1
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
2
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
3
|
Kaw MK, Blumenthal RM. Translational independence between overlapping genes for a restriction endonuclease and its transcriptional regulator. BMC Mol Biol 2010; 11:87. [PMID: 21092102 PMCID: PMC2997769 DOI: 10.1186/1471-2199-11-87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/19/2010] [Indexed: 01/09/2023] Open
Abstract
Background Most type II restriction-modification (RM) systems have two independent enzymes that act on the same DNA sequence: a modification methyltransferase that protects target sites, and a restriction endonuclease that cleaves unmethylated target sites. When RM genes enter a new cell, methylation must occur before restriction activity appears, or the host's chromosome is digested. Transcriptional mechanisms that delay endonuclease expression have been identified in some RM systems. A substantial subset of those systems is controlled by a family of small transcription activators called C proteins. In the PvuII system, C.PvuII activates transcription of its own gene, along with that of the downstream endonuclease gene. This regulation results in very low R.PvuII mRNA levels early after gene entry, followed by rapid increase due to positive feedback. However, given the lethal consequences of premature REase accumulation, transcriptional control alone might be insufficient. In C-controlled RM systems, there is a ± 20 nt overlap between the C termination codon and the R (endonuclease) initiation codon, suggesting possible translational coupling, and in many cases predicted RNA hairpins could occlude the ribosome binding site for the endonuclease gene. Results Expression levels of lacZ translational fusions to pvuIIR or pvuIIC were determined, with the native pvuII promoter having been replaced by one not controlled by C.PvuII. In-frame pvuIIC insertions did not substantially decrease either pvuIIC-lacZ or pvuIIR-lacZ expression (with or without C.PvuII provided in trans). In contrast, a frameshift mutation in pvuIIC decreased expression markedly in both fusions, but mRNA measurements indicated that this decrease could be explained by transcriptional polarity. Expression of pvuIIR-lacZ was unaffected when the pvuIIC stop codon was moved 21 nt downstream from its WT location, or 25 or 40 bp upstream of the pvuIIR initiation codon. Disrupting the putative hairpins had no significant effects. Conclusions The initiation of translation of pvuIIR appears to be independent of that for pvuIIC. Direct tests failed to detect regulatory rules for either gene overlap or the putative hairpins. Thus, at least during balanced growth, transcriptional control appears to be sufficiently robust for proper regulation of this RM system.
Collapse
Affiliation(s)
- Meenakshi K Kaw
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, 3100 Transverse Drive, Toledo, OH 43614-2598, USA
| | | |
Collapse
|
4
|
Zhu Z, Pedamallu CS, Fomenkov A, Benner J, Xu SY. Cloning of NruI and Sbo13I restriction and modification sstems in E. coli and amino acid sequence comparison of M.NruI and M.Sbo13I with other amino-methyltransferases. BMC Res Notes 2010; 3:139. [PMID: 20497557 PMCID: PMC2890505 DOI: 10.1186/1756-0500-3-139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NruI and Sbo13I are restriction enzyme isoschizomers with the same recognition sequence 5' TCG downward arrowCGA 3' (cleavage as indicated downward arrow). Here we report the cloning of NruI and Sbo13I restriction-modification (R-M) systems in E. coli. The NruI restriction endonuclease gene (nruIR) was cloned by PCR and inverse PCR using primers designed from the N-terminal amino acid sequence. The NruI methylase gene (nruIM) was derived by inverse PCR walking. RESULTS The amino acid sequences of NruI endonuclease and methylase are very similar to the Sbo13I R-M system which has been cloned and expressed in E. coli by phage selection of a plasmid DNA library. Dot blot analysis using rabbit polyclonal antibodies to N6mA- or N4mC-modified DNA indicated that M.NruI is possibly a N6mA-type amino-methyltransferase that most likely modifies the external A in the 5' TCGCGA 3' sequence. M.Sbo13I, however, is implicated as a probable N4mC-type methylase since plasmid carrying sbo13IM gene is not restricted by Mrr endonuclease and Sbo13I digestion is not blocked by Dam methylation of the overlapping site. The amino acid sequence of M.NruI and M.Sbo13I did not show significant sequence similarity to many known amino-methyltransferases in the alpha, beta, and gamma groups, except to a few putative methylases in sequenced microbial genomes. CONCLUSIONS The order of the conserved amino acid motifs (blocks) in M.NruI/M.Sbo13I is similar to the gamma. group amino-methyltranferases, but with two distinct features: In motif IV, the sequence is DPPY instead of NPPY; there are two additional conserved motifs, IVa and Xa as extension of motifs IV and X, in this family of enzymes. We propose that M.NruI and M.Sbo13I form a subgroup in the gamma group of amino-methyltransferases.
Collapse
Affiliation(s)
- Zhenyu Zhu
- New England Biolabs, Inc,, 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | |
Collapse
|
5
|
Nagornykh MO, Bogdanova ES, Protsenko AS, Zakharova MV, Solonin AS, Severinov KV. [Regulation of gene expression in type II restriction-modification system]. RUSS J GENET+ 2008; 44:606-615. [PMID: 18672793 DOI: 10.1134/s1022795408050037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Type II restriction-modification systems are comprised of a restriction endonuclease and methyltransferase. The enzymes are coded by individual genes and recognize the same DNA sequence. Endonuclease makes a double-stranded break in the recognition site, and methyltransferase covalently modifies the DNA bases within the recognition site, thereby down-regulating endonuclease activity. Coordinated action of these enzymes plays a role of primitive immune system and protects bacterial host cell from the invasion of foreign (for example, viral) DNA. However, uncontrolled expression of the restriction-modification system genes can result in the death of bacterial host cell because of the endonuclease cleavage of host DNA. In the present review, the data on the expression regulation of the type II restriction-modification enzymes are discussed.
Collapse
|
6
|
Mruk I, Kaczorowski T. A rapid and efficient method for cloning genes of type II restriction-modification systems by use of a killer plasmid. Appl Environ Microbiol 2007; 73:4286-93. [PMID: 17468281 PMCID: PMC1932789 DOI: 10.1128/aem.00119-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the killer plasmid. The only surviving bacteria are those which carry the gene specifying a protective DNA methyltransferase. Conceptually, this in vivo selection approach resembles earlier methods in which a plasmid library was selected in vitro by digestion with a suitable restriction endonuclease, but it is much more efficient than those methods. The new method was successfully used to clone two R-M systems, BstZ1II from Bacillus stearothermophilus 14P and Csp231I from Citrobacter sp. strain RFL231, both isospecific to the prototype HindIII R-M system.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdansk, Kladki 24, Gdansk, Poland
| | | |
Collapse
|
7
|
Steele M, Ziebell K, Zhang Y, Benson A, Konczy P, Johnson R, Gannon V. Identification of Escherichia coli O157:H7 genomic regions conserved in strains with a genotype associated with human infection. Appl Environ Microbiol 2006; 73:22-31. [PMID: 17056689 PMCID: PMC1797103 DOI: 10.1128/aem.00982-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-glucuronidase-negative, sorbitol-nonfermenting isolates of Shiga toxin-producing Escherichia coli O157 comprise part of a clone complex of related enterohemorrhagic E. coli isolates. High-resolution genotyping shows that the O157 populations have diverged into two different lineages that appear to have different ecologies. To identify genomic regions unique to the most common human-associated genotype, suppression subtractive hybridization was used to identify DNA sequences present in two clinical strains representing the human lineage I O157:H7 strains but absent from two bovine-derived lineage II strains. PCR assays were then used to test for the presence of these regions in 10 lineage I strains and 20 lineage II strains. Twelve conserved regions of genomic difference for lineage I (CRD(I)) were identified that were each present in at least seven of the lineage I strains but absent in most of the lineage II strains tested. The boundaries of the lineage I conserved regions were further delimited by PCR. Eleven of these CRD(I) were associated with E. coli Sakai S-loops 14, 16, 69, 72, 78, 82, 83, 91 to 93, 153, and 286, and the final CRD(I) was located on the pO157 virulence plasmid. Several potential virulence factors were identified within these regions, including a putative hemolysin-activating protein, an iron transport system, and several possible regulatory genes. Cluster analysis based on lineage I conserved regions showed that the presence/absence of these regions was congruent with the inferred phylogeny of the strains.
Collapse
Affiliation(s)
- Marina Steele
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 1st floor, C.F.I.A. Building, Lethbridge, AB T1J 3Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Sawaya MR, Zhu Z, Mersha F, Chan SH, Dabur R, Xu SY, Balendiran GK. Crystal structure of the restriction-modification system control element C.Bcll and mapping of its binding site. Structure 2006; 13:1837-47. [PMID: 16338412 DOI: 10.1016/j.str.2005.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Protection from DNA invasion is afforded by restriction-modification systems in many bacteria. The efficiency of protection depends crucially on the relative expression levels of restriction versus methytransferase genes. This regulation is provided by a controller protein, named C protein. Studies of the Bcll system in E. coli suggest that C.Bcll functions as a negative regulator for M.Bcll expression, implying that it plays a role in defense against foreign DNA during virus infection. C.Bcll binds (Kd = 14.3 nM) to a 2-fold symmetric C box DNA sequence that overlaps with the putative -35 promoter region upstream of the bcllM and bcllC genes. The C.Bcll fold comprises five alpha helices: two helices form a helix-turn-helix motif, and the remaining three helices form the extensive dimer interface. The C.Bcll-DNA model proposed suggests that DNA bending might play an important role in gene regulation, and that Glu27 and Asp31 in C.Bcll might function critically in the regulation.
Collapse
Affiliation(s)
- Michael R Sawaya
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, 205 Boyer Hall, Box 951570, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
O'Driscoll J, Fitzgerald GF, van Sinderen D. A dichotomous epigenetic mechanism governs expression of the LlaJI restriction/modification system. Mol Microbiol 2005; 57:1532-44. [PMID: 16135222 DOI: 10.1111/j.1365-2958.2005.04769.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LlaJI restriction/modification (R/M) system is comprised of two 5mC MTase-encoding genes, llaJIM1 and llaJIM2, and two genes required for restriction activity, llaJIR1 and llaJIR2. Here, we report the molecular mechanism by which this R/M system is transcriptionally regulated. The recognition sequence for the LlaJI MTases was deduced to be 5'GACGC'3 for M1.LlaJI and 5'GCGTC'3 for M2.LlaJI, thus together constituting an asymmetric complementary recognition site. Two recognition sequences for both LlaJI MTases are present within the LlaJI promoter region, indicative of an epigenetic role. Following in vivo analysis of expression of the LlaJI promoter, we established that both LlaJI MTases were required for complete transcriptional repression. A mutational analysis and DNA binding studies of this promoter revealed that the methylation of two specific cytosines by M2.LlaJI within this region was required to trigger the specific and high affinity binding of M1.LlaJI, which serves to regulate expression of the LlaJI operon. This regulatory system therefore represents the amalgamation of an epigenetic stimulation coupled to the formation of a MTase/repressor:promoter complex.
Collapse
|
10
|
McGeehan JE, Streeter SD, Papapanagiotou I, Fox GC, Kneale GG. High-resolution crystal structure of the restriction-modification controller protein C.AhdI from Aeromonas hydrophila. J Mol Biol 2005; 346:689-701. [PMID: 15713456 DOI: 10.1016/j.jmb.2004.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/11/2004] [Accepted: 12/14/2004] [Indexed: 11/23/2022]
Abstract
Restriction-modification (R-M) systems serve to protect the host bacterium from invading bacteriophage. The multi-component system includes a methyltransferase, which recognizes and methylates a specific DNA sequence, and an endonuclease which recognises the same sequence and cleaves within or close to this site. The endonuclease will only cleave DNA that is unmethylated at the specific site, thus host DNA is protected while non-host DNA is cleaved. However, following DNA replication, expression of the endonuclease must be delayed until the host DNA is appropriately methylated. In many R-M systems, this regulation is achieved at the transcriptional level via the controller protein, or C-protein. We have solved the first X-ray structure of an R-M controller protein, C.AhdI, to 1.69 A resolution using selenomethionine MAD. C.AhdI is part of a Type IIH R-M system from the pathogen Aeromonas hydrophila. The structure reveals an all-alpha protein that contains a classical helix-turn-helix (HTH) domain and can be assigned to the Xre family of transcriptional regulators. Unlike its monomeric structural homologues, an extended helix generates an interface that results in dimerisation of the free protein. The dimer is electrostatically polarised and a positively charged surface corresponds to the position of the DNA recognition helices of the HTH domain. Comparison with the structure of the lambda cI ternary complex suggests that C.AhdI activates transcription through direct contact with the sigma70 subunit of RNA polymerase.
Collapse
Affiliation(s)
- J E McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DT, UK
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Lindstrom WM, Malygin EG, Ovechkina LG, Zinoviev VV, Reich NO. Functional analysis of BamHI DNA cytosine-N4 methyltransferase. J Mol Biol 2003; 325:711-20. [PMID: 12507474 DOI: 10.1016/s0022-2836(02)01282-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We show that the kinetic mechanism of the DNA (cytosine-N(4)-)-methyltransferase M.BamHI, which modifies the underlined cytosine (GGATCC), differs from cytosine C(5) methyltransferases, and is similar to that observed with adenine N(6) methyltransferases. This suggests that the obligate order of ternary complex assembly and disassembly depends on the type of methylation reaction. In contrast, the single-turnover rate of catalysis for M.BamHI (0.10s(-1)) is closer to the DNA (cytosine-C(5)-)-methyltransferases (0.14s(-1)) than the DNA (adenine-N(6)-)-methyltransferases (>200s(-1)). The nucleotide flipping transition dominates the single-turnover constant for adenine N(6) methyltransferases, and, since the disruption of the guanine-cytosine base-pair is essential for both types of cytosine DNA methyltransferases, this transition may be a common, rate-limiting step for methylation for these two enzyme subclasses. The similar overall rate of catalysis by M.BamHI and other DNA methyltransferases is consistent with a common rate-limiting catalytic step of product dissociation. Our analyses of M.BamHI provide functional insights into the relationship between the three different classes of DNA methyltransferases that complement both prior structural and evolutionary insights.
Collapse
Affiliation(s)
- William M Lindstrom
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
13
|
Cesnaviciene E, Mitkaite G, Stankevicius K, Janulaitis A, Lubys A. Esp1396I restriction-modification system: structural organization and mode of regulation. Nucleic Acids Res 2003; 31:743-9. [PMID: 12527784 PMCID: PMC140501 DOI: 10.1093/nar/gkg135] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Esp1396I restriction-modification (RM) system recognizes an interrupted palindromic DNA sequence 5'-CCA(N)(5)TGG-3'. The Esp1396I RM system was found to reside on pEsp1396, a 5.6 kb plasmid naturally occurring in Enterobacter sp. strain RFL1396. The nucleotide sequence of the entire 5622 bp pEsp1396 plasmid was determined on both strands. Identified genes for DNA methyltransferase (esp1396IM) and restriction endonuclease (esp1396IR) are transcribed convergently. The restriction endonuclease gene is preceded by the small ORF (esp1396IC) that possesses a strong helix-turn-helix motif and resembles regulatory proteins found in PvuII, BamHI and few other RM systems. Gene regulation studies revealed that C.Esp1396I acts as both a repressor of methylase expression and an activator of regulatory protein and restriction endonuclease expression. Our data indicate that C protein from Esp1396I RM system activates the expression of the Enase gene, which is co-transcribed from the promoter of regulatory gene, by the mechanism of coupled translation.
Collapse
MESH Headings
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Codon, Initiator/genetics
- DNA Restriction-Modification Enzymes/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Enterobacter/enzymology
- Enterobacter/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/chemistry
- Plasmids/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
Collapse
|
14
|
Kita K, Tsuda J, Nakai SY. C.EcoO109I, a regulatory protein for production of EcoO109I restriction endonuclease, specifically binds to and bends DNA upstream of its translational start site. Nucleic Acids Res 2002; 30:3558-65. [PMID: 12177297 PMCID: PMC134244 DOI: 10.1093/nar/gkf477] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The EcoO109I restriction-modification system, which recognizes 5'-(A/G)GGNCC(C/T)-3', has been cloned, and contains convergently transcribed endonuclease and methylase. The role and action mechanism of the gene product, C.EcoO109I, of a small open reading frame located upstream of ecoO109IR were investigated in vivo and in vitro. The results of deletion analysis suggested that C.EcoO109I acts as a positive regulator of ecoO109IR expression but has little effect on ecoO109IM expression. Assaying of promoter activity showed that the expression of ecoO109IC was regulated by its own gene product, C.EcoO109I. C.EcoO109I was overproduced as a His-tag fusion protein in recombinant Escherichia coli HB101 and purified to homogeneity. C.EcoO109I exists as a homodimer, and recognizes and binds to the DNA sequence 5'-CTAAG(N)(5)CTTAG-3' upstream of the ecoO109IC translational start site. It was also shown that C.EcoO109I bent the target DNA by 54 +/- 4 degrees.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Blotting, Western
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxyribonucleases, Type II Site-Specific/biosynthesis
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Dimerization
- Electrophoretic Mobility Shift Assay
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Biosynthesis/genetics
- Response Elements/genetics
- Substrate Specificity
Collapse
Affiliation(s)
- Keiko Kita
- Department of Biotechnology, Tottori University, 4-101 Koyama, Tottori 680-8552, Japan.
| | | | | |
Collapse
|
15
|
Naderer M, Brust JR, Knowle D, Blumenthal RM. Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J Bacteriol 2002; 184:2411-9. [PMID: 11948154 PMCID: PMC135005 DOI: 10.1128/jb.184.9.2411-2419.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The flow of genes among prokaryotes plays a fundamental role in shaping bacterial evolution, and restriction-modification systems can modulate this flow. However, relatively little is known about the distribution and movement of restriction-modification systems themselves. We have isolated and characterized the genes for restriction-modification systems from two species of Salmonella, S. enterica serovar Paratyphi A and S. enterica serovar Bareilly. Both systems are closely related to the PvuII restriction-modification system and share its target specificity. In the case of S. enterica serovar Paratyphi A, the restriction endonuclease is inactive, apparently due to a mutation in the subunit interface region. Unlike the chromosomally located Salmonella systems, the PvuII system is plasmid borne. We have completed the sequence characterization of the PvuII plasmid pPvu1, originally from Proteus vulgaris, making this the first completely sequenced plasmid from the genus Proteus. Despite the pronounced similarity of the three restriction-modification systems, the flanking sequences in Proteus and Salmonella are completely different. The SptAI and SbaI genes lie between an equivalent pair of bacteriophage P4-related open reading frames, one of which is a putative integrase gene, while the PvuII genes are adjacent to a mob operon and a XerCD recombination (cer) site.
Collapse
Affiliation(s)
- Marc Naderer
- Department of Microbiology & Immunology and Program in Bioinformatics & Proteomics/Genomics, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | |
Collapse
|
16
|
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:3742-56. [PMID: 11557807 PMCID: PMC55917 DOI: 10.1093/nar/29.18.3742] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 07/12/2001] [Accepted: 07/23/2001] [Indexed: 11/14/2022] Open
Abstract
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
Collapse
Affiliation(s)
- I Kobayashi
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
17
|
Godány A, Farkasovská J, Bukovská G, Timko J. Connection between foreign DNA replication and induced expression of the restriction-modification system in Streptomyces aureofaciens. Folia Microbiol (Praha) 2001; 46:193-6. [PMID: 11702402 DOI: 10.1007/bf02818532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tetracycline-producing strains of Streptomyces aureofaciens expressed SauLPI restriction-modification (R-M) system, which recognized specific DNA sequence 5'-GCCGGC-3' (isoschizomer Nael). The activation of the second R-M system SauLPII (5'-GAGCTC-3', isoschizomer of XhoI), which was silent during the growth cycle, after a foreign DNA transfer into this strain was observed. This phenomenon was tentatively explained as a response of the cells against the exogenous DNA entering the cells. The involvement of a SOS-like response in induction of R-M system genes in S. aureofaciens strains has been considered.
Collapse
Affiliation(s)
- A Godány
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia
| | | | | | | |
Collapse
|
18
|
Ffrench-Constant RH, Waterfield N, Burland V, Perna NT, Daborn PJ, Bowen D, Blattner FR. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl Environ Microbiol 2000; 66:3310-29. [PMID: 10919786 PMCID: PMC92150 DOI: 10.1128/aem.66.8.3310-3329.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this "symbiosis of pathogens" remain largely obscure. In order to identify genes encoding potential virulence factors, we performed approximately 2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to the Escherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.
Collapse
|
19
|
Xu Q, Stickel S, Roberts RJ, Blaser MJ, Morgan RD. Purification of the novel endonuclease, Hpy188I, and cloning of its restriction-modification genes reveal evidence of its horizontal transfer to the Helicobacter pylori genome. J Biol Chem 2000; 275:17086-93. [PMID: 10748211 DOI: 10.1074/jbc.m910303199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel restriction endonuclease, Hpy188I, from Helicobacter pylori strain J188. Hpy188I recognizes the unique sequence, TCNGA, and cleaves the DNA between nucleotides N and G in its recognition sequence to generate a one-base 3' overhang. Cloning and sequence analysis of the Hpy188I modification gene in strain J188 reveal that hpy188IM has a 1299-base pair (bp) open reading frame (ORF) encoding a 432-amino acid product. The predicted protein sequence of M.Hpy188I contains conserved motifs typical of aminomethyltransferases, and Western blotting indicates that it is an N-6 adenine methyltransferase. Downstream of hpy188IM is a 513-bp ORF encoding a 170-amino acid product, that has a 41-bp overlap with hpy188IM. The predicted protein sequence from this ORF matches the amino acid sequence obtained from purified Hpy188I, indicating that it encodes the endonuclease. The Hpy188I R-M genes are not present in either strain of H. pylori that has been completely sequenced but are found in two of 11 H. pylori strains tested. The significantly lower G + C content of the Hpy188I R-M genes implies that they have been introduced relatively recently during the evolution of the H. pylori genome.
Collapse
Affiliation(s)
- Q Xu
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
REBASE is a comprehensive database of information about restriction enzymes and related proteins. It contains published and unpublished references, recognition and cleavage sites, isoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. DNA methyltransferases, homing endonucleases, nicking enzymes, specificity subunits and control proteins are also included. Most recently, putative DNA methyltransferases and restriction enzymes, as predicted from analysis of genomic sequences, are also listed. The data is distributed via Email, ftp (ftp.neb.com), and the Web (http://rebase.neb.com).
Collapse
Affiliation(s)
- R J Roberts
- New England BioLabs, Inc., 32 Tozer Road, Beverly, MA 01915, USA.
| | | |
Collapse
|
21
|
Vijesurier RM, Carlock L, Blumenthal RM, Dunbar JC. Role and mechanism of action of C. PvuII, a regulatory protein conserved among restriction-modification systems. J Bacteriol 2000; 182:477-87. [PMID: 10629196 PMCID: PMC94299 DOI: 10.1128/jb.182.2.477-487.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 10/27/1999] [Indexed: 11/20/2022] Open
Abstract
The PvuII restriction-modification system is a type II system, which means that its restriction endonuclease and modification methyltransferase are independently active proteins. The PvuII system is carried on a plasmid, and its movement into a new host cell is expected to be followed initially by expression of the methyltransferase gene alone so that the new host's DNA is protected before endonuclease activity appears. Previous studies have identified a regulatory gene (pvuIIC) between the divergently oriented genes for the restriction endonuclease (pvuIIR) and modification methyltransferase (pvuIIM), with pvuIIC in the same orientation as and partially overlapping pvuIIR. The product of pvuIIC, C. PvuII, was found to act in trans and to be required for expression of pvuIIR. In this study we demonstrate that premature expression of pvuIIC prevents establishment of the PvuII genes, consistent with the model that requiring C. PvuII for pvuIIR expression provides a timing delay essential for protection of the new host's DNA. We find that the opposing pvuIIC and pvuIIM transcripts overlap by over 60 nucleotides at their 5' ends, raising the possibility that their hybridization might play a regulatory role. We furthermore characterize the action of C. PvuII, demonstrating that it is a sequence-specific DNA-binding protein that binds to the pvuIIC promoter and stimulates transcription of both pvuIIC and pvuIIR into a polycistronic mRNA. The apparent location of C. PvuII binding, overlapping the -10 promoter hexamer and the pvuIICR transcriptional starting points, is highly unusual for transcriptional activators.
Collapse
Affiliation(s)
- R M Vijesurier
- Center for Molecular Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
22
|
Lubys A, Jurenaite S, Janulaitis A. Structural organization and regulation of the plasmid-borne type II restriction-modification system Kpn2I from Klebsiella pneumoniae RFL2. Nucleic Acids Res 1999; 27:4228-34. [PMID: 10518615 PMCID: PMC148698 DOI: 10.1093/nar/27.21.4228] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kpn 2I enzymes of a type II restriction-modification (R-M) system from the bacterium Klebsiella pneumoniae strain RFL2 recognize the sequence 5'-TCCGGA-3'. The Kpn 2I R-M genes have been cloned and expressed in Escherichia coli. DNA sequence analysis revealed the presence of two convergently transcribed open reading frames (ORFs) coding for a restriction endonuclease (Enase) of 301 amino acids (34. 8 kDa) and methyltransferase (Mtase) of 375 amino acids (42.1 kDa). The 3'-terminal ends of these genes ( kpn2IR and kpn2IM, respectively) overlap by 11 bp. In addition, a small ORF (gene kpn2IC ) capable of coding for a protein of 96 amino acids in length (10.6 kDa) was found upstream of kpn2IM. The direction of kpn2IC transcription is opposite to that of kpn2IM. The predicted amino acid sequence of this ORF includes a probable helix-turn-helix motif. We show that the product of kpn2IC represses expression of the Kpn 2I Mtase but has no influence on expression of the Enase gene. Such a mode of regulation is unique among R-M systems analyzed so far. The Kpn 2I R-M is located on the K.pneumoniae RFL2 plasmid pKp4.3, which is able to replicate in E.coli cells.
Collapse
Affiliation(s)
- A Lubys
- Institute of Biotechnology, Graiciuno 8, 2028 Vilnius, Lithuania
| | | | | |
Collapse
|
23
|
Dorner LF, Bitinaite J, Whitaker RD, Schildkraut I. Genetic analysis of the base-specific contacts of BamHI restriction endonuclease. J Mol Biol 1999; 285:1515-23. [PMID: 9917393 DOI: 10.1006/jmbi.1998.2408] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we investigate the highly specific interaction of the BamHI endonuclease with its cognate recognition sequence GGATCC by determining which amino acid residues can be substituted at the DNA interface while maintaining specificity. Mutational studies, together with the structural determination of the restriction endonuclease BamHI have revealed the amino acid residues which are involved in DNA catalysis and those which play a role in the specific binding of the enzyme to its cognate DNA recognition sequence. Amino acid residues N116, S118, R122, D154 and R155 are involved in DNA sequence recognition and are located in the major groove in close proximity to the nucleotide bases comprising the recognition sequence. Cassette mutagenesis of these amino acids, together with in vivo transcriptional interference selection, was used to identify an array of substitutions which maintain site-specific binding to the cognate GGATCC sequence. This approach has demonstrated the extent of acceptable variation among amino acid residues which are directly involved in site-specific binding. One variant, double mutant N116H, S118G was found to cleave DNA only when the adenine base in the recognition site is methylated.
Collapse
Affiliation(s)
- L F Dorner
- New England Biolabs, Beverly, MA, 01915, USA
| | | | | | | |
Collapse
|
24
|
Marahiel MA, Stachelhaus T, Mootz HD. Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem Rev 1997; 97:2651-2674. [PMID: 11851476 DOI: 10.1021/cr960029e] [Citation(s) in RCA: 813] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamed A. Marahiel
- Biochemie/Fachbereich Chemie, Hans-Meerwein-Strasse, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
25
|
Anton BP, Heiter DF, Benner JS, Hess EJ, Greenough L, Moran LS, Slatko BE, Brooks JE. Cloning and characterization of the Bg/II restriction-modification system reveals a possible evolutionary footprint. Gene 1997; 187:19-27. [PMID: 9073062 DOI: 10.1016/s0378-1119(96)00638-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bg/II, a type II restriction-modification (R-M) system from Bacillus globigii, recognizes the sequence 5'-AGATCT-3'. The system has been cloned into E. coli in multiple steps: first the methyltransferase (MTase) gene, bglIIM, was cloned from B. globigii RUB561, a variant containing an inactivated endonuclease (ENase) gene (bglIIR). Next the ENase protein (R.BglII) was purified to homogeneity from RUB562, a strain expressing the complete R-M system. Oligonucleotide probes specific for the 5' end of the gene were then synthesized and used to locate bglIIR, and the gene was isolated and cloned in a subsequent step. The nucleotide sequence of the system has been determined, and several interesting features have been found. The genes are tandemly arranged, with bglIIR preceding bglIIM. The amino acid sequence of M.BglII is compared to those of other known MTases. A third gene encoding a protein with sequence similarity to known C elements of other R-M systems is found upstream of bglIIR. This is the first instance of a C gene being associated with an R-M system where the R and M genes are collinear. In addition, open reading frames (ORFs) resembling genes involved with DNA mobility are found in close association with BglII. These may shed light on the evolution of the R-M system.
Collapse
Affiliation(s)
- B P Anton
- New England Biolabs, Beverly, MA 01915, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.
Collapse
Affiliation(s)
- I Ahmad
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
27
|
Guthrie EP, Quinton-Jager T, Moran LS, Slatko BE, Kucera RB, Benner JS, Wilson GG, Brooks JE. Cloning, expression and sequence analysis of the SphI restriction-modification system. Gene 1996; 180:107-12. [PMID: 8973353 DOI: 10.1016/s0378-1119(96)00415-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SphI, a type II restriction-modification (R-M) system from the bacterium Streptomyces phaeochromogenes, recognizes the sequence 5'-GCATGC. The SphI methyltransferase (MTase)-encoding gene, sphIM, was cloned into Escherichia coli using MTase selection to isolate the clone. However, none of these clones contained the restriction endonuclease (ENase) gene. Repeated attempts to clone the complete ENase gene along with sphIM in one step failed, presumably due to expression of SphI ENase gene, sphIR, in the presence of inadequate expression of sphIM. The complete sphIR was finally cloned using a two-step process. PCR was used to isolate the 3' end of sphIR from a library. The intact sphIR, reconstructed under control of an inducible promoter, was introduced into an E. coli strain containing a plasmid with the NlaIII MTase-encoding gene (nlaIIIM). The nucleotide sequence of the SphI system was determined, analyzed and compared to previously sequenced R-M systems. The sequence was also examined for features which would help explain why sphIR unlike other actinomycete ENase genes seemed to be expressed in E. coli.
Collapse
Affiliation(s)
- E P Guthrie
- New England Biolabs, Inc., Beverly, MA 01915, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
van Soolingen D, de Haas PE, Blumenthal RM, Kremer K, Sluijter M, Pijnenburg JE, Schouls LM, Thole JE, Dessens-Kroon MW, van Embden JD, Hermans PW. Host-mediated modification of PvuII restriction in Mycobacterium tuberculosis. J Bacteriol 1996; 178:78-84. [PMID: 8550446 PMCID: PMC177623 DOI: 10.1128/jb.178.1.78-84.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Restriction endonuclease PvuII plays a central role in restriction fragment length polymorphism analysis of Mycobacterium tuberculosis complex isolates with IS6110 as a genetic marker. We have investigated the basis for an apparent dichotomy in PvuII restriction fragment pattersn observed among strains of the M. tuberculosis complex. The chromosomal regions of two modified PvuII restriction sites, located upstream of the katG gene and downstream of an IS1081 insertion sequence, were studied in more detail. An identical 10-bp DNA sequence (CAGCTGGAGC) containing a PvuII site was found in both regions, and site-directed mutagenesis analysis revealed that this sequence was a target for modification. Strain-specific modification of PvuII sites was identified in DNA from over 80% of the nearly 800 isolates examined. Furthermore, the proportion of modifying and nonmodifying strains differs significantly from country to country.
Collapse
Affiliation(s)
- D van Soolingen
- Laboratory for Bacteriology and Antimicrobial Agents, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ives CL, Sohail A, Brooks JE. The regulatory C proteins from different restriction-modification systems can cross-complement. J Bacteriol 1995; 177:6313-5. [PMID: 7592403 PMCID: PMC177478 DOI: 10.1128/jb.177.21.6313-6315.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The BamHI restriction-modification system contains a third gene, bamHIC, which positively regulates bamHIR. Similar small genes from other systems were tested in vivo for their ability to cross-complement. C.BamHI protein was identified, purified, and used to raise polyclonal antibodies. Attempts to detect other C proteins in cell extracts by cross-reactivity with C.BamHI antibodies proved unsuccessful.
Collapse
Affiliation(s)
- C L Ives
- New England Biolabs, Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
30
|
Kulakauskas S, Lubys A, Ehrlich SD. DNA restriction-modification systems mediate plasmid maintenance. J Bacteriol 1995; 177:3451-4. [PMID: 7768854 PMCID: PMC177048 DOI: 10.1128/jb.177.12.3451-3454.1995] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two plasmid-carried restriction-modification (R-M) systems, EcoRI (from pMB1 of Escherichia coli) and Bsp6I (from pXH13 of Bacillus sp. strain RFL6), enhance plasmid segregational stability in E. coli and Bacillus subtilis, respectively. Inactivation of the endonuclease or the presence of the methylase in trans abolish the stabilizing activity of the R-M systems. We propose that R-M systems mediate plasmid segregational stability by postsegregational killing of plasmid-free cells. Plasmid-encoded methyltransferase modifies host DNA and thus prevents its digestion by the restriction endonuclease. Plasmid loss entails degradation and/or dilution of the methylase during cell growth and appearance of unmethylated sites in the chromosome. Double-strand breaks, introduced at these sites by the endonuclease, eventually cause the death of the plasmid-free cells. Contribution to plasmid stability is a previously unrecognized biological role of the R-M systems.
Collapse
Affiliation(s)
- S Kulakauskas
- Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | |
Collapse
|
31
|
Abstract
The PvuII restriction-modification system has been found to contain three genes which code for a DNA methyltransferase (MTase), a restriction endonuclease (ENase) and a small protein required for expression of the ENase-encoding gene. In addition, there is a small open reading frame (ORF) within and opposite to the MTase-encoding gene. The region containing this ORF is transcribed, and the ORF has an excellent Shine-Dalgarno sequence with an ATA start codon. A closely related ORF is present in the SmaI system. The 28-amino-acid (aa) predicted peptide from the PvuII ORF resembles a region of the PvuII ENase at the dimer interface. We have cloned this ORF, giving it an ATG start codon and putting it under the control of an inducible promoter: induction leads to a slight but significant decrease in restriction of bacteriophage lambda. We also have obtained the 28-aa synthetic peptide, and are exploring the possibility that it modulates ENase subunit association. While this peptide has no detectable effect on dimeric PvuII ENase, it inhibits renaturation of urea-denatured ENase in a concentration-dependent manner. The ORF may represent an additional safeguard during establishment of the PvuII restriction-modification system in a new host cell, helping to delay the appearance of active ENase dimers, while the MTase accumulates and protects the host chromosome.
Collapse
Affiliation(s)
- G M Adams
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
32
|
Abstract
Two heat-sensitive R.BamHI mutants, T157I and P173L, and one cold-sensitive R.BamHI mutant, T114I, were isolated after chemical mutagenesis of the bamhIR gene that codes for the restriction endonuclease BamHI (R.BamHI). The thermosensitivity of T114I, T157I and P173L is revealed by the 10(2)-10(3) lower plating efficiency at the non-permissive temperature of strains bearing these alleles. The conditional-lethal phenotype can be rescued by introduction of the cognate bamhIM gene into the same cell. The mutant enzymes induce the SOS response in vivo and display reduced phage restriction activity. The P173L protein, when expressed at 30 degrees C and purified, shows reduced thermostability at 65 degrees C. T157I and P173L mutants yield different intermediates during partial trypsin digestion. The conditional-lethal BamHI mutants could be used to deliver in vivo DNA cleavage and for further isolation of relaxed-specificity mutants.
Collapse
Affiliation(s)
- A Fomenkov
- New England Biolabs Inc., Beverly, MA 01915, USA
| | | |
Collapse
|
33
|
Rimseliene R, Vaisvila R, Janulaitis A. The eco72IC gene specifies a trans-acting factor which influences expression of both DNA methyltransferase and endonuclease from the Eco72I restriction-modification system. Gene X 1995; 157:217-9. [PMID: 7607493 DOI: 10.1016/0378-1119(94)00794-s] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Eco72I from Escherichia coli RFL72 is a type-II restriction-modification (R-M) system recognizing and cleaving the sequence 5'-CAC decreases GTG-3'. The R-M genes are transcribed divergently and between the two genes is a small open reading frame codirectional to the R gene. This small ORF acts both to stimulate ENase expression and to depress DNA methyltransferase synthesis. The activity of beta Gal produced from the eco72IM::lacZ translational fusion increased tenfold, and eco72IR::lacZ translational fusion beta Gal activity decreased 130-fold when eco72IC was inactivated by a frameshift mutation. Analysis of nucleotide sequences of R-M systems, containing C genes, revealed a 5'-ACCTTATAGTC-3' consensus sequence upstream from the regulatory genes in all six analysed R-M systems. This sequence, named C-box, may play the role of an operator sequence.
Collapse
Affiliation(s)
- R Rimseliene
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | |
Collapse
|
34
|
Abstract
SmaI endonuclease recognizes and cleaves the sequence CCC decreases GGG. The enzyme requires magnesium for catalysis; however, equilibrium binding assays revealed that the enzyme binds specifically to DNA in the absence of magnesium. A specific association constant of 0.9 x 10(8) M-1 was determined for SmaI binding to a 22-base duplex oligonucleotide. Furthermore, the KA was a function of the length of the DNA substrate and the enzyme exhibited an affinity of 1.2 x 10(9) M-1 for a 195-base pair fragment and which represented a 10(4)-fold increase in affinity over binding to nonspecific sequences. A Km of 17.5 nM was estimated from kinetic assays based on cleavage of the 22-base oligonucleotide and is not significantly different from the KD estimated from the thermodynamic analyses. Footprinting (dimethyl sulfate and missing nucleoside) analyses revealed that SmaI interacts with each of the base pairs within the recognition sequence. Ethylation interference assays suggested that the protein contacts three adjacent phosphates on each strand of the recognition sequence. Significantly, a predicted protein contact with the phosphate 3' of the scissile bond may have implications in the mechanism of catalysis by SmaI.
Collapse
Affiliation(s)
- B E Withers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
35
|
Taron CH, Van Cott EM, Wilson GG, Moran LS, Slatko BE, Hornstra LJ, Benner JS, Kucera RB, Guthrie EP. Cloning and expression of the NaeI restriction endonuclease-encoding gene and sequence analysis of the NaeI restriction-modification system. Gene 1995; 155:19-25. [PMID: 7698663 DOI: 10.1016/0378-1119(94)00806-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
NaeI, a type-II restriction-modification (R-M) system from the bacterium Nocardia aerocolonigenes, recognizes the sequence 5'-GCCGGC. The NaeI DNA methyltransferase (MTase)-encoding gene, naeIM, had been cloned previously in Escherichia coli [Van Cott and Wilson, Gene 74 (1988) 55-59]. However, none of these clones expressed detectable levels of the restriction endonuclease (ENase). The absence of the intact ENase-encoding gene (naeIR) within the isolated MTase clones was confirmed by recloning the MTase clones into Streptomyces lividans. The complete NaeI system was finally cloned using E. coli AP1-200 [Piekarowicz et al., Nucleic Acids Res. 19 (1991) 1831-1835] and less stringent MTase-selection conditions. The naeIR gene was expressed first by cloning into S. lividans, and later by cloning under control of a regulated promoter in an E. coli strain preprotected by the heterologous MspI MTase (M.MspI). The DNA sequence of the NaeI R-M system has been determined, analyzed and compared to previously sequenced R-M systems.
Collapse
Affiliation(s)
- C H Taron
- New England Biolabs, Beverly, MA 01915, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK. Structure of restriction endonuclease bamhi phased at 1.95 A resolution by MAD analysis. Structure 1994; 2:439-52. [PMID: 8081758 DOI: 10.1016/s0969-2126(00)00045-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Type II restriction endonucleases recognize DNA sequences that vary between four to eight base pairs, and require only Mg2+ as a cofactor to catalyze the hydrolysis of DNA. Their protein sequences display a surprising lack of similarity, and no recurring structural motif analogous to the helix-turn-helix or the zinc finger of transcription factors, has yet been discovered. RESULTS We have determined the crystal structure of restriction endonuclease BamHI at 1.95 A resolution. The structure was solved by combining phase information derived from multi-wavelength X-ray data by algebraic and maximum likelihood methods. The BamHI subunit consists of a central beta-sheet with alpha-helices on both sides. The dimer configuration reveals a large cleft which could accommodate B-form DNA. Mutants of the enzyme that are deficient in cleavage are located at or near the putative DNA-binding cleft. BamHI and endonuclease EcoRI share a common core motif (CCM) consisting of five beta-strands and two helices. It remains to be determined if other restriction enzymes also contain the CCM. CONCLUSIONS The structure of BamHI provides the first clear evidence that there may be substantial structural homology amongst restriction enzymes, even though it is undetectable at the sequence level.
Collapse
Affiliation(s)
- M Newman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | | | | | | | |
Collapse
|
37
|
Lau PC, Forghani F, Labbé D, Bergeron H, Brousseau R, Höltke HJ. The NlaIV restriction and modification genes of Neisseria lactamica are flanked by leucine biosynthesis genes. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:24-31. [PMID: 8190068 DOI: 10.1007/bf00283872] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genes encoding the Neisseria lactamica restriction endonuclease IV (R.NlaIV) and its cognate DNA methyltransferase (M.NlaIV), both of which recognize the sequence GGNNCC, have been cloned in Escherichia coli and overexpressed using the T7 polymerase/promoter system. Analysis of a sequenced 3.58 kb fragment established the gene order, leuD-M.NlaIV-R.NlaIV-leuB. The predicted primary sequence of M.NlaIV (423 amino acids) shows the highest degree of identity to a pair of cytosine-specific methyltransferases, M.BanI (44.9%) and M.HgiCI (44.3%), which recognize the sequence GGYRCC (Y, pyrimidines; R, purines). In contrast, the R.NlaIV protein sequence (243 amino acids) is unique in the existing data-base, a situation that holds for most endonucleases. Flanking the NlaIV modification and restriction genes are homologues of the leuD and leuB genes of enteric bacteria, which code for enzymes in the leucine biosynthesis pathway. This gene context implies a possible new mode of gene regulation for the RM.NlaIV system, which would involve a mechanism similar to the recently discovered leucine/Lrp regulon in E. coli.
Collapse
Affiliation(s)
- P C Lau
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec
| | | | | | | | | | | |
Collapse
|
38
|
Dorner LF, Schildkraut I. Direct selection of binding proficient/catalytic deficient variants of BamHI endonuclease. Nucleic Acids Res 1994; 22:1068-74. [PMID: 7908739 PMCID: PMC307931 DOI: 10.1093/nar/22.6.1068] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Variants of BamHI endonuclease in which the glutamate 113 residue has been changed to lysine or the aspartate 94 to asparagine were shown to behave as repressor molecules in vivo. This was demonstrated by placing a BamHI recognition sequence, GGATCC, positioned as an operator sequence in an antisense promoter for the aadA gene (spectinomycin resistance). Repression of this promoter relieved the inhibition of expression of spectinomycin resistance. This system was then used to select new binding proficient/cleavage deficient BamHI variants. The BamHI endonuclease gene was mutagenized either by exposure to hydroxylamine or by PCR. The mutagenized DNA was reintroduced into E. coli carrying the aadA gene construct, and transformants that conferred spectinomycin resistance were selected. Twenty Spr transformants were sequenced. Thirteen of these were newly isolated variants of the previously identified D94 and E113 residues which are known to be involved in catalysis. The remaining seven variants were all located at residue 111 and the glutamate 111 residue was shown to be involved with catalysis.
Collapse
|
39
|
Abstract
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.
Collapse
Affiliation(s)
- T A Bickle
- Department of Microbiology, Biozentrum, Basel University, Switzerland
| | | |
Collapse
|
40
|
Zhang B, Tao T, Wilson GG, Blumenthal RM. The M.AluI DNA-(cytosine C5)-methyltransferase has an unusually large, partially dispensable, variable region. Nucleic Acids Res 1993; 21:905-11. [PMID: 8451189 PMCID: PMC309223 DOI: 10.1093/nar/21.4.905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The DNA methyltransferase of the AluI restriction-modification system, from Arthrobacter luteus, converts cytosine to 5-methylcytosine in the sequence AGCT. The gene for this methyltransferase, aluIM, was cloned into Escherichia coli and sequenced. A 525-codon open reading frame was found, consistent with deletion evidence, and the deduced amino acid sequence revealed all ten conserved regions common to 5-methylcytosine methyltransferases. The aluIM sequence predicts a protein of M(r) 59.0k, in agreement with the observed M(r), making M.AluI the largest known methyltransferase from a type II restriction-modification system. M.AluI also contains the largest known variable region of any monospecific DNA methyltransferase, larger than that of most multispecific methyltransferases. In other DNA methyltransferases the variable region has been implicated as the sequence-specific target recognition domain. An in-frame deletion that removes a third of this putative target-recognition region leaves the Alu I methyltransferase still fully active.
Collapse
Affiliation(s)
- B Zhang
- New England BioLabs, Inc., Beverly, MA 01915-5599
| | | | | | | |
Collapse
|
41
|
|
42
|
Withers BE, Ambroso LA, Dunbar JC. Structure and evolution of the XcyI restriction-modification system. Nucleic Acids Res 1992; 20:6267-73. [PMID: 1475187 PMCID: PMC334515 DOI: 10.1093/nar/20.23.6267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The XcyI restriction-modification system from Xanthomonas cyanopsidis recognizes the sequence, CCCGGG. The XcyI endonuclease and methylase genes have been cloned and sequenced and were found to be aligned in a head to tail orientation with the methylase preceding and overlapping the endonuclease by one base pair. The nucleotide sequence codes for an N4 cytosine methyltransferase with a predicted molecular weight of 33,500 and an endonuclease comprised of 333 codons and a molecular weight of 36,600. Sequence comparisons revealed significant similarity between the XcyI, CfrI and SmaI methylisomers. In contrast, no similarity was detected between the primary structures of the XcyI and SmaI endonucleases. The XcyI restriction-modification system is highly homologous to the XmaI genes, although the DNA sequences flanking the genes rapidly diverge. The sequence of the XcyI endonuclease contains two motifs which have recently been identified as essential to the activity of the EcoRV endonuclease.
Collapse
Affiliation(s)
- B E Withers
- Wayne State University School of Medicine, Detroit, MI 48201
| | | | | |
Collapse
|
43
|
Janulaitis A, Vaisvila R, Timinskas A, Klimasauskas S, Butkus V. Cloning and sequence analysis of the genes coding for Eco57I type IV restriction-modification enzymes. Nucleic Acids Res 1992; 20:6051-6. [PMID: 1334261 PMCID: PMC334472 DOI: 10.1093/nar/20.22.6051] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A 6.3 kb fragment of E.coli RFL57 DNA coding for the type IV restriction-modification system Eco57I was cloned and expressed in E.coli RR1. A 5775 bp region of the cloned fragment was sequenced which contains three open reading frames (ORF). The methylase gene is 1623 bp long, corresponding to a protein of 543 amino acids (62 kDa); the endonuclease gene is 2991 bp in length (997 amino acids, 117 kDa). The two genes are transcribed convergently from different strands with their 3'-ends separated by 69 bp. The third short open reading frame (186 bp, 62 amino acids) has been identified, that precedes and overlaps by 7 nucleotides the ORF encoding the methylase. Comparison of the deduced Eco57I endonuclease and methylase amino acid sequences revealed three regions of significant similarity. Two of them resemble the conserved sequence motifs characteristic of the DNA[adenine-N6] methylases. The third one shares similarity with corresponding regions of the PaeR7I, TaqI, CviBIII, PstI, BamHI and HincII methylases. Homologs of this sequence are also found within the sequences of the PaeR7I, PstI and BamHI restriction endonucleases. This is the first example of a family of cognate restriction endonucleases and methylases sharing homologous regions. Analysis of the structural relationship suggests that the type IV enzymes represent an intermediate in the evolutionary pathway between the type III and type II enzymes.
Collapse
Affiliation(s)
- A Janulaitis
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
44
|
Ives CL, Nathan PD, Brooks JE. Regulation of the BamHI restriction-modification system by a small intergenic open reading frame, bamHIC, in both Escherichia coli and Bacillus subtilis. J Bacteriol 1992; 174:7194-201. [PMID: 1429443 PMCID: PMC207411 DOI: 10.1128/jb.174.22.7194-7201.1992] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BamHI, from Bacillus amyloliquefaciens H, is a type II restriction-modification system recognizing and cleaving the sequence G--GATCC. The BamHI restriction-modification system contains divergently transcribed endonuclease and methylase genes along with a small open reading frame oriented in the direction of the endonuclease gene. The small open reading frame has been designated bamHIC (for BamHI controlling element). It acts as both a positive activator of endonuclease expression and a negative repressor of methylase expression of BamHI clones in Escherichia coli. Methylase activity increased 15-fold and endonuclease activity decreased 100-fold when bamHIC was inactivated. The normal levels of activity for both methylase and endonuclease were restored by supplying bamHIC in trans. The BamHI restriction-modification system was transferred into Bacillus subtilis, where bamHIC also regulated endonuclease expression when present on multicopy plasmid vectors or integrated into the chromosome. In B. subtilis, disruption of bamHIC caused at least a 1,000-fold decrease in endonuclease activity; activity was partially restored by supplying bamHIC in trans.
Collapse
Affiliation(s)
- C L Ives
- New England Biolabs, Beverly, Massachusetts 01915
| | | | | |
Collapse
|
45
|
Nölling J, de Vos WM. Identification of the CTAG-recognizing restriction-modification systems MthZI and MthFI from Methanobacterium thermoformicicum and characterization of the plasmid-encoded mthZIM gene. Nucleic Acids Res 1992; 20:5047-52. [PMID: 1408820 PMCID: PMC334282 DOI: 10.1093/nar/20.19.5047] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two CTAG-recognizing restriction and modification (R/M) systems, designated MthZI and MthFI, were identified in the thermophilic archaeon Methanobacterium thermoformicicum strains Z-245 and FTF, respectively. Further analysis revealed that the methyltransferase (MTase) genes are plasmid-located in both strains. The plasmid pFZ1-encoded mthZIM gene of strain Z-245 was further characterized by subcloning and expression studies in Escherichia coli followed by nucleotide sequence analysis. The mthZIM gene is 1065 bp in size and may code for a protein of 355 amino acids (M(r) 42,476 Da). The deduced amino acid sequence of the M.MthZI enzyme shares substantial similarity with four distinct regions from several m4C- and m6A-MTases, and contains the TSPPY motif that is so far only found in m4C-MTases. Partially overlapping with the mthZIM gene and in reverse orientation, an additional ORF was identified with a size of 606 bp potentially coding for a protein of 202 amino acids (M(r) 23.710 Da). This ORF is suggested to encode the corresponding endonuclease R.MthZI.
Collapse
Affiliation(s)
- J Nölling
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | |
Collapse
|
46
|
Tao T, Blumenthal RM. Sequence and characterization of pvuIIR, the PvuII endonuclease gene, and of pvuIIC, its regulatory gene. J Bacteriol 1992; 174:3395-8. [PMID: 1577705 PMCID: PMC206011 DOI: 10.1128/jb.174.10.3395-3398.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An open reading frame partially overlaps pvuIIR, and genetic evidence implies that this open reading frame, named pvuIIC, specifies a positive regulator of pvuIIR (T. Tao, J. C. Bourne, and R. M. Blumenthal, J. Bacteriol. 173:1367-1375, 1991). Inducible constructs of pvuIIC produced a protein of the expected size. The site of C.PvuII action appears to lie within pvuIIC itself; thus, pvuIIC may be a self-contained regulatory cassette.
Collapse
Affiliation(s)
- T Tao
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008
| | | |
Collapse
|
47
|
Ito H, Shimato H, Sadaoka A, Kotani H, Kimizuka F, Kato I. Cloning and expression of the HpaI restriction-modification genes. Nucleic Acids Res 1992; 20:705-9. [PMID: 1542567 PMCID: PMC312008 DOI: 10.1093/nar/20.4.705] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genes from Haemophilus parainfluenzae encoding the HpaI restriction-modification system were cloned and expressed in Escherichia coli. From the DNA sequence, we predicted the HpaI endonuclease (R.HpaI) to have 254 amino acid residues (Mr 29,630) and the HpaI methyltransferase (M.HpaI) to have 314 amino acid residues (37,390). The R.HpaI and M.HpaI genes overlapped by 16 base pairs on the chromosomal DNA. The genes had the same orientation. The clone, named E. coli HB101-HPA2, overproduced R.HpaI. R.HpaI activity from the clone was 100-fold that from H. parainfluenzae. The amino acid sequence of M.HpaI was compared with those of other type II methyltransferases.
Collapse
Affiliation(s)
- H Ito
- Bioproducts Development Center, Takara Shuzo Co., Ltd, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- G G Wilson
- New England Biolabs Inc., Beverly, Massachusetts 01915
| |
Collapse
|
49
|
Erdmann D, Düsterhöft A, Kröger M. Cloning and molecular characterization of the HgiCI restriction/modification system from Herpetosiphon giganteus Hpg9 reveals high similarity to BanI. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:1247-56. [PMID: 1662609 DOI: 10.1111/j.1432-1033.1991.tb16497.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genes coding for the GGYRCC specific restriction/modification system HgiCI from Herpetosiphon giganteus Hpg9 have been cloned in Escherichia coli in three steps. As an initial step, the methyltransferase gene could be obtained after heterologous in vitro selection of a plasmid gene bank by cleavage with the isoschizomeric restriction endonuclease BanI. The adjacent endonuclease gene was cloned following Southern blot analysis of flanking genomic regions. The two genes code for polypeptides of 420 amino acids (M.HgiCI) and 345 amino acids (R.HgiCI). Establishing a functional endonuclease gene could only be achieved using a tightly regulated expression system or by methylation of the genomic DNA prior to transformation of the endonuclease gene. The methyltransferase M.HgiCI shows significant similarities to the family of 5-methylcytidine methyltransferases. Striking similarities could be found with both the isoschizomeric endonuclease and methyltransferase of the BanI restriction/modification system from Bacillus aneurinolyticus.
Collapse
Affiliation(s)
- D Erdmann
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | | | |
Collapse
|
50
|
Düsterhöft A, Kröger M. Cloning, sequence and characterization of m5C-methyltransferase-encoding gene, hgiDIIM (GTCGAC), from Herpetosiphon giganteus strain Hpa2. Gene 1991; 106:87-92. [PMID: 1937045 DOI: 10.1016/0378-1119(91)90569-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have cloned the gene (hgiDIIM) encoding the methyltransferase (MTase) of the SalI isoschizomeric restriction-modification (R-M) system, HgiDII (GTCGAC), into Escherichia coli. The hgiDIIM gene has been isolated from the same plasmid library of Herpetosiphon giganteus strain Hpa2, as was the previously cloned R-M system, HgiDI [AcyI/GRCGYC; Düsterhöft et al., Nucleic Acids Res. 19 (1991) 1049-1056]. Sequencing and functional localization of hgiDIIM revealed an open reading frame (ORF) of 354 codons (39786 Da) with significant homologies to the group of m5C-, rather than the m4C-/m6A-, MTases. Subsequent cloning and analysis of adjacent chromosomal segments led to the identification of two additional ORFs upstream (ORF15, 139 codons) and downstream (ORF68, 611 codons) from hgiDIIM with the same transcriptional orientation as the hgiDIIM gene. However, the expected restriction enzyme function was not found in either of these ORFs.
Collapse
Affiliation(s)
- A Düsterhöft
- Institut für Mikrobiologie and Molekularbiologie, Justus-Liebig-Universität Giessen, F.R.G
| | | |
Collapse
|