1
|
Esmael A, Agarkova IV, Dunigan DD, Zhou Y, Van Etten JL. Viral DNA Accumulation Regulates Replication Efficiency of Chlorovirus OSy-NE5 in Two Closely Related Chlorella variabilis Strains. Viruses 2023; 15:1341. [PMID: 37376640 DOI: 10.3390/v15061341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus.
Collapse
Affiliation(s)
- Ahmed Esmael
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Irina V Agarkova
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, USA
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
2
|
Echeverri D, Romo J, Giraldo N, Atehortúa L. Microalgae protoplasts isolation and fusion for biotechnology research. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.80248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protoplasts are microbial or vegetable cells lacking a cell wall. These can be obtained from microalgae by an enzymatic hydrolysis process in the presence of an osmotic stabilizer. In general, protoplasts are experimentally useful in physiological, geneticand bio-chemical studies, so their acquisition and fusion will continue to be an active research area in modern biotechnology. The fusion of protoplasts in microalgae constitutes a tool for strain improvement because it allows both intra and interspecific genetic recombina-tion, resulting in organisms with new or improved characteristics of industrial interest. In this review we briefly describe themethod-ology for obtaining protoplasts, as well as fusion methods and the main applications of microalgal platforms.
Collapse
|
3
|
Saad AM, Soliman AM, Kawasaki T, Fujie M, Nariya H, Shimamoto T, Yamada T. Systemic method to isolate large bacteriophages for use in biocontrol of a wide-range of pathogenic bacteria. J Biosci Bioeng 2018; 127:73-78. [PMID: 30049605 DOI: 10.1016/j.jbiosc.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
Large phages are characterized by genomes around 200 kbp or more. They can infect wide host ranges of bacteria and maintain long-lasting infection. There is no standard method for selective isolation of large phages. In this study, we developed a systemic method to isolate large phages and succeeded in isolating 11 large phages, named Escherichia phage E1∼E11. Electron microscopy observations revealed typical Myoviridae phages with big capsids and long contractile tails. Genome sizes of the isolated phages were determined by pulsed-field gel electrophoresis and found to be in two groups, those around 200 kbp for E1, E2, E5, E6, E7, E9 and E10 phages, and others of approximately 450 kbp for E3, E4, E8 and E11 phages. The isolated large phages had wide host ranges: for example, E9 was effective against Shigella sonnei SH05001, Shigella bydii SH00007, Shigella flexneri SH00006, Salmonella enterica serovar Enteritidis SAL01078 and Escherichia coli C3000 (K-12 derivative), as well as its original host E. coli BL21. Screening of these jumbo phages was performed with non-pathogenic E. coli strains as hosts. Therefore, this method opens a way to isolate jumbo phages infecting wide ranges of pathogenic bacteria in a typical laboratory with standard laboratory strains as the hosts. The isolated large phages will be good candidates for biocontrol of various pathogens.
Collapse
Affiliation(s)
- Alaaeldin Mohamed Saad
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Mahrous Soliman
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; Hiroshima Study Center, The Open University of Japan, Hiroshima 730-0053, Japan.
| |
Collapse
|
4
|
Matsui T, Yoshikawa G, Mihara T, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase. Front Microbiol 2017; 8:1010. [PMID: 28659872 PMCID: PMC5468394 DOI: 10.3389/fmicb.2017.01010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanacearum phages ΦRP12 and ΦRP31 are jumbo phages isolated in Thailand. Here we show that they exhibit similar virion morphology, genome organization and host range. Genome comparisons as well as phylogenetic and proteomic tree analyses support that they belong to the group of ΦKZ-related phages, with their closest relatives being R. solanacearum phages ΦRSL2 and ΦRSF1. Compared with ΦRSL2 and ΦRSF1, ΦRP12 and ΦRP31 possess larger genomes (ca. 280 kbp, 25% larger). The replication of ΦRP12 and ΦRP31 was not affected by rifampicin treatment (20 μg/ml), suggesting that phage-encoded RNAPs function to start and complete the infection cycle of these phages without the need of host-encoded RNAPs. In contrast, ΦRSL2 and ΦRSF1, encoding the same set of RNAPs, did not produce progeny phages in the presence of rifampicin (5 μg/ml). This observation opens the possibility that some ΦRP12/ΦRP31 factors that are absent in ΦRSL2 and ΦRSF1 are involved in their host-independent transcription.
Collapse
Affiliation(s)
- Takeru Matsui
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDAPathum Thani, Thailand.,Center for Agricultural Biotechnology, Kasetsart UniversityNakhon Pathom, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| |
Collapse
|
5
|
Mihara T, Nasr-Eldin MA, Chatchawankanphanich O, Bhunchoth A, Phironrit N, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. A Ralstonia solanacearum phage ϕRP15 is closely related to Viunalikeviruses and encodes 19 tRNA-related sequences. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.virep.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Yang B, Liu J, Jiang Y, Chen F. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnol J 2016; 11:1244-1261. [PMID: 27465356 DOI: 10.1002/biot.201500617] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/08/2022]
Abstract
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.
Collapse
Affiliation(s)
- Bo Yang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China.,School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore.
| | - Yue Jiang
- Runke Bioengineering Co., Ltd., Zhangzhou, China.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China.,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore
| |
Collapse
|
7
|
Bhunchoth A, Blanc-Mathieu R, Mihara T, Nishimura Y, Askora A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages. Virology 2016; 494:56-66. [PMID: 27081857 DOI: 10.1016/j.virol.2016.03.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
Jumbo phages infecting Ralstonia solanacearum were isolated in Thailand (ϕRSL2) and Japan (ϕRSF1). They were similar regarding virion morphology, genomic arrangement, and host range. Phylogenetic and proteomic tree analyses demonstrate that the ϕRSL2 and ϕRSF1 belong to a group of evolutionary related phages, including Pseudomonas phages ϕKZ, 201ϕ2-1 and all previously described ϕKZ-related phages. Despite conserved genomic co-linearity between the ϕRSL2 and ϕRSF1, they differ in protein separation patterns. A major difference was seen in the detection of virion-associated-RNA polymerase subunits. All β- and β'-subunits were detected in ϕRSF1, but one β'-subunit was undetected in ϕRSL2. Furthermore, ϕRSF1 infected host cells faster (latent period: 60 and 150min for ϕRSF1 and ϕRSL2, respectively) and more efficiently than ϕRSL2. Therefore, the difference in virion-associated-RNA polymerase may affect infection efficiency. Finally, we show that ϕRSF1 is able to inhibit bacterial wilt progression in tomato plants.
Collapse
Affiliation(s)
- Anjana Bhunchoth
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Romain Blanc-Mathieu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yosuke Nishimura
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Namthip Phironrit
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Chalida Leksomboon
- Department of Plant Pathology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
8
|
Kawasaki T, Narulita E, Matsunami M, Ishikawa H, Shimizu M, Fujie M, Bhunchoth A, Phironrit N, Chatchawankanphanich O, Yamada T. Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum. Virology 2016; 492:73-81. [PMID: 26901487 DOI: 10.1016/j.virol.2016.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 01/21/2023]
Abstract
The genome organization, gene structure, and host range of five podoviruses that infect Ralstonia solanacearum, the causative agent of bacterial wilt disease were characterized. The phages fell into two distinctive groups based on the genome position of the RNA polymerase gene (i.e., T7-type and ϕKMV-type). One-step growth experiments revealed that ϕRSB2 (a T7-like phage) lysed host cells more efficiently with a shorter infection cycle (ca. 60 min corresponding to half the doubling time of the host) than ϕKMV-like phages such as ϕRSB1 (with an infection cycle of ca. 180 min). Co-infection experiments with ϕRSB1 and ϕRSB2 showed that ϕRSB2 always predominated in the phage progeny independent of host strains. Most phages had wide host-ranges and the phage particles usually did not attach to the resistant strains; when occasionally some did, the phage genome was injected into the resistant strain's cytoplasm, as revealed by fluorescence microscopy with SYBR Gold-labeled phage particles.
Collapse
Affiliation(s)
- Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Erlia Narulita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; Study Program of Biology Education, University of Jember, Jember 68121, Indonesia
| | - Minaho Matsunami
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hiroki Ishikawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Mio Shimizu
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
9
|
Bhunchoth A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kotera S, Narulita E, Kawasaki T, Fujie M, Yamada T. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J Appl Microbiol 2015; 118:1023-33. [PMID: 25619754 DOI: 10.1111/jam.12763] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/26/2014] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
AIMS To isolate and characterize novel bacteriophages infecting the phytopathogen, Ralstonia solanacearum, and to evaluate them as resources with potential uses in the biocontrol of bacterial wilt. METHODS AND RESULTS Fourteen phages infecting R. solanacearum were isolated from soil samples collected in Chiang Mai, Thailand. The phages showed different host ranges when tested against 59 R. solanacearum strains isolated from Thailand and Japan. These phages were characterized as nine podoviruses and five myoviruses based on their morphology. Podovirus J2 in combination with another podovirus (φRSB2) lysed host cells very efficiently in contaminated soil. J2 treatment prevented wilting of tomato plants infected with a highly virulent R. solanacearum strain. CONCLUSIONS Treatment with J2 effectively reduced the amount of the bacterial wilt pathogen in contaminated soil and prevented bacterial wilt of tomato in pot experiments. Myovirus J6 possessed jumbo phage features, giving a unique opportunity to study its utilization as a biocontrol agent. SIGNIFICANCE AND IMPACT OF THE STUDY As exemplified by J2, the phages isolated in this study represent valuable resources with potential uses in biocontrol of bacterial wilt. A rare jumbo phage J6 served as a valuable subject to understand and utilize this new group of phages.
Collapse
Affiliation(s)
- A Bhunchoth
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdelaziz AEM, Ghosh D, Hallenbeck PC. Characterization of growth and lipid production by Chlorella sp. PCH90, a microalga native to Quebec. BIORESOURCE TECHNOLOGY 2014; 156:20-8. [PMID: 24472701 DOI: 10.1016/j.biortech.2014.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 05/18/2023]
Abstract
Microalgae are being investigated as potential candidates for biodiesel production since they can be grown without competition with food production, have an inherently fast growth rate, and can have a high lipid content under different nutrient limiting conditions. However, large scale production will best be carried out with indigenous strains, well adapted to local conditions. This study reports on the characterization of the novel microalga Chlorella sp. PCH90, isolated in Quebec. Its molecular phylogeny was established and lipid production studies as a function of the initial concentrations of nitrate, phosphate, and sodium chloride were carried out using response surface methodology. Under the appropriate conditions this microalga could produce up to 36% lipid and grew well in both synthetic medium and secondary effluent from a wastewater treatment plant at both 22 and 10°C. Thus, this strain is promising for further development as a potential biofuels producer under local climatic conditions.
Collapse
Affiliation(s)
- Ahmed Elsayed Mohamed Abdelaziz
- Département de Microbiologie, Infectologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Dipankar Ghosh
- Département de Microbiologie, Infectologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Patrick C Hallenbeck
- Département de Microbiologie, Infectologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
11
|
Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri. Appl Environ Microbiol 2013; 80:77-85. [PMID: 24123743 DOI: 10.1128/aem.02310-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strains of Xanthomonas axonopodis pv. citri, the causative agent of citrus canker, are historically classified based on bacteriophage (phage) sensitivity. Nearly all X. axonopodis pv. citri strains isolated from different regions in Japan are lysed by either phage Cp1 or Cp2; Cp1-sensitive (Cp1(s)) strains have been observed to be resistant to Cp2 (Cp2(r)) and vice versa. In this study, genomic and molecular characterization was performed for the typing agents Cp1 and Cp2. Morphologically, Cp1 belongs to the Siphoviridae. Genomic analysis revealed that its genome comprises 43,870-bp double-stranded DNA (dsDNA), with 10-bp 3'-extruding cohesive ends, and contains 48 open reading frames. The genomic organization was similar to that of Xanthomonas phage phiL7, but it lacked a group I intron in the DNA polymerase gene. Cp2 resembles morphologically Escherichia coli T7-like phages of Podoviridae. The 42,963-bp linear dsDNA genome of Cp2 contained terminal repeats. The Cp2 genomic sequence has 40 open reading frames, many of which did not show detectable homologs in the current databases. By proteomic analysis, a gene cluster encoding structural proteins corresponding to the class III module of T7-like phages was identified on the Cp2 genome. Therefore, Cp1 and Cp2 were found to belong to completely different virus groups. In addition, we found that Cp1 and Cp2 use different molecules on the host cell surface as phage receptors and that host selection of X. axonopodis pv. citri strains by Cp1 and Cp2 is not determined at the initial stage by binding to receptors.
Collapse
|
12
|
Yamamoto M, Handa S, Kawano S. DNA Content of Stichococcus bacillaris (Trebouxiophyceae, Chlorophyta) Nuclei Determined with Laser Scanning Cytometry. CYTOLOGIA 2011. [DOI: 10.1508/cytologia.76.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| |
Collapse
|
13
|
Yamada T, Satoh S, Ishikawa H, Fujiwara A, Kawasaki T, Fujie M, Ogata H. A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 2009; 398:135-47. [PMID: 20034649 DOI: 10.1016/j.virol.2009.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/31/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
phiRSL1 is a jumbo myovirus stably and lytically infecting the phytopathogenic bacterium Ralstonia solanacearum. In this study, we investigate the infection cycle of varphiRSL1 and provide a genomic, proteomic and transcriptomic view of this phage. Its 231-kbp genome sequence showed many genes lacking detectable homologs in the current databases and was vastly different from previously studied phage genomes. In addition to these orphan proteins, varphiRSL1 was found to encode several enzymes that are unique among known viruses. These include enzymes for the salvage pathway of NAD(+) and for the biosynthetic pathways of lipid, carbohydrate and homospermidine. A chitinase-like protein was found to be a potential lysis enzyme. Our proteomics analysis suggests that varphiRSL1 virions contain at least 25 distinct proteins. We identified six of them including a tail sheath protein and a topoisomerase IB by N-terminal sequencing. Based on a DNA microarray analysis, we identified two transcription patterns.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl Environ Microbiol 2008; 74:6797-802. [PMID: 18791009 DOI: 10.1128/aem.00518-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A simple, quantitative experimental model, offering a convenient and basic approach to studies of plant-bacterium interactions, is proposed. This involves immobilizing a unicellular, freshwater microalga, a Chlorella species, serving as the plant, with a plant growth-promoting bacterium, an Azospirillum species, in small alginate beads to allow close interaction and to avoid external interference from bacterial contaminants.
Collapse
|
15
|
Fujiwara A, Kawasaki T, Usami S, Fujie M, Yamada T. Genomic characterization of Ralstonia solanacearum phage phiRSA1 and its related prophage (phiRSX) in strain GMI1000. J Bacteriol 2008; 190:143-56. [PMID: 17965167 PMCID: PMC2223755 DOI: 10.1128/jb.01158-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 10/15/2007] [Indexed: 12/31/2022] Open
Abstract
PhiRSA1 is a wide-host-range bacteriophage isolated from Ralstonia solanacearum. In this study, the complete nucleotide sequence of the phiRSA1 genomic DNA was determined. The genome was 38,760 bp of double-stranded DNA (65.3% G+C) with 19-bp 5'-extruding cohesive ends (cos) and contained 51 open reading frames (ORFs). Two-thirds of the phiRSA1 genomic region encodes the phage structural modules, and they are very similar to those reported for coliphage P2 and P2-like phages. A phiRSA1 minireplicon with an 8.2-kbp early-expressing region was constructed. A late-expression promoter sequence motif was predicted for these phiRSA1 genes as 5' TGTTGT-(X)13-ACAACA. The genomic sequence similarity between phiRSA1 and related phages phi52237 and phiCTX was interrupted by three AT islands, one of which contained an insertion sequence element, suggesting that they were recombinational hot spots. phiRSA1 was found to be integrated into at least three different strains of R. solanacearum, and the chromosomal integration site (attB) was identified as the 3' portion of the arginine tRNA(CCG) gene. In the light of the phiRSA1 gene arrangement, one possible prophage sequence previously detected on the chromosome of R. solanacearum strain GMI1000 was characterized as a phiRSA1-related prophage (designated phiRSX). phiRSX was found to be integrated at the serine tRNA (GGA) gene as an att site, and its size was determined to be 40,713 bp. phiRSX ORFs shared very high amino acid identity with their phiRSA1 counterparts. The relationships and evolution of these P2-like phages are discussed.
Collapse
Affiliation(s)
- Akiko Fujiwara
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
16
|
Kapraun DF. Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta. ANNALS OF BOTANY 2007; 99:677-701. [PMID: 17272304 PMCID: PMC2802934 DOI: 10.1093/aob/mcl294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 12/04/2006] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Consensus higher-level molecular phylogenies present a compelling case that an ancient divergence separates eukaryotic green algae into two major monophyletic lineages, Chlorophyta and Streptophyta, and a residuum of green algae, which have been referred to prasinophytes or micromonadophytes. Nuclear DNA content estimates have been published for less than 1% of the described green algal members of Chlorophyta, which includes multicellular green marine algae and freshwater flagellates (e.g. Chlamydomonas and Volvox). The present investigation summarizes the state of our knowledge and adds substantially to our database of C-values, especially for the streptophyte charophycean lineage which is the sister group of the land plants. A recent list of 2C nuclear DNA contents for isolates and species of green algae is expanded by 72 to 157. METHODS The DNA-localizing fluorochrome DAPI (4',6-diamidino-2-phenylindole) and red blood cell (chicken erythrocytes) standard were used to estimate 2C values with static microspectrophotometry. KEY RESULTS In Chlorophyta, including Chlorophyceae, Prasinophyceae, Trebouxiophyceae and Ulvophyceae, 2C DNA estimates range from 0.01 to 5.8 pg. Nuclear DNA content variation trends are noted and discussed for specific problematic taxon pairs, including Ulotrichales-Ulvales, and Cladophorales-Siphonocladales. For Streptophyta, 2C nuclear DNA contents range from 0.2 to 6.4 pg, excluding the highly polyploid Charales and Desmidiales, which have genome sizes of up to 14.8 and 46.8 pg, respectively. Nuclear DNA content data for Streptophyta superimposed on a contemporary molecular phylogeny indicate that early diverging lineages, including some members of Chlorokybales, Coleochaetales and Klebsormidiales, have genomes as small as 0.1-0.5 pg. It is proposed that the streptophyte ancestral nuclear genome common to both the charophyte and the embryophyte lineages can be characterized as 1C = 0.2 pg and 1n = 6. CONCLUSIONS These data will help pre-screen candidate species for the on-going construction of bacterial artificial chromosome nuclear genome libraries for land plant ancestors. Data for the prasinophyte Mesostigma are of particular interest as this alga reportedly most closely resembles the 'ancestral green flagellate'. Both mechanistic and ecological processes are discussed that could have produced the observed C-value increase of >100-fold in the charophyte green algae whereas the ancestral genome was conserved in the embryophytes.
Collapse
Affiliation(s)
- Donald F Kapraun
- Department of Biological Sciences, University of North Carolina-Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA.
| |
Collapse
|
17
|
Agarkova IV, Dunigan DD, Van Etten JL. Virion-associated restriction endonucleases of chloroviruses. J Virol 2006; 80:8114-23. [PMID: 16873267 PMCID: PMC1563800 DOI: 10.1128/jvi.00486-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/26/2006] [Indexed: 11/20/2022] Open
Abstract
Chloroviruses are large, double-stranded-DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae. The prototype of the genus is Paramecium bursaria chlorella virus 1 (PBCV-1). Chlorovirus genomes contain various amounts of methylated nucleotides due to virus-encoded DNA methyltransferases (MTases); about 25% of the MTases are associated with companion DNA site-specific (restriction) endonucleases (REases). These enzymes constitute virally encoded restriction-modification (R/M) systems. Although several of the chlorovirus R/M systems are characterized, their biological functions are unknown. The PBCV-1 proteome reveals that two virus-encoded REases, but not their companion MTases, are virion associated, suggesting that viral REases might help degrade the host DNA early in infection. To test this hypothesis, host chromosomal DNA from PBCV-1-infected cells was examined by pulsed-field gel electrophoresis. Initiation of host chromosomal DNA degradation occurred within 5 min postinfection (p.i.). The DNA degradation was insensitive to protein synthesis inhibitors or UV inactivation of virus particles, consistent with the agent being a small protein associated with the virion. Nuclease activities, including those of the two predicted REases and an uncharacterized general nuclease(s), were detected in disrupted PBCV-1 particles. The general nuclease(s) degraded both host and viral DNAs in vitro, although the viral DNA was not degraded in vivo, suggesting differential intracellular trafficking of the virion-associated nucleases. Infection with chloroviruses lacking an R/M system(s) resulted in either delayed host chromosomal DNA degradation or no detectable host chromatin changes. These immediate-early events associated with chlorovirus infections may facilitate rapid switching of the host transcriptional apparatus to viral transcription, which begins within 5 to 10 min p.i.
Collapse
Affiliation(s)
- Irina V Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0722, USA
| | | | | |
Collapse
|
18
|
Maki S, Ohta Y, Noutoshi Y, Fujie M, Usami S, Yamada T. Mapping of cDNA clones on contig of Chlorella chromosome I. J Biosci Bioeng 2005; 90:431-6. [PMID: 16232885 DOI: 10.1016/s1389-1723(01)80014-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 07/17/2000] [Indexed: 11/24/2022]
Abstract
Complementary DNA (cDNA) clones specific to the smallest chromosome (chromosome I) of Chlorella vulgaris C-169 were selected from cDNA libraries with probes of chromosome I DNA fragments amplified by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). A total of 15 clones was obtained, which included gene homologs for alpha-tubulin, inosine-5'-monophosphate dehydrogenase, beta-1,4-mannase, a TTG-binding protein, a heat shock protein, thioredoxin/protein disulfide isomerase, transcription factor NF-E2, an oxidoreductase, and UDP-n-acetylglucosamine enolpyruvyltransferase. These clones were definitely localized at specific sites on the chromosome I physical map constructed on the basis of overlapping cosmid clones (the contig). They were predominantly distributed within the left two-thirds of the chromosome. This contrasts with the distribution of repetitive elements such as short interspersed elements (SINEs), which are rather abundant in the right two-thirds of chromosome I. The comparative simplicity of the gene arrangement of Chlorella chromosome I suggests that it may be able to serve as a prototypic system for deciphering the complexity of huge plant chromosomes.
Collapse
Affiliation(s)
- S Maki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Canteros CE, Zuiani MF, Ritacco V, Perrotta DE, Reyes-Montes MR, Granados J, Zúñiga G, Taylor ML, Davel G. Electrophoresis karyotype and chromosome-length polymorphism ofHistoplasma capsulatumclinical isolates from Latin America. ACTA ACUST UNITED AC 2005; 45:423-8. [PMID: 16061363 DOI: 10.1016/j.femsim.2005.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/27/2005] [Indexed: 11/30/2022]
Abstract
Intact chromosomes of 19 clinical isolates of Histoplasma capsulatum recently obtained in Argentina, Mexico and Guatemala and the laboratory reference strain G186B from Panama were analyzed using pulsed-field gel electrophoresis. Chromosomal banding patterns of the human isolates revealed 5-7 bands, ranging from 1.3 to 10 Mbp in size. Strain G186B showed five bands of approximately 1.1, 2.8, 3.3, 5.4 and 9.7 Mbp. Thirteen different electrokaryotypes were identified, indicating that the genome of H. capsulatum varies widely in nature, as observed previously in laboratory strains. No definite association was found between electrokaryotype and geographical or clinical source.
Collapse
|
20
|
KAPRAUN DONALDF. Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. ANNALS OF BOTANY 2005; 95:7-44. [PMID: 15596456 PMCID: PMC4246707 DOI: 10.1093/aob/mci002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/23/2003] [Accepted: 02/11/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae. METHODS The DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry. KEY RESULTS 2C DNA contents for 85 species of Chlorophyta range from 0.2-6.1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39.2 and 20.7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0.1-2.8 pg, and for 44 species of Phaeophyta range from 0.2-1.8 pg. CONCLUSIONS New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges.
Collapse
Affiliation(s)
- DONALD F. KAPRAUN
- Department of Biological Sciences, University of North Carolina-Wilmington, 601 South College Road, Wilmington, NC 28403-3915, USA
| |
Collapse
|
21
|
Tartar A, Boucias DG. The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome. FEMS Microbiol Lett 2004; 233:153-7. [PMID: 15043882 DOI: 10.1016/j.femsle.2004.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/23/2022] Open
Abstract
A fragment of the Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) plastid genome has been sequenced. The genome architecture was compared to that of both a non-photosynthetic relative (Prototheca wickerhamii) and a photosynthetic relative (Chlorella vulgaris). Comparative genomic analysis indicated that Helicosporidium and Prototheca are closely related genera. The analyses also revealed that the Helicosporidium sp. plastid genome has been rearranged. In particular, two ribosomal protein-encoding genes (rpl19 and rps23) appeared to have been transposed, or lost from the Helicosporidium sp. plastid genome. RT-PCR reactions demonstrated that the retained plastid genes were transcribed, suggesting that, despite rearrangement(s), the Helicosporidium sp. plastid genome has remained functional. The modified plastid genome architecture is a novel apomorphy that indicates that the Helicosporidia are highly derived green algae, more so than Prototheca spp. As such, they represent a promising model to study organellar genome reorganizations in parasitic protists.
Collapse
Affiliation(s)
- Aurélien Tartar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA.
| | | |
Collapse
|
22
|
Abstract
Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, dsDNA viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. Its 330-kb genome contains approximately 373 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are unexpected for a virus, e.g., ornithine decarboxylase, hyaluronan synthase, GDP-D-mannose 4,6 dehydratase, and a potassium ion channel protein. In addition to their large genome size, the chlorella viruses have other features that distinguish them from most viruses. These features include: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases. (b) The viruses encode at least some, if not all, of the enzymes required to glycosylate their proteins. (c) PBCV-1 has at least three types of introns, a self-splicing intron in a transcription factor-like gene, a spliceosomal processed intron in its DNA polymerase gene, and a small intron in one of its tRNA genes. (d) Many chlorella virus-encoded proteins are either the smallest or among the smallest proteins of their class. (e) Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history.
Collapse
Affiliation(s)
- James L Van Etten
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA.
| |
Collapse
|
23
|
Yamamoto Y, Fujimoto Y, Arai R, Fujie M, Usami S, Yamada T. Retrotransposon-mediated restoration of Chlorella telomeres: accumulation of Zepp retrotransposons at termini of newly formed minichromosomes. Nucleic Acids Res 2003; 31:4646-53. [PMID: 12888526 PMCID: PMC169880 DOI: 10.1093/nar/gkg490] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the contribution of LINE-like retrotransposon Zepp elements to the formation and maintenance of chromosomal telomeres, newly formed minichromosomes in irradiated Chlorella vulgaris cells were isolated and structurally characterized. A minichromosome (miniV4) of approximately 700 kb in size contained a Zepp cluster taking the place of the telomeric repeats on one terminus, whereas the other end of this chromosome consisted of canonical telomeric repeats. The Zepp copies in this cluster were in a tandem array with their poly(A) tails towards the centromere. Another minichromosome Y32 ( approximately 400 kb in size) was shown to have several copies of Zepp elements on both termini. On the right arm terminus, two copies of Zepp were found in a tandem array with poly(A) tracts facing towards the chromosomal end. The poly(A) tail and the 3'-end of approximately 400 bp of the distal copy were replaced by the telomeric repeats. On the 5'-side of the proximal copy was another Zepp element in the reverse orientation. These newly formed telomeric structures are very similar to those previously found in the left arm of chromosome I and the terminus of an unidentified chromosome and support the model of Zepp-mediated restoration and maintenance of Chlorella telomeres.
Collapse
Affiliation(s)
- Yoshitaka Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J. The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:283-291. [PMID: 12713535 DOI: 10.1046/j.1365-313x.2003.01731.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using slot-blot and fluorescent in situ hybridization (FISH), we found no evidence for the presence of the Arabidopsis-type telomeric sequence (TTTAGGG)n at the chromosome termini in any of the Cestrum species we investigated. Probing for the human-type telomere (TTAGGG)n also revealed no signal. However, polymerase chain reaction experiments indicated that there are short lengths of the sequence TTTAGGG dispersed in the genome but that these sequences are almost certainly too short to act as functional telomeres even if they were at the chromosome termini. An analysis of related genera Vestia and Sessea indicates that they too lack the Arabidopsis-type telomere, and the sequences were lost in the common ancestor of these genera. We found that the Cestrum species investigated had particularly large mean chromosome sizes. We discuss whether this is a consequence of alternative telomere end maintenance systems.
Collapse
Affiliation(s)
- Eva Sykorova
- School of Biological Sciences, Queen Mary University of London, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Noutoshi Y, Ito Y, Kanetani S, Fujie M, Usami S, Yamada T. Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris. Nucleic Acids Res 1998; 26:3900-7. [PMID: 9705496 PMCID: PMC147790 DOI: 10.1093/nar/26.17.3900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A contig covering the entire region of Chlorella vulgaris chromosome I (980 kb long), consisting of 33 cosmid clones has been constructed. By cross-hybridization with other chromosomal DNAs, universal structural elements were detected and localized on the contig. They were composed of at least three different elements: short interspersed DNA elements (SINE)-like elements, long interspersed DNA elements (LINE)-like elements and a putative centromere-like element. At least 36 copies of SINE-like elements were distributed over chromosome I with preferential locations on the right half of the chromosome. DNA fragments containing a SINE-like sequence showed a bent or curved DNA nature on polyacrylamide gel electrophoresis. LINE-like elements were clustered at the left terminus of chromosome I where they formed a tandem array of six copies immediately adjacent to the telomeric repeats. A long sequence element localized at a unique region of chromosome I also existed in a single copy on each chromosome and contained a sequence related to the reverse transcriptase domain of retrotransposons. This feature was compared with the reported centromere-associated elements of higher plants. With its comparative simplicity, the organization of Chlorella chromosome I genomic elements may serve as a prototypic experimental system for deciphering the complexity of huge plant chromosomes.
Collapse
Affiliation(s)
- Y Noutoshi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Higashiyama T, Noutoshi Y, Fujie M, Yamada T. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 1997; 16:3715-23. [PMID: 9218812 PMCID: PMC1169995 DOI: 10.1093/emboj/16.12.3715] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Six copies of insertion elements accumulate in the subtelomeric region immediately proximal to the telomeric repeats on Chlorella chromosome I. The elements, designated Zepps, bear the characteristic features of non-viral (LINE-like) retrotransposons, including a poly(A) tail, 5'-truncations, a retroviral reverse transcriptase-like ORF and flanking target duplications. Detailed sequence analysis of the Chlorella subtelomeric region revealed a novel mechanism of Zepp transposition; successive insertions of each Zepp element into another Zepp as a target, leaving a tandem array of their 3'-regions with poly(A) tracts facing toward the centromere. Only the most distal Zepp copy was inverted to connect its poly(A) tail with the telomeric repeats. A similar Zepp cluster but without the telomeric repeats was also found at the terminus of another Chlorella chromosome. These structures contrast with that proposed for the addition of HeT-A and TART elements to Drosophila telomeres. Expression of Zepp elements is induced by heat shock treatment. Possible roles of the subtelomeric retrotransposons in formation and maintenance of telomeres are discussed.
Collapse
Affiliation(s)
- T Higashiyama
- Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | |
Collapse
|
28
|
Filipp D, Filipp P, Nosek J, Hladká M. Electrophoretic karyotype of Dipodascus (Endomyces) magnusii: two main intraspecific chromosomal polymorphisms associated with the difference in total genome size. Curr Genet 1995; 29:81-7. [PMID: 8595662 DOI: 10.1007/bf00313197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study describes the karyotype of strain 270 of the yeast-like fungus Endomyces magnusii. It consists of 13 chromosomal DNA molecules, the size of which range between 1.2 and 5.7Mb producing a genome size of approximately 38Mb. By comparing the karyotype of six strains of E. magnusii, we revealed two main chromosome length polymorphisms (CLPs) associated with a pronounced difference in the total genome size (roughly 50%). Karyotype heterogeneity between two main CLPs was demonstrated by Southern analysis with three heterologous probes. The same species affiliation of six E. magnusii strains was confirmed by morphological and cytological studies, protein fingerprint comparisons, as well as restriction analysis of mitochondrial DNA and genomic Southern analysis.
Collapse
Affiliation(s)
- D Filipp
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B1, 842 15 Bratislava, Slovakia
| | | | | | | |
Collapse
|
29
|
Higashiyama T, Maki S, Yamada T. Molecular organization of Chlorella vulgaris chromosome I: presence of telomeric repeats that are conserved in higher plants. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:29-36. [PMID: 7823910 DOI: 10.1007/bf00290130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The unicellular green alga Chlorella vulgaris (strain C-169) has a small genome (38.8 Mb) consisting of 16 chromosomes, which can be easily separated by CHEF gel electrophoresis. We have isolated and characterized the smallest chromosome (chromosome I, 980 kb) to elucidate the fundamental molecular organization of a plant-type chromosome. Restriction mapping and sequence analyses revealed that the telomeres of this chromosome consist of 5'-TTTAGGG repeats running from the centromere towards the termini; this sequence is identical to those reported for several higher plants. This sequence is reiterated approximately 70 times at both termini, although individual clones exhibited microheterogeneity in both sequence and copy number of the repeats. Subtelomeric sequences proximal to the termini were totally different from each other: on the left arm, unique sequence elements (14-20 bp) which were specific to chromosome I, form a repeat array of 1.7 kb, whereas a 1.0 kb sequence on the right arm contained a poly(A)-associated element immediately next to the telomeric repeats. This element is repeated several times on chromosome I and many times on all the other chromosomes of this organism.
Collapse
Affiliation(s)
- T Higashiyama
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Japan
| | | | | |
Collapse
|
30
|
Moreira D, López-Archilla AI, Amils R, MarÃn I. Characterization of two new thermoacidophilic microalgae: Genome organization and comparison withGaldieria sulphuraria. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07152.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Mochizuki D, Miyahara K, Hirata D, Matsuzaki H, Hatano T, Fukui S, Miyakawa T. Overexpression and secretion of cellulolytic enzymes by δ-sequence-mediated multicopy integration of heterologous DNA sequences into the chromosomes of Saccharomyces cerevisiae. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90112-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Yamada T, Higashiyama T. Characterization of the terminal inverted repeats and their neighboring tandem repeats in the Chlorella CVK1 virus genome. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:554-63. [PMID: 8264529 DOI: 10.1007/bf00279897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A unique group of large icosahedral viruses that infect a unicellular green alga (Chlorella sp. NC64A) were isolated from freshwater sources in Japan. These viruses contain a linear double-stranded DNA (dsDNA) genome with hairpin ends. A physical map was constructed for the genomic DNA of CVK1 (Chlorella virus isolated in Kyoto, no. 1) by pulsed-field gel electrophoresis of restriction fragments. The nucleotide sequences around both termini of the CVK1 DNA revealed the presence of inverted terminal repeats (ITR) of approximately 1.0 kb. Adjacent to the ITR, unique sequence elements of 10 to 20 bp were directly repeated 20 to 30 times in tandem array. Several copies of these repeat elements were deleted in virus mutants that were occasionally generated from Chlorella cells that were in a putative CVK1 carrier state. These repeats might represent a hot spot of rearrangement in the CVK1 genome.
Collapse
Affiliation(s)
- T Yamada
- Faculty of Engineering, Hiroshima University, Japan
| | | |
Collapse
|
33
|
Maleszka R. Electrophoretic analysis of the nuclear and organellar genomes in the ultra-small alga Cyanidioschyzon merolae. Curr Genet 1993; 24:548-50. [PMID: 8299178 DOI: 10.1007/bf00351721] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electrophoretic analysis reveals that the nucleus of the ultra-small eukaryotic alga Cyanidioschyzon merolae contains approximately 11.7 x 10(6) base pairs (11.7 Mb) of DNA. This compact genome is fragmented into 15 small chromosomes ranging in size from 410 to 1700 kb. The migratory behaviour of chloroplast DNA is consistent with the presence of a circular plastid genome of about 170 kb. The conformation of mitochondrial DNA resembles that in yeasts and fungi and is predominantly linear and heterogenous in size.
Collapse
Affiliation(s)
- R Maleszka
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra
| |
Collapse
|
34
|
Dewar K, Bernier L. Electrophoretic karyotypes of the elm tree pathogen Ophiostoma ulmi (sensu lato). MOLECULAR & GENERAL GENETICS : MGG 1993; 238:43-8. [PMID: 8479439 DOI: 10.1007/bf00279529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pulsed field gel electrophoresis using OFAGE, TAFE, and CHEF systems has been used to more fully characterize karyotypic variation within the two closely related fungal species of Ophiostoma ulmi sensu lato. Twelve wild-type and laboratory strains, representing the less aggressive species O. ulmi and both of the biotypes of the more aggressive species O. novo-ulmi were studied and their karyotypes determined. Depending on the strain, a minimum of four to a minimum of eight chromosomal DNA bands were present that fall into three distinct size classes, with one exception. Strain CESS16K (O. novo-ulmi, North American aggressive subgroup) contains a unique chromosomal DNA band which comigrated near a Saccharomyces cerevisiae chromosome of 0.95 Mb. This unique band was the smallest O. ulmi s. l. chromosomal DNA observed. Seven of the twelve strains shared a common chromosomal DNA banding pattern, whereas each of the other five had a unique karyotype. There was no correlation between chromosome profile and species, as some O. novo-ulmi and O. ulmi strains shared common electrophoretic karyotypes.
Collapse
Affiliation(s)
- K Dewar
- Centre de Recherche en Biologie Forestière, Faculté de Foresterie et de Géomatique, Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|