1
|
Sarkar A, Panati K, Narala VR. Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108444. [PMID: 36307006 DOI: 10.1016/j.mrrev.2022.108444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.
Collapse
Affiliation(s)
- Avik Sarkar
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa 516004, India
| | | |
Collapse
|
2
|
Molecular Analysis of Mutations in the Human HPRT Gene. Methods Mol Biol 2020. [PMID: 31989566 DOI: 10.1007/978-1-0716-0223-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and the products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene.
Collapse
|
3
|
Miles MA, Shekhar TM, Hall NE, Hawkins CJ. TRAIL causes deletions at the HPRT and TK1 loci of clonogenically competent cells. Mutat Res 2016; 787:15-31. [PMID: 26943263 DOI: 10.1016/j.mrfmmm.2016.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 12/22/2022]
Abstract
When chemotherapy and radiotherapy are effective, they function by inducing DNA damage in cancerous cells, which respond by undergoing apoptosis. Some adverse effects can result from collateral destruction of non-cancerous cells, via the same mechanism. Therapy-related cancers, a particularly serious adverse effect of anti-cancer treatments, develop due to oncogenic mutations created in non-cancerous cells by the DNA damaging therapies used to eliminate the original cancer. Physiologically achievable concentrations of direct apoptosis inducing anti-cancer drugs that target Bcl-2 and IAP proteins possess negligible mutagenic activity, however death receptor agonists like TRAIL/Apo2L can provoke mutations in surviving cells, probably via caspase-mediated activation of the nuclease CAD. In this study we compared the types of mutations sustained in the HPRT and TK1 loci of clonogenically competent cells following treatment with TRAIL or the alkylating agent ethyl methanesulfonate (EMS). As expected, the loss-of-function mutations in the HPRT or TK1 loci triggered by exposure to EMS were almost all transitions. In contrast, only a minority of the mutations identified in TRAIL-treated clones lacking HPRT or TK1 activity were substitutions. Almost three quarters of the TRAIL-induced mutations were partial or complete deletions of the HPRT or TK1 genes, consistent with sub-lethal TRAIL treatment provoking double strand breaks, which may be mis-repaired by non-homologous end joining (NHEJ). Mis-repair of double-strand breaks following exposure to chemotherapy drugs has been implicated in the pathogenesis of therapy-related cancers. These data suggest that TRAIL too may provoke oncogenic damage to the genomes of surviving cells.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Tanmay M Shekhar
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Nathan E Hall
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Melbourne, Victoria, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
4
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
5
|
Woolfe A, Mullikin JC, Elnitski L. Genomic features defining exonic variants that modulate splicing. Genome Biol 2010; 11:R20. [PMID: 20158892 PMCID: PMC2872880 DOI: 10.1186/gb-2010-11-2-r20] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/03/2010] [Accepted: 02/16/2010] [Indexed: 12/21/2022] Open
Abstract
A comparative analysis of SNPs and their exonic and intronic environments identifies the features predictive of splice affecting variants. Background Single point mutations at both synonymous and non-synonymous positions within exons can have severe effects on gene function through disruption of splicing. Predicting these mutations in silico purely from the genomic sequence is difficult due to an incomplete understanding of the multiple factors that may be responsible. In addition, little is known about which computational prediction approaches, such as those involving exonic splicing enhancers and exonic splicing silencers, are most informative. Results We assessed the features of single-nucleotide genomic variants verified to cause exon skipping and compared them to a large set of coding SNPs common in the human population, which are likely to have no effect on splicing. Our findings implicate a number of features important for their ability to discriminate splice-affecting variants, including the naturally occurring density of exonic splicing enhancers and exonic splicing silencers of the exon and intronic environment, extensive changes in the number of predicted exonic splicing enhancers and exonic splicing silencers, proximity to the splice junctions and evolutionary constraint of the region surrounding the variant. By extending this approach to additional datasets, we also identified relevant features of variants that cause increased exon inclusion and ectopic splice site activation. Conclusions We identified a number of features that have statistically significant representation among exonic variants that modulate splicing. These analyses highlight putative mechanisms responsible for splicing outcome and emphasize the role of features important for exon definition. We developed a web-tool, Skippy, to score coding variants for these relevant splice-modulating features.
Collapse
Affiliation(s)
- Adam Woolfe
- Genomic Functional Analysis Section, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20892, USA.
| | | | | |
Collapse
|
6
|
Imam JS, Gudikote JP, Chan WK, Wilkinson MF. Frame-disrupting mutations elicit pre-mRNA accumulation independently of frame disruption. Nucleic Acids Res 2009; 38:1559-74. [PMID: 20007599 PMCID: PMC2836556 DOI: 10.1093/nar/gkp1115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The T-cell receptor (TCR) and immunoglobulin (Ig) genes are unique among vertebrate genes in that they undergo programmed rearrangement, a process that allows them to generate an enormous array of receptors with different antigen specificities. While crucial for immune function, this rearrangement mechanism is highly error prone, often generating frameshift or nonsense mutations that render the rearranged TCR and Ig genes defective. Such frame-disrupting mutations have been reported to increase the level of TCRbeta and Igmicro pre-mRNA, suggesting the hypothesis that RNA processing is blocked when frame disruption is sensed. Using a chimeric gene that contains TCRbeta sequences conferring this upregulatory response, we provide evidence that pre-mRNA upregulation is neither frame- nor translation-dependent; instead, several lines of evidence suggested that it is the result of disrupted cis elements necessary for efficient RNA splicing. In particular, we identify the rearranging VDJ(beta) exon as being uniquely densely packed with exonic-splicing enhancers (ESEs), rendering this exon hypersensitive to mutational disruption. As the chimeric gene that we developed for these studies generates unusually stable nuclear pre-mRNAs that accumulate when challenged with ESE mutations, we suggest it can be used as a sensitive in vivo system to identify and characterize ESEs.
Collapse
Affiliation(s)
- J Saadi Imam
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | | | |
Collapse
|
7
|
Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet 2009; 127:135-54. [PMID: 19823873 DOI: 10.1007/s00439-009-0752-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/27/2009] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon-intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.
Collapse
Affiliation(s)
- Igor Vorechovsky
- Division of Human Genetics, University of Southampton School of Medicine, MP808, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
8
|
Di Blasi C, Jarre L, Blasevich F, Dassi P, Mora M. Danon disease: a novel LAMP2 mutation affecting the pre-mRNA splicing and causing aberrant transcripts and partial protein expression. Neuromuscul Disord 2008; 18:962-6. [PMID: 18990578 DOI: 10.1016/j.nmd.2008.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 11/25/2022]
Abstract
LAMP2, the causative gene of Danon disease, located on chromosome Xq24, encodes the lysosome-associated membrane protein-2 (LAMP-2). We describe clinical features and molecular data in an Italian patient with Danon disease. The patient had hyperCKemia, hypertrophic cardiomyopathy, no muscle weakness and slight mental impairment. Muscle biopsy revealed autophagic vacuoles with sarcolemmal features and glycogen storage. Immunohistochemistry and immunoblot revealed traces of LAMP-2 protein in skeletal muscle. Molecular analysis of the LAMP2 gene revealed a novel hemizygous mutation affecting the invariant +1 position of the splice site of intron 8, resulting in aberrant transcripts with skipping of exon 8 in all three LAMP-2 isoforms, skipping of exons 7 and 8 in LAMP-2A and 2C, and a 15 bp deletion in exon 8 of LAMP-2B. Low levels of normal LAMP-2B transcript were also present. Danon disease is an under-recognized and frequently fatal condition, treatable by heart transplantation. Investigation of the primary molecular defect is important for cardiac surveillance and genetic counseling.
Collapse
Affiliation(s)
- Claudia Di Blasi
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, Via Temolo 4, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
9
|
Theophilus BDM, Enayat MS, Williams MD, Hill FGH. Site and type of mutations in the factor VIII gene in patients and carriers of haemophilia A. Haemophilia 2008. [DOI: 10.1111/j.1365-2516.2001.00528.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Vorechovský I. Aberrant 3' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 2006; 34:4630-41. [PMID: 16963498 PMCID: PMC1636351 DOI: 10.1093/nar/gkl535] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency distribution of mutation-induced aberrant 3' splice sites (3'ss) in exons and introns is more complex than for 5' splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3'ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3'ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3'ss was achieved by the maximum entropy model. Almost one half of aberrant 3'ss was activated by AG-creating mutations and approximately 95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3'ss was characterized by higher purine content than for authentic sites, particularly in position -3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position -11. A newly developed online database of aberrant 3'ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools.
Collapse
Affiliation(s)
- Igor Vorechovský
- University of Southampton School of Medicine, Division of Human Genetics, Mailpoint 808, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Abstract
The branch point sequence (BPS) is a conserved splicing signal important for spliceosome assembly and lariat intron formation. BPS mutations may result in aberrant pre-mRNA splicing and genetic disorders, but their phenotypic consequences have been difficult to predict, largely due to a highly degenerate nature of the BPS consensus. Here, we have examined the splicing pattern of nine reporter pre-mRNAs that have previously been shown to give rise to human hereditary diseases as a result of single-nucleotide substitutions in the predicted BPS. Increased exon skipping and intron retention observed in vivo were recapitulated for each mutated pre-mRNA, but the reproducibility of cryptic splice site activation was lower. BP mutations in reporter pre-mRNAs frequently induced aberrant 3' splice sites and also activated a cryptic 5' splice site. Systematic mutagenesis of BP adenosines showed that in most pre-mRNAs, the expression of canonical transcripts was lower for BP transitions than BP transversions. Differential splicing outcome for transitions vs. transversions was abrogated or reduced if introns were truncated to 200 nt or less, suggesting that the nature of the BP residue is less critical for interactions across very short introns. Together, these results improve prediction of phenotypic consequences of point mutations upstream of splice acceptor sites and suggest that the overrepresentation of disease-causing adenosine-to-guanosine BP substitutions observed in Mendelian disorders is due to more profound defects of gene expression at the level of pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, School of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
12
|
Královičová J, Christensen MB, Vořechovský I. Biased exon/intron distribution of cryptic and de novo 3' splice sites. Nucleic Acids Res 2005; 33:4882-98. [PMID: 16141195 PMCID: PMC1197134 DOI: 10.1093/nar/gki811] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We compiled sequences of previously published aberrant 3′ splice sites (3′ss) that were generated by mutations in human disease genes. Cryptic 3′ss, defined here as those resulting from a mutation of the 3′YAG consensus, were more frequent in exons than in introns. They clustered in ∼20 nt region adjacent to authentic 3′ss, suggesting that their under-representation in introns is due to a depletion of AG dinucleotides in the polypyrimidine tract (PPT). In contrast, most aberrant 3′ss that were induced by mutations outside the 3′YAG consensus (designated ‘de novo’) were in introns. The activation of intronic de novo 3′ss was largely due to AG-creating mutations in the PPT. In contrast, exonic de novo 3′ss were more often induced by mutations improving the PPT, branchpoint sequence (BPS) or distant auxiliary signals, rather than by direct AG creation. The Shapiro–Senapathy matrix scores had a good prognostic value for cryptic, but not de novo 3′ss. Finally, AG-creating mutations in the PPT that produced aberrant 3′ss upstream of the predicted BPS in vivo shared a similar ‘BPS-new AG’ distance. Reduction of this distance and/or the strength of the new AG PPT in splicing reporter pre-mRNAs improved utilization of authentic 3′ss, suggesting that AG-creating mutations that are located closer to the BPS and are preceded by weaker PPT may result in less severe splicing defects.
Collapse
Affiliation(s)
| | | | - Igor Vořechovský
- To whom correspondence should be addressed. Tel: +44 2380 796425; Fax: +44 2380 794264;
| |
Collapse
|
13
|
Iacobazzi V, Invernizzi F, Baratta S, Pons R, Chung W, Garavaglia B, Dionisi-Vici C, Ribes A, Parini R, Huertas MD, Roldan S, Lauria G, Palmieri F, Taroni F. Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency. Hum Mutat 2005; 24:312-20. [PMID: 15365988 DOI: 10.1002/humu.20085] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The enzyme carnitine-acylcarnitine translocase (CACT) is involved in the transport of long-chain fatty acids into mitochondria. CACT deficiency is a life-threatening, recessively inherited disorder of lipid beta-oxidation which manifests in early infancy with hypoketotic hypoglycemia, cardiomyopathy, liver failure, and muscle weakness. We report here the clinical, biochemical, and molecular features of six CACT-deficient patients from Italy, Spain, and North America who exhibited significant clinical heterogeneity. In five patients (Patients 1, 2, 4, 5, and 6) the disease manifested in the neonatal period, while the remaining patient (Patient 3), the younger sibling of an infant who had died with clinical suspicion of fatty acid oxidation defect, has been treated since birth and was clinically asymptomatic at 4.5 years of age. Patients 1 and 4 were deceased within 6 months from the onset of this study, while the remaining four are still alive at 8, 4.5, 3.5, and 2 years, respectively. Sequence analysis of the CACT gene (SLC25A20) disclosed five novel mutations and three previously reported mutations. Three patients were homozygous for the identified mutations. Two of the novel mutations (c.718+1G>C and c.843+4_843+50del) altered the donor splice site of introns 7 and 8, respectively. The 47-nt deletion in intron 8 caused both skipping of exon 8 only and skipping of exons 6-8. Four mutations [[c.159dupT;c.163delA] ([p.Gly54Trp;p.Thr55Ala]) c.397C>T (p.Arg133Trp), c.691G>C (p.Asp231His), and c.842C>T (p.Ala281Val)] resulted in amino acid substitutions affecting evolutionarily conserved regions of the protein. Interestingly, one of these exonic mutations (p.Ala281Val) was associated with a splicing defect also characterized by skipping of exons 6-8. The deleterious effect of the p.Arg133Trp substitution was demonstrated by measuring CACT activity upon expression of the normal and the mutant protein in E. coli and functional reconstitution into liposomes. Combined analysis of clinical, biochemical, and molecular data failed to indicate a correlation between the phenotype and the genotype.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004; 11:278-94. [PMID: 15067211 PMCID: PMC2442652 DOI: 10.1007/bf02254432] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 11/12/2003] [Indexed: 12/16/2022] Open
Abstract
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two major cis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3' splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on the cis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004. [PMID: 15067211 DOI: 10.1159/000077096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two major cis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3' splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on the cis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Abstract
The frequencies of individual nucleotides exhibit significant fluctuations across eukaryotic genes. In this paper, we investigate nucleotide variation across an averaged representation of all known human genes. Such a representation allows us to average out random fluctuations that constitute noise and uncover remarkable systematic trends in nucleotide distributions, particularly near boundaries between genetic elements--the promoter, exons, and introns. We propose that such variations result from differential mutational pressures and from the presence of specific regulatory motifs, such as transcription and splicing factor binding sites. Specifically, we observe significant GC and TA biases (excess of G over C and T over A) in noncoding regions of genes. Such biases are most probably caused by transcription-coupled mismatch repair, an effect that has recently been detected in mammalian genes. Subsequently, we examine the distribution of all hexanucleotides and identify motifs that are overrepresented within regulatory regions. By clustering and aligning such sequences, we recognize families of putative regulatory elements involved in exonic and intronic splicing control, and 3' mRNA processing. Some of our motifs have been identified in prior theoretical and experimental studies, thus validating our approach, but we detect several novel sequences that we propose as candidates for future functional assays and mutation screens for genetic disorders.
Collapse
|
17
|
Sawabe T, Horiuchi T, Koga R, Tsukamoto H, Kojima T, Harashima S, Kikuchi Y, Otsuka J, Mitoma H, Yoshizawa S, Niho Y, Watanabe T. Aberrant HS1 molecule in a patient with systemic lupus erythematosus. Genes Immun 2003; 4:122-31. [PMID: 12618860 DOI: 10.1038/sj.gene.6363932] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive B lymphocytes, which are supposed to carry aberrant signal transduction after the stimulation of B-cell receptor (BCR). To investigate abnormalities in BCR-mediated signaling pathway in lupus B lymphocytes, we analyzed HS1, a molecule downstream of BCR, in 80 Japanese SLE patients. We identified 37 amino acid deletion of HS1 in a 25-year-old female patient, and the aberrant HS1 lacked a part of a functional motif. Analysis of genomic DNA revealed that the aberrant HS1 was caused by exon skipping. Family study showed that the patient as well as her father and sister are heterozygous for the abnormality. WEHI-231 cell, a mouse B cell line, transfected with the aberrant HS1 displayed a significantly increased cell death upon cross-linking of BCR. Additionally, peripheral B lymphocytes from the patient exerted increased apoptosis after BCR stimulation compared to those from control SLE patients. These data suggest that the aberrant HS1 molecule may transmit an accelerated signal after BCR stimulation and may play a role in the activation of autoreactive B lymphocytes.
Collapse
Affiliation(s)
- T Sawabe
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
French CA, Masson JY, Griffin CS, O'Regan P, West SC, Thacker J. Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability. J Biol Chem 2002; 277:19322-30. [PMID: 11912211 DOI: 10.1074/jbc.m201402200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved RAD51 protein has a central role in homologous recombination. Five novel RAD51-like genes have been identified in mammalian cells, but little is known about their functions. A DNA damage-sensitive hamster cell line, irs3, was found to have a mutation in the RAD51L2 gene and an undetectable level of RAD51L2 protein. Resistance of irs3 to DNA-damaging agents was significantly increased by expression of the human RAD51L2 gene, but not by other RAD51-like genes or RAD51 itself. Consistent with a role for RAD51L2 in homologous recombination, irs3 cells show a reduction in sister chromatid exchange, an increase in isochromatid breaks, and a decrease in damage-dependent RAD51 focus formation compared with wild type cells. As recently demonstrated for human cells, we show that RAD51L2 forms part of two separate complexes of hamster RAD51-like proteins. Strikingly, neither complex of RAD51-like proteins is formed in irs3 cells. Our results demonstrate that RAD51L2 has a key role in mammalian RAD51-dependent processes, contingent on the formation of protein complexes involved in homologous recombination repair.
Collapse
Affiliation(s)
- Catherine A French
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Theophilus BD, Enayat MS, Williams MD, Hill FG. Site and type of mutations in the factor VIII gene in patients and carriers of haemophilia A. Haemophilia 2001; 7:381-91. [PMID: 11442643 DOI: 10.1046/j.1365-2516.2001.00528.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilia A is an X-linked bleeding disorder caused by reduced or absent FVIII (FVIII) protein caused by mutations in the FVIII gene. We have used Southern blotting and chemical mismatch analysis (CMA) to identify the mutations causing haemophilia A in 59 local or referred patients or carriers of haemophilia A. Southern blot analysis of 87 families with FVIII : C < 5% identified 31 as positive for the intron 22 inversion. Analysis of 19 of the inversion-negative families and a further nine families with mild or moderate haemophilia A by CMA resulted in the identification of a heterogeneous spectrum of mutations in the FVIII gene comprising 21 single base-pair substitutions and nine deletions. Seventeen of the base-pair substitutions are missense, two nonsense, and two are splice-site mutations. Two patients were found to have compound mutations with two mutations identified on a single X chromosome. Six of the point mutations and six of the deletions have not been reported previously in the haemophilia A mutation database. Unusually, a missense mutation, as well as deletion and splice-site mutations, was found to be associated with exon-skipping events.
Collapse
Affiliation(s)
- B D Theophilus
- Department of Haematology, Birmingham Children's Hospital NHS Trust, Birmingham, UK.
| | | | | | | |
Collapse
|
20
|
Yang BZ, Mallory JM, Roe DS, Brivet M, Strobel GD, Jones KM, Ding JH, Roe CR. Carnitine/acylcarnitine translocase deficiency (neonatal phenotype): successful prenatal and postmortem diagnosis associated with a novel mutation in a single family. Mol Genet Metab 2001; 73:64-70. [PMID: 11350184 DOI: 10.1006/mgme.2001.3162] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neonatal phenotype of carnitine-acylcarnitine translocase (CACT) deficiency is one of the most severe and usually lethal mitochondrial fat oxidation disorders characterized by hypoketotic hypoglycemia, hyperammonemia, cardiac abnormalities, and early death. In this study, the proband was the daughter of consanguineous Hispanic parents. At 36 h of life, she had bradycardia and died at 4 days of age without a specific diagnosis. In a subsequent pregnancy, prenatal counseling and amniocentesis were provided. Incubation of the amniocytes from this pregnancy and fibroblasts (from the dead proband) with [16-(2)H(3)]palmitic acid and analysis by tandem mass spectrometry revealed an increasedconcentration of [16-(2)H(3)]palmitoylcarnitine, suggesting the diagnoses of either CACT or carnitine palmitoyltransferase II (CPT-II) deficiency. CACT enzyme activity was absent in both cell lines. Molecular investigation of cDNA from the dead proband and her affected sibling revealed aberrant CACT cDNA species, including exon 3 skipping, both exon 3 and 4 skipping, and a 13-bp insertion at cDNA position 388. Investigation of these cell lines for mutations affecting CACT RNA processing by analysis of CACT gene sequences, including intron and exon boundaries, revealed a single nucleotide G deletion at the donor site in intron 3 which resulted in exon skipping and a 13-bp insertion. The proband and her affected sibling were homozygous for this deletion.
Collapse
Affiliation(s)
- B Z Yang
- Kimberly H. Courtwright and Joseph W. Summers Institute of Metabolic Disease, Baylor University Medical Center, 3812 Elm Street, Dallas, TX 7522, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Inoue N, Dong R, Hirata RK, Russell DW. Introduction of single base substitutions at homologous chromosomal sequences by adeno-associated virus vectors. Mol Ther 2001; 3:526-30. [PMID: 11319913 DOI: 10.1006/mthe.2001.0283] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adeno-associated virus (AAV) vectors can modify homologous chromosomal sequences at high rates. This gene targeting transduction pathway is distinct from the integrating and episomal pathways used in gene addition approaches. In previous studies, AAV vectors were used to introduce small insertion and deletion mutations at homologous chromosomal loci. Here we show that AAV-mediated gene targeting can also be used to introduce all possible types of single base substitution mutations at the endogenous single-copy hypoxanthine phosphoribosyl transferase locus. Southern blot and sequence analysis showed that the point mutations were introduced with high fidelity. We also show that AAV vectors can repair chromosomal alkaline phosphatase genes containing point mutations. Our results suggest that AAV vectors can be used to introduce single base substitutions at high frequencies in normal human cells, including the correction of point mutations responsible for genetic diseases.
Collapse
Affiliation(s)
- N Inoue
- Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
22
|
Bär J, Linke T, Ferlinz K, Neumann U, Schuchman EH, Sandhoff K. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 2001; 17:199-209. [PMID: 11241842 DOI: 10.1002/humu.5] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Farber disease is a rare, autosomal recessively inherited sphingolipid storage disorder due to the deficient activity of lysosomal acid ceramidase, leading to the accumulation of ceramide in cells and tissues. Here we report the identification of six novel mutations in the acid ceramidase gene causing Farber disease: three point mutations resulting in single amino acid substitutions, one intronic splice site mutation resulting in exon skipping, and two point mutations also leading to occasional or complete exon skipping. Of interest, these latter two mutations occurred in adjacent nucleotides and led to abnormal splicing of the same exon. Expression of the mutated acid ceramidase cDNAs in COS-1 cells and subsequent determination of acid ceramidase residual enzyme activity demonstrated that each of these mutations was the direct cause of the acid ceramidase deficiency in the respective patients. In contrast, two known polymorphisms had no effect on acid ceramidase activity. Metabolic labeling studies in fibroblasts of four patients showed that even though acid ceramidase precursor protein was synthesized in these individuals, rapid proteolysis of the mutated, mature acid ceramidase occurred within the lysosome.
Collapse
Affiliation(s)
- J Bär
- Kekulé Institut for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Cardozo AK, De Meirleir L, Liebaers I, Lissens W. Analysis of exonic mutations leading to exon skipping in patients with pyruvate dehydrogenase E1 alpha deficiency. Pediatr Res 2000; 48:748-53. [PMID: 11102541 DOI: 10.1203/00006450-200012000-00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pyruvate dehydrogenase (PDH) complex is situated at a key position in energy metabolism and is responsible for the conversion of pyruvate to acetyl CoA. In the literature, two unrelated patients with a PDH complex deficiency and splicing out of exon 6 of the PDH E1 alpha gene have been described, although intronic/exonic boundaries on either side of exon 6 were completely normal. Analysis of exon 6 in genomic DNA of these patients revealed two exonic mutations, a silent and a missense mutation. Although not experimentally demonstrated, the authors in both publications suggested that the exonic mutations were responsible for the exon skipping. In this work, we were able to demonstrate, by performing splicing experiments, that the two exonic mutations described in the PDH E1 alpha gene lead to aberrant splicing. We observed a disruption of the predicted wild-type pre-mRNA secondary structure of exon 6 by the mutated sequences described. However, when we constructed mutations that either reverted or disrupted the wild-type predicted pre-mRNA secondary structure of exon 6, we were unable to establish a correlation between the aberrant splicing and disruption of the predicted structure. The mutagenic experiments described here and the silent mutation found in one of the patients suggest the presence of an exonic splicing enhancer in the middle region of exon 6 of the PDH E1alpha gene.
Collapse
Affiliation(s)
- A K Cardozo
- Center for Medical Genetics, University Hospital, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
24
|
Tessitore A, Villani GR, Di Domenico C, Filocamo M, Gatti R, Di Natale P. Molecular defects in the alpha-N-acetylglucosaminidase gene in Italian Sanfilippo type B patients. Hum Genet 2000; 107:568-76. [PMID: 11153910 DOI: 10.1007/s004390000429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is a rare autosomal recessive disorder characterized by the inability to degrade heparan sulfate because of a deficiency of the lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). We performed mutation screening in a group of 20 patients, identyifing 28 mutations, 14 of which were novel (L35F, 204delC, 221insGCGCG, G82D, W156C, 507delC, IVS3+1G-->A, E336X, V501G, R520W, S534Y, W649C, 1953insGCCA, 2185delAGA). Four of these mutations were found in homozygosity and only one was seen in two different patients, showing the remarkable molecular heterogeneity of the disease. Mutation IVS3+1G-->A produces aberrant RNA splicing: it represents a base substitution from G to A of the invariant GT dinucleotides at the splicing donor site of intron 3 resulting in the skipping of exon 3 and both exons 2 and 3. Transient transfection of COS cells, by DNA mutagenized with NAGLU mutations, produced enzymatic molecules without activity, demonstrating the deleterious nature of the defects. Metabolic labeling of transfected mutants suggested a normal synthesis of the involved polypeptide for missense alterations, whereas increased protein or mRNA instability was shown for nonsense and most of the frameshift mutations.
Collapse
Affiliation(s)
- A Tessitore
- Department of Biochemistry and Medical Biotechnologies, University of Naples, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Leonhardt EA, Trinh M, Chu K, Dewey WC. Mutations induced in the HPRT gene by X-irradiation during G(1) or S: analysis of base pair alterations, small deletions, and splice errors. Mutat Res 2000; 471:7-19. [PMID: 11080656 DOI: 10.1016/s1383-5718(00)00080-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reverse transcriptase PCR was performed with mRNA obtained from HPRT mutants that had base pair alterations, or small deletions or insertions <20bp. The frequencies of mutants yielding RT-PCR products (mRNA) were the same when human EJ30 cells were irradiated in G(1) or S (3-4-fold higher for 6 than 3Gy). However, the frequencies of mutants that did not yield RT-PCR products were approximately 10-fold higher in the cells irradiated in G(1) than in those irradiated in S. Sequence analysis of RT-PCR products and genomic DNA showed that 40% of the RT-PCR products had splice errors (one or more exons not spliced into mRNA), with 64% of them due to 1-17bp deletions. Also, the distributions of molecular alterations in exons, acceptor sites, and donor sites for mutants having splice errors (observed in this study and reported by others) were similar to those reported for mutants not yielding RT-PCR products (isolated from Russian cosmonauts). In addition, we have found previously that large deletions which eliminated 1-9 exons were preferentially induced in G(1). Therefore, we postulate that the preferential induction of mutants not yielding mRNA is due primarily to splice errors that result from deletions preferentially induced during G(1). These splice errors would then result either in no message or a message that is rapidly degraded.
Collapse
Affiliation(s)
- E A Leonhardt
- Radiation Oncology Research Laboratory, University of California at San Francisco, 1855 Folsom St. MCB200, San Francisco, CA 94103, USA.
| | | | | | | |
Collapse
|
26
|
Curry J, Bebb G, Moffat J, Young D, Khaidakov M, Mortimer A, Glickman BW. Similar mutant frequencies observed between pairs of monozygotic twins. Hum Mutat 2000; 9:445-51. [PMID: 9143925 DOI: 10.1002/(sici)1098-1004(1997)9:5<445::aid-humu11>3.0.co;2-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relative contribution of both genetic and environmental factors to spontaneous mutation frequency in humans is unknown. We have investigated the contribution of genetic factors to this phenomenon by determining the in vivo mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in circulating T-lymphocytes obtained from pairs of monozygotic twins. hprt mutant frequencies were determined three times over fourteen days in six sets of monozygotic male twins (mean age 30) taking part in a Russian Space Program inclined bed rest experiment. Blood samples were obtained prior to, during, and immediately following the experiment. Mononuclear cells were separated, frozen, and flown to Canada for analysis using the hprt T-lymphocyte clonal assay. There is no evidence within this data set to demonstrate that the period of inclined bed rest to simulate the effects of weightlessness had any effect on the observed mutant frequency. However, the average mutant frequency for the six sets of Russian twins was found to be three times higher than that of Western counterparts. More surprisingly, the spontaneous mutant frequency of monozygotic twins was found to be much more similar within pairs than between pairs of twins. These data suggest that the contribution of genetics in the determination of mutation frequency is substantial. However, whether high concordance within twin pairs reflects shared environmental experience as well as common genetic factors is not entirely clear. More data will be required to distinguish genetic from environmental factors and to determine the degree to which mutant frequency is genetically determined.
Collapse
Affiliation(s)
- J Curry
- Centre for Environmental Health, University of Victoria, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Vockley J, Rogan PK, Anderson BD, Willard J, Seelan RS, Smith DI, Liu W. Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. Am J Hum Genet 2000; 66:356-67. [PMID: 10677295 PMCID: PMC1288088 DOI: 10.1086/302751] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Isovaleric acidemia (IVA) is a recessive disorder caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD). We have reported elsewhere nine point mutations in the IVD gene in fibroblasts of patients with IVA, which lead to abnormalities in IVD protein processing and activity. In this report, we describe eight IVD gene mutations identified in seven IVA patients that result in abnormal splicing of IVD RNA. Four mutations in the coding region lead to aberrantly spliced mRNA species in patient fibroblasts. Three of these are amino acid altering point mutations, whereas one is a single-base insertion that leads to a shift in the reading frame of the mRNA. Two of the coding mutations strengthen pre-existing cryptic splice acceptors adjacent to the natural splice junctions and apparently interfere with exon recognition, resulting in exon skipping. This mechanism for missplicing has not been reported elsewhere. Four other mutations alter either the conserved gt or ag dinucleotide splice sites in the IVD gene. Exon skipping and cryptic splicing were confirmed by transfection of these mutations into a Cos-7 cell line model splicing system. Several of the mutations were predicted by individual information analysis to inactivate or significantly weaken adjacent donor or acceptor sites. The high frequency of splicing mutations identified in these patients is unusual, as is the finding of missplicing associated with missense mutations in exons. These results may lead to a better understanding of the phenotypic complexity of IVA, as well as provide insight into those factors important in defining intron/exon boundaries in vivo.
Collapse
Affiliation(s)
- J Vockley
- Mayo Clinic, Department of Medical Genetics, 200 First Street, SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tu M, Tong W, Perkins R, Valentine CR. Predicted changes in pre-mRNA secondary structure vary in their association with exon skipping for mutations in exons 2, 4, and 8 of the Hprt gene and exon 51 of the fibrillin gene. Mutat Res 2000; 432:15-32. [PMID: 10729708 DOI: 10.1016/s1383-5726(99)00011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exon skipping that accompanies exonic mutation might be caused by an effect of the mutation on pre-mRNA secondary structure. Previous attempts to associate predicted secondary structure of pre-mRNA with exon skipping have been hindered by either a small number of available mutations, sub-optimal structures, or weak effects on exon skipping. This report identifies more extensive sets of mutations from the human and hamster Hprt gene whose association with exon skipping is clear. Optimal secondary structures of the wild-type and mutant pre-mRNA surrounding each exon were predicted by energy minimization and were compared by energy dot plots. A significant association was found between the occurrence of exon skipping and the disruption of a stem containing the acceptor site consensus sequences of exon 8 of the human Hprt gene. However, no change in secondary structure was associated with skipping of exon 4 of the hamster Hprt gene. Using updated energy parameters we found a different structure than that previously reported for exon 2 of the hamster Hprt gene. In contrast to the previously reported structure, no significant association was found between predicted structural changes and skipping of exon 2. For all three Hprt exons studied, there was a significantly greater number of deoxythymidine substitutions among mutations accompanied by exon skipping than among mutations without exon skipping. For exon 8, deoxythymidine substitution was also associated with structural changes in the stem containing the acceptor site consensus sequences. For exon 51 of the human fibrillin gene, structural differences from wild type were predicted for all four mutations accompanied by exon skipping that were not were predicted for a single mutation without exon skipping. Our results suggest that both primary and secondary pre-mRNA structure contribute to definition of Hprt exons, which may involve exonic splicing enhancers.
Collapse
Affiliation(s)
- M Tu
- R.O.W. Sciences, National Center for Toxicological Research, Jefferson, AR 72079-9501, USA
| | | | | | | |
Collapse
|
29
|
Ellingsen S, Knappskog PM, Apold J, Eiken HG. Diverse PAH transcripts in lymphocytes of PKU patients with putative nonsense (G272X, Y356X) and missense (P281L, R408Q) mutations. FEBS Lett 1999; 457:505-8. [PMID: 10471838 DOI: 10.1016/s0014-5793(99)01095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of mutations in the human phenylalanine hydroxylase (PAH) gene that lead to the recessive disease phenylketonuria (PKU) are believed to affect the activity or stability of the PAH enzyme. In this study we have performed in vivo analyses of lymphocyte PAH mRNA from PKU patients homozygous for the PKU missense mutations P281L and R408Q as well as the nonsense mutations G272X and Y356X. The mutations G272X, P281L and R408Q, which are located outside the consensus splice site sequence, result in transcripts with one or more exons skipped in addition to full-length transcripts. The mutation Y356X results in transcripts with one or more exons skipped, but no full-length transcripts. Our findings question the value of functional and structural predictions of mutations at the protein level without analyses of the corresponding transcript.
Collapse
Affiliation(s)
- S Ellingsen
- Department of Medical Genetics, Haukeland Hospital, University of Bergen, N-5021, Bergen, Norway
| | | | | | | |
Collapse
|
30
|
Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengüt S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 1999; 64:1617-31. [PMID: 10330348 PMCID: PMC1377904 DOI: 10.1086/302418] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations.
Collapse
Affiliation(s)
- S N Teraoka
- Program in Molecular Genetics, Virginia Mason Research Center, and Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M, Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I. Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 1999; 64:1216-21. [PMID: 10090908 PMCID: PMC1377847 DOI: 10.1086/302329] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Abuodeh R, Wei H, Yuan D. Effect of upstream RNA processing on selection of mu S versus mu M poly(A) sites. Nucleic Acids Res 1998; 26:5417-24. [PMID: 9826767 PMCID: PMC148006 DOI: 10.1093/nar/26.23.5417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
All of the regulatory factors responsible for augmenting microseconds mRNA levels preceding the dramatic increase in secretory IgM production upon B cell activation has not been totally elucidated. Whereas previous experiments have centered on the region of the gene specifying the choice between splicing to mu M exons versus selection of the mu S poly(A) site, we have found that upstream sequences within the Cmu gene, specifically the Cmu 4 acceptor splice site together with intronic sequences between the Cmu 3++ and Cmu 4 exons, play an important role in dictating the precision or the extent of splicing to the mu M exons even under conditions in which functional polyadenylation factors should be in excess. Therefore, splicing of upstream exons can affect remotely located downstream exons. These findings suggest that regulation of differential mu S/mu M mRNA expression may involve general processing enzymes that recognize specific cis -regulatory sequences residing within the body of the mu gene and account for the unique ability of activated B cells to secrete copious amounts of IgM.
Collapse
Affiliation(s)
- R Abuodeh
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center,5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| | | | | |
Collapse
|
33
|
Wu Q, Krainer AR. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA (NEW YORK, N.Y.) 1998; 4:1664-1673. [PMID: 9848661 PMCID: PMC1369733 DOI: 10.1017/s1355838298981432] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A rare class of introns in higher eukaryotes is processed by the recently discovered AT-AC spliceosome. AT-AC introns are processed inefficiently in vitro, but the reaction is stimulated by exon-definition interactions involving binding of U1 snRNP to the 5' splice site of the downstream conventional intron. We report that purine-rich exonic splicing enhancers also strongly stimulate sodium channel AT-AC splicing. Intact U2, U4, or U6 snRNAs are not required for enhancer function or for exon definition. Enhancer function is independent of U1 snRNP, showing that splicing stimulation by a downstream 5' splice site and by an exonic enhancer differ mechanistically.
Collapse
Affiliation(s)
- Q Wu
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
34
|
O'Neill JP, Rogan PK, Cariello N, Nicklas JA. Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum. Mutat Res 1998; 411:179-214. [PMID: 9804951 DOI: 10.1016/s1383-5742(98)00013-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human HPRT gene contains spans approximately 42,000 base pairs in genomic DNA, has a mRNA of approximately 900 bases and a protein coding sequence of 657 bases (initiation codon AUG to termination codon UAA). This coding sequence is distributed into 9 exons ranging from 18 (exon 5) to 184 (exon 3) base pairs. Intron sizes range from 170 (intron 7) to 13,075 (intron 1) base pairs. In a database of human HPRT mutations, 277 of 2224 (12.5%) mutations result in alterations in splicing of the mRNA as analyzed by both reverse transcriptase mediated production of a cDNA followed by PCR amplification and cDNA sequencing and by genomic DNA PCR amplification and sequencing. Mutations have been found in all eight 5' (donor) and 3' (acceptor) splice sequences. Mutations in the 5' splice sequences of introns 1 and 5 result in intron inclusion in the cDNA due to the use of cryptic donor splice sequences within the introns; mutations in the other six 5' sites result in simple exon exclusion. Mutations in the 3' splice sequences of introns 1, 3, 7 and 8 result in partial exon exclusion due to the use of cryptic acceptor splice sequences within the exons; mutations in the other four 3' sites result in simple exon exclusion. A base substitution in exon 3 (209G-->T) creates a new 5' (donor) splice site which results in the exclusion of 110 bases of exon 3 from the cDNA. Two base substitutions in intron 8 (IVS8-16G-->A and IVS8-3T-->G) result in the inclusion of intron 8 sequences in the cDNA due to the creation of new 3' (acceptor) splice sites. Base substitution within exons 1, 3, 4, 6 and 8 also result in splice alterations in cDNA. Those in exons 1 and 6 are at the 3' end of the exon and may directly affect splicing. Those within exons 3 and 4 may be the result of the creation of nonsense codons, while those in exon 8 cannot be explained by this mechanism. Lastly, many mutations that affect splicing of the HPRT mRNA have pleiotropic effects in that multiple cDNA products are found.
Collapse
Affiliation(s)
- J P O'Neill
- University of Vermont Genetics Laboratory, 32 North Prospect Street, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Some genes that contain premature nonsense codons express alternatively-spliced mRNA that has skipped the exon containing the nonsense codon. This paradoxical association of translation signals (nonsense codons) and RNA splicing has inspired numerous explanations. The first is based on the fact that premature nonsense codons often reduce mRNA abundance. The reduction in abundance of full-length mRNA then allows more efficient amplification during PCR of normal, minor, exon-deleted products. This mechanism has been demonstrated to explain an extensive correlation between nonsense codons and exon-skipping for the hamster Hprt gene. The second explanation is that the mutation producing an in-frame nonsense codon has an effect on exon definition. This has been demonstrated for the Mup and hamster Hprt gene by virtue of the fact that missense mutations at the same sites also are associated with the same exon-deleted mRNA. The third general explanation is that a hypothetical process takes place in the nucleus that recognizes nonsense codons, termed 'nuclear scanning', which then has an effect on mRNA splicing. Definitive evidence for nuclear scanning is lacking. My analysis of both nonsense and missense mutations associated with exon skipping in a large number of genes revealed that both types of mutations frequently introduce a T into a purine-rich DNA sequence and are often within 30 base pairs of the nearest exon boundary. This is intriguing given that purine-rich splicing enhancers are known to be inhibited by the introduction of a T. Almost all mutations associated with exon skipping occur in purine-rich or A/C-rich sequences, also characteristics of splicing enhancers. I conclude that most cases of exon skipping associated with premature termination codons may be adequately explained either by a structural effect on exon definition or by nonquantitative methods to measure mRNA, rather than an effect on a putative nuclear scanning mechanism.
Collapse
Affiliation(s)
- C R Valentine
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079-9502, USA.
| |
Collapse
|
36
|
Veloso D. Evidence for the presence of a kininogen-like species in a case of total deficiency of low and high molecular weight kininogens. Braz J Med Biol Res 1998; 31:901-10. [PMID: 9698753 DOI: 10.1590/s0100-879x1998000700004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Low and high molecular weight kininogens (LK and HK), containing 409 and 626 amino acids with masses of approximately 65 and 120 kDa after glycosylation, respectively, are coded by a single gene mapped to the human chromosome 3 by alternative splicing of the transcribed mRNA. The NH2-termini Glu1-Thr383 region, identical in LK and HK, contains bradykinin (BK) moieties Arg363-Arg371. LK, HK and their kinin products Lys-BK and BK are involved in several biologic processes. They are evolutionarily conserved and only 7 patients, all apparently normal, have been reported to lack them. In one of these patients (Williams' trait), a codon mutation (Arg178-->stop) has been blamed for the absence of LK and HK. However, using Western blots with 2 monoclonal anti-HK antibodies, one that recognizes the region common to LK and HK and the other that recognizes only HK, 1 detected approximately 110-kDa bands in the plasma of this LK/HK-deficient patient vs approximately 120-kDa bands in normal human and ape plasmas. With polyclonal anti-Lys-BK antibody, which strongly detects BK cleaved at its COOH-terminus in purified HK, 1 detected approximately 110-kDa bands in the normal and the deficient plasmas. Western blots with a monoclonal anti-prekallikrein (PK) antibody showed that surface activation of PK and distribution of PK activation products, both dependent on HK, were similar in these plasmas. These findings suggest that a mutant gene yielded a kininogen-like species possibly involving aberrant mRNA splicing-structurally different from normal HK, but apparently with the capacity to carry out seemingly vital HK functions.
Collapse
Affiliation(s)
- D Veloso
- Department of Psychiatry and Behavioral Sciences, University of Texas at Houston 77030, USA.
| |
Collapse
|
37
|
Reid TM, DeBord DG, Cheever KL, Savage RE. Mutagenicity of N-OH-MOCA (4-amino-4'-hydroxylamino-bis-3,3'-dichlorodiphenylmethane) and PBQ (2-phenyl-1,4-benzoquinone) in human lymphoblastoid cells. Toxicol Lett 1998; 95:205-10. [PMID: 9704822 DOI: 10.1016/s0378-4274(98)00039-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The genotoxic potential of two occupationally significant chemicals, 4,4'-methylene-bis-2-chloroaniline (MOCA) and 2-phenyl-1,4-benzoquinone (PBQ), was explored by monitoring the induction of mutations at the HPRT locus of AHH-1 human lymphoblastoid cells. Exposure of AHH-1 cells to the putative carcinogenic metabolite of MOCA, N-OH-MOCA, induced a 6-fold increase in mutant frequency and resulted in base pair substitutions primarily at A:T base pairs. In contrast, exposure to PBQ did not result in an increased mutant frequency although this compound was significantly more cytotoxic than N-OH-MOCA at equimolar doses. The induction of mutations at A:T sites by N-OH-MOCA is consistent with the type of DNA damage known to be produced by MOCA and provides a specific marker of genotoxic damage for exposed populations.
Collapse
Affiliation(s)
- T M Reid
- Division of Biomedical and Behavioral Sciences, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA.
| | | | | | | |
Collapse
|
38
|
Kouprina N, Annab L, Graves J, Afshari C, Barrett JC, Resnick MA, Larionov V. Functional copies of a human gene can be directly isolated by transformation-associated recombination cloning with a small 3' end target sequence. Proc Natl Acad Sci U S A 1998; 95:4469-74. [PMID: 9539761 PMCID: PMC22513 DOI: 10.1073/pnas.95.8.4469] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unique, small sequences (sequence tag sites) have been identified at the 3' ends of most human genes that serve as landmarks in genome mapping. We investigated whether a single copy gene could be isolated directly from total human DNA by transformation-associated recombination (TAR) cloning in yeast using a short, 3' unique target. A TAR cloning vector was constructed that, when linearized, contained a small amount (381 bp) of 3' hypoxanthine phosphoribosyltransferase (HPRT) sequence at one end and an 189-bp Alu repeat at the other end. Transformation with this vector along with human DNA led to selective isolations of the entire HPRT gene as yeast artificial chromosomes (YACs) that extended from the 3' end sequence to various Alu positions as much as 600 kb upstream. These YACs were retrofitted with a NeoR and a bacterial artificial chromosome (BAC) sequence to transfer the YACs to bacteria and subsequently the BACs to mouse cells by using a Neo selection. Most of the HPRT isolates were functional, demonstrating that TAR cloning retains the functional integrity of the isolated material. Thus, this modified version of TAR cloning, which we refer to as radial TAR cloning, can be used to isolate large segments of the human genome accurately and directly with only a small amount of sequence information.
Collapse
Affiliation(s)
- N Kouprina
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Huang JD, Mermall V, Strobel MC, Russell LB, Mooseker MS, Copeland NG, Jenkins NA. Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations. Genetics 1998; 148:1963-72. [PMID: 9560409 PMCID: PMC1460104 DOI: 10.1093/genetics/148.4.1963] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used an RT-PCR-based sequencing approach to identify the mutations responsible for 17 viable dilute alleles, a mouse-coat-color locus encoding unconventional myosin-VA. Ten of the mutations mapped to the MyoVA tail and are reported here. These mutations represent the first extensive collection of tail mutations reported for any unconventional mammalian myosin. They identify sequences important for tail function and identify domains potentially involved in cargo binding and/or proper folding of the MyoVA tail. Our results also provide support for the notion that different myosin tail isoforms produced by alternative splicing encode important cell-type-specific functions.
Collapse
Affiliation(s)
- J D Huang
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Op het Veld CW, Jansen J, Zdzienicka MZ, Vrieling H, van Zeeland AA. Methyl methanesulfonate-induced hprt mutation spectra in the Chinese hamster cell line CHO9 and its xrcc1-deficient derivative EM-C11. Mutat Res 1998; 398:83-92. [PMID: 9626968 DOI: 10.1016/s0027-5107(97)00243-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Chinese hamster cell mutant EM-C11, which is hypersensitive to the cell killing effects of alkylating agents compared to its parental line CHO9, has been used to study the impact of base excision repair on the mutagenic effects of DNA methylation damage. This cell line has a defect in the xrcc1 gene. XRCC1 can interact with DNA polymerase-beta, thereby suppressing strand displacement, and DNA ligase III, both of which have been implicated in base excision repair. XRCC1 may, therefore, allow efficient ligation of single-strand breaks generated during base excision repair. Both EM-C11 and CHO9 cells were treated with methyl methanesulfonate (MMS), a DNA-methylating agent reacting predominantly with nitrogen atoms generating adducts which are substrates for the base excision repair pathway. EM-C11 cells are much more sensitive to the cytotoxic effects of MMS than CHO9: for EM-C11, the dose of MMS inducing 10% survival is 6-fold lower than that for CHO9. In contrast, mutation induction at the hprt locus following MMS is similar in EM-C11 and CHO9. Molecular analysis of hprt gene mutations showed that although the largest class of hprt mutations, both in EM-C11 and CHO9 cells, consisted of GC > AT transitions, most likely caused by O6-methylguanine, the size of this class was smaller in EM-C11. The fraction of deletion mutants in EM-C11, however, was twice as large as that found in CHO9 cells. These results suggest that reduced ligation efficiency of single-strand breaks generated during base excision repair, as result of a defect in XRCC1, may lead to the formation of deletions.
Collapse
Affiliation(s)
- C W Op het Veld
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Liu G, Aral B, Zabot MT, Kamoun P, Ceballos-Picot I. The molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in French families; report of two novel mutations. Hum Mutat 1998; Suppl 1:S88-90. [PMID: 9452051 DOI: 10.1002/humu.1380110130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- G Liu
- Laboratoire de Biochimie Génétique Centre National de la Recherche Scientifique, URA 1335, Hôpital Necker Enfants-Malades, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Hoffmeyer S, Nürnberg P, Ritter H, Fahsold R, Leistner W, Kaufmann D, Krone W. Nearby stop codons in exons of the neurofibromatosis type 1 gene are disparate splice effectors. Am J Hum Genet 1998; 62:269-77. [PMID: 9463322 PMCID: PMC1376891 DOI: 10.1086/301715] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stop mutations are known to disrupt gene function in different ways. They both give rise to truncated polypeptides because of the premature-termination codons (PTCs) and frequently affect the metabolism of the corresponding mRNAs. The analysis of neurofibromin transcripts from different neurofibromatosis type 1 (NF1) patients revealed the skipping of exons containing PTCs. The phenomenon of exon skipping induced by nonsense mutations has been described for other disease genes, including the CFTR (cystic fibrosis transmembrance conductance regulator) gene and the fibrillin gene. We characterized several stop mutations localized within a few base pairs in exons 7 and 37 and noticed complete skipping of either exon in some cases. Because skipping of exon 7 and of exon 37 does not lead to a frameshift, PTCs are avoided in that way. Nuclear-scanning mechanisms for PTCs have been postulated to trigger the removal of the affected exons from the transcript. However, other stop mutations that we found in either NF1 exon did not lead to a skip, although they were localized within the same region. Calculations of minimum-free-energy structures of the respective regions suggest that both changes in the secondary structure of the mRNA and creation or disruption of exonic sequences relevant for the splicing process might in fact cause these different splice phenomena observed in the NF1 gene.
Collapse
Affiliation(s)
- S Hoffmeyer
- Abteilung Humangenetik, Universitat Ulm, Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sahba S, Nechiporuk A, Figueroa KP, Nechiporuk T, Pulst SM. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics 1998; 47:359-64. [PMID: 9480749 DOI: 10.1006/geno.1997.5131] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a member of a group of neurodegenerative diseases that are caused by instability of a DNA CAG repeat. We report the genomic structure of the SCA2 gene. Its 25 exons, encompassing approximately 130 kb of genomic DNA, were mapped onto the physical map of the region. Exonic sizes varied from 37 to 890 bp, and intronic sizes ranged from 323 bp to more than 15 kb. The CAG repeat was contained in the 5' coding region of the gene in exon 1. Determination of the splice junction sequences indicated the presence of only one deviation from the GT-AG rule at the donor splice site of intron 9, which contained a GC instead of a GT dinucleotide. Exon 10, immediately downstream from this rare splice donor site, was alternatively spliced. Alternative splicing does not affect the reading frame and is predicted to encode an isoform containing 70 amino acids less.
Collapse
Affiliation(s)
- S Sahba
- Division of Neurology, Cedars-Sinai Medical Center, CSMC Burns and Allen Research Institute, Los Angeles, California, 90048, USA
| | | | | | | | | |
Collapse
|
44
|
Shiga N, Takeshima Y, Sakamoto H, Inoue K, Yokota Y, Yokoyama M, Matsuo M. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J Clin Invest 1997; 100:2204-10. [PMID: 9410897 PMCID: PMC508415 DOI: 10.1172/jci119757] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence.
Collapse
Affiliation(s)
- N Shiga
- Division of Genetics, International Center for Medical Research, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Cooper TA, Mattox W. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 1997; 61:259-66. [PMID: 9311728 PMCID: PMC1715899 DOI: 10.1086/514856] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- T A Cooper
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
46
|
Ronce N, Moizard MP, Robb L, Toutain A, Villard L, Moraine C. A C2055T transition in exon 8 of the ATP7A gene is associated with exon skipping in an occipital horn syndrome family. Am J Hum Genet 1997; 61:233-8. [PMID: 9246006 PMCID: PMC1715861 DOI: 10.1016/s0002-9297(07)64297-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
47
|
Singleton BK, Priestley A, Steingrimsdottir H, Gell D, Blunt T, Jackson SP, Lehmann AR, Jeggo PA. Molecular and biochemical characterization of xrs mutants defective in Ku80. Mol Cell Biol 1997; 17:1264-73. [PMID: 9032253 PMCID: PMC231851 DOI: 10.1128/mcb.17.3.1264] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene product defective in radiosensitive CHO mutants belonging to ionizing radiation complementation group 5, which includes the extensively studied xrs mutants, has recently been identified as Ku80, a subunit of the Ku protein and a component of DNA-dependent protein kinase (DNA-PK). Several group 5 mutants, including xrs-5 and -6, lack double-stranded DNA end-binding and DNA-PK activities. In this study, we examined additional xrs mutants at the molecular and biochemical levels. All mutants examined have low or undetectable levels of Ku70 and Ku80 protein, end-binding, and DNA-PK activities. Only one mutant, xrs-6, has Ku80 transcript levels detectable by Northern hybridization, but Ku80 mRNA was detectable by reverse transcription-PCR in most other mutants. Two mutants, xrs-4 and -6, have altered Ku80 transcripts resulting from mutational changes in the genomic Ku80 sequence affecting RNA splicing, indicating that the defects in these mutants lie in the Ku80 gene rather than a gene controlling its expression. Neither of these two mutants has detectable wild-type Ku80 transcript. Since the mutation in both xrs-4 and xrs-6 cells results in severely truncated Ku80 protein, both are likely candidates to be null mutants. Azacytidine-induced revertants of xrs-4 and -6 carried both wild-type and mutant transcripts. The results with these revertants strongly support our model proposed earlier, that CHO-K1 cells carry a copy of the Ku80 gene (XRCC5) silenced by hypermethylation. Site-directed mutagenesis studies indicate that previously proposed ATP-binding and phosphorylation sites are not required for Ku80 activity, whereas N-terminal deletions of more than the first seven amino acids result in severe loss of activities.
Collapse
Affiliation(s)
- B K Singleton
- MRC Cell Mutation Unit, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The AHH-1 human lymphoblastoid line was exposed to benzo[a]pyrene under markedly different conditions: a single toxic exposure of 30 microM for 28 h, a nontoxic exposure of 0.5 microM for 6 days and an exposure approximating estimates of BP concentration in the human lung of 20 nM for 20 days. Duplicate cultures containing 2 x 10(9) cells each were used to assure the statistical quality of the mutational spectra. Point mutational hotspots were observed in bp 215 to 318 of the third exon of the hprt gene after mutants were selected en masse with 6-thioguanine, using a combination of denaturing gradient gel electrophoresis and high fidelity polymerase chain reaction. The spectra were highly reproducible in replicate experiments but varied dramatically among treatment conditions. These data demonstrate that mutational spectra were critically dependent upon conditions of exposure. The results significantly extend prior reports on this subject and clarify an important issue for the use of mutational spectra obtained in vitro to create hypotheses about what spectra may be expected in humans in vivo. We conclude that commonly used protocols of short-term exposure to mutagenic chemicals at high concentrations should not be used to define such expectations. Rather, the more difficult protocols of long-term and low-concentration mutation studies are justified as conditions necessary, although perhaps not sufficient, to approximate human in vivo mutational pathways.
Collapse
Affiliation(s)
- J Chen
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
49
|
Jin Y, Dietz HC, Montgomery RA, Bell WR, McIntosh I, Coller B, Bray PF. Glanzmann thrombasthenia. Cooperation between sequence variants in cis during splice site selection. J Clin Invest 1996; 98:1745-54. [PMID: 8878424 PMCID: PMC507612 DOI: 10.1172/jci118973] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glanzmann thrombasthenia (GT), an autosomal recessive bleeding disorder, results from abnormalities in the platelet fibrinogen receptor, GP(IIb)-IIIa (integrin alpha(IIb)beta3). A patient with GT was identified as homozygous for a G-->A mutation 6 bp upstream of the GP(IIIa) exon 9 splice donor site. Patient platelet GP(IIIa) transcripts lacked exon 9 despite normal DNA sequence in all of the cis-acting sequences known to regulate splice site selection. In vitro analysis of transcripts generated from mini-gene constructs demonstrated that exon skipping occurred only when the G-->A mutation was cis to a polymorphism 116 bp upstream, providing precedence that two sequence variations in the same exon which do not alter consensus splice sites and do not generate missense or nonsense mutations, can affect splice site selection. The mutant transcript resulted from utilization of a cryptic splice acceptor site and returned the open reading frame. These data support the hypothesis that pre-mRNA secondary structure and allelic sequence variants can influence splicing and provide new insight into the regulated control of RNA processing. In addition, haplotype analysis suggested that the patient has two identical copies of chromosome 17. Markers studied on three other chromosomes suggested this finding was not due to consanguinity. The restricted phenotype in this patient may provide information regarding the expression of potentially imprinted genes on chromosome 17.
Collapse
Affiliation(s)
- Y Jin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 1996; 98:610-5. [PMID: 8698850 PMCID: PMC507468 DOI: 10.1172/jci118830] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dihydropyrimidine dehydrogenase (DPD) deficiency constitutes an inborn error in pyrimidine metabolism associated with thymine-uraciluria in pediatric patients and an increased risk of toxicity in cancer patients receiving 5-fluorouracil (5-FU) treatment. The molecular basis for DPD deficiency in a British family having a cancer patient that exhibited grade IV toxicity 10 d after 5-FU treatment was analyzed. A 165-bp deletion spanning a complete exon of the DPYD gene was found in some members of the pedigree having low DPD catalytic activity. Direct sequencing of lymphocyte DNA from these subjects revealed the presence of a G to A point mutation at the 5'-splicing site consensus sequence (GT to AT) that leads to skipping of the entire exon preceding the mutation during pre-RNA transcription and processing. A PCR-based diagnostic method was developed to determine that the mutation is found in Caucasian and Asian populations. This mutation was also detected in a Dutch patient with thymine-uraciluria and completely lacking DPD activity. A genotyping test for the G to A splicing point mutation could be useful in predicting cancer patients prone to toxicity upon administration of potentially toxic 5-FU and for genetic screening of heterozygous carriers and homozygous deficient subjects.
Collapse
Affiliation(s)
- X Wei
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|