding activity. These activities of DNA binding protein are likely to be involved in DNA replication, where the destabilisation of DNA duplexes could be important both during initiation and elongation.
Collapse
Affiliation(s)
- A Monaghan
- School of Biological and Medical Sciences, University of St Andrews, Fife, UK
| | | | | |
Collapse
|
10
|
Abstract
In common with many other viruses, adenoviruses code for a protease essential for the development of infectivity. Recombinant adenovirus protease was active in crude in vitro complementation assays but was inactive with peptide or purified protein substrates. Activity was reconstituted by a component of adenovirus virions, which was identified as GVQSLKRRRCF, a peptide derived from the virus protein pVI. Synthetic peptides were used to demonstrate that the cysteine is essential and that the disulphide-linked dimer is required for activity. It is proposed that the adenovirus protease is a cysteine protease and that its activation by the peptide involves thiol-disulphide interchange, which serves to expose the active site cysteine. This represents a novel strategy for controlling the activity of a protease that is required for virus maturation.
Collapse
Affiliation(s)
- A Webster
- Division of Biochemistry and Molecular Biology, School of Biological and Medical Sciences, University of St. Andrews, Scotland
| | | | | |
Collapse
|
11
|
Ramachandra M, Nakano R, Mohan P, Rawitch A, Padmanabhan R. Adenovirus DNA polymerase is a phosphoprotein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54171-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Bosher J, Dawson A, Hay RT. Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. J Virol 1992; 66:3140-50. [PMID: 1560540 PMCID: PMC241077 DOI: 10.1128/jvi.66.5.3140-3150.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the S phase of the eukaryotic cell cycle and in virus-infected cells, DNA replication takes place at discrete sites in the nucleus, although it is not clear how the proteins involved in the replicative process are directed to these sites. Nuclear factor I is a cellular, sequence-specific DNA-binding protein utilized by adenovirus type 2 to facilitate the assembly of a nucleoprotein complex at the viral origin of DNA replication. Immunofluorescence experiments reveal that in uninfected cells, nuclear factor I is distributed evenly throughout the nucleus. However, after a cell is infected with adenovirus type 2, the distribution of nuclear factor I is dramatically altered, being colocalized with the viral DNA-binding protein in a limited number of subnuclear sites which bromodeoxyuridine pulse-labeling experiments have identified as sites of viral DNA replication. Experiments with adenovirus type 4, which does not require nuclear factor I for viral DNA replication, indicate that although the adenovirus type 4 DNA-binding protein is localized to discrete nuclear sites, this does not result in the redistribution of nuclear factor I. Localization of nuclear factor I to discrete subnuclear sites is therefore likely to represent a specific targeting event that reflects the requirement for nuclear factor I in adenovirus type 2 DNA replication.
Collapse
Affiliation(s)
- J Bosher
- Department of Biochemistry and Microbiology, University of St. Andrews, Fife, Scotland
| | | | | |
Collapse
|
13
|
Temperley SM, Burrow CR, Kelly TJ, Hay RT. Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol 1991; 65:5037-44. [PMID: 1870210 PMCID: PMC248967 DOI: 10.1128/jvi.65.9.5037-5044.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adenovirus type 4 origins of replication are located at each end of the linear, protein-linked viral DNA molecule and consist of the terminal 18 bp of the viral genome. The sequence of the first 8 bp of the viral genome varies among different adenovirus serotypes, but the sequence from bp 9 to 18 is conserved in all human serotypes, suggesting that it may be of critical importance to origin function. Using an in vitro system in which purified fractions or crude extracts of adenovirus type 4-infected HeLa cells can support initiation and elongation on linearized plasmid templates containing cloned origin sequences, we examined the effect of single base changes in positions 9 to 18 of the adenovirus origin on DNA replication in vitro. Changes in positions 12 to 16 have little effect, whereas alterations at positions 9, 10, 11, 17, and 18 all reduce the efficiency of initiation of DNA replication by between 50 and 90%. Our results show that the region from bp 9 to 18 contains two sets of bases essential for DNA replication which are separated by 5 bp in which single base changes can be accommodated. The likely role of the region from bp 9 to 18 as containing the recognition sequence for a DNA-protein interaction essential for viral DNA replication is discussed.
Collapse
Affiliation(s)
- S M Temperley
- Department of Biochemistry and Microbiology, University of St. Andrews, Fife, Scotland
| | | | | | | |
Collapse
|