1
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
2
|
Carey MF, Peterson CL, Smale ST. Identifying cis-acting DNA elements within a control region. Cold Spring Harb Protoc 2012; 2012:279-96. [PMID: 22383646 DOI: 10.1101/pdb.top068171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Computational methods can be used to identify DNA sequence motifs that have been conserved through evolution, as well as motifs that correspond to recognition sites for known DNA-binding proteins. These computational methods, when combined with chromatin immunoprecipitation and other basic experiments, can provide preliminary insight into the elements and factors that regulate a gene of interest. When pursuing a more complete understanding of a control region of interest, a comprehensive mutant analysis should generally be performed as a critical step toward more advanced functional studies. This article describes strategies for such a comprehensive analysis. It also summarizes the insights provided by a comprehensive mutant analysis versus a phylogenetic analysis.
Collapse
|
3
|
Vettermann C, Lutz J, Selg M, Bösl M, Jäck HM. Genomic suppression of murine B29/Ig-β promoter-driven transgenes. Eur J Immunol 2006; 36:3324-33. [PMID: 17111355 DOI: 10.1002/eji.200636536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunoglobulin beta (Ig-beta) is a critical signal transducer of precursor B cell and B cell receptors. B29, the gene coding for Ig-beta, is switched on in progenitor B cells and expressed until the terminal stage of antibody-producing plasma cells. Although several cis-acting elements and transcription factors required for B29 expression have been characterized in cell lines, the in vivo significance of individual motifs located in the 1.2-kb promoter region remained unclear. To address whether this region drives B lineage-specific expression in mice as efficiently as in transfected cell lines, we established transgenic animals carrying the B29 promoter fused to either enhanced green fluorescent protein (EGFP) or the precursor B cell receptor component lambda5. Surprisingly, only minimal levels of B29-derived transcripts were produced in B lymphoid tissues of several independent transgenic lines, and the respective proteins were below the detection limit. In addition, transgenic transcripts were found in testis, kidney and brain. Hence, the 1.2-kb-sized B29 promoter does not define a strong, B lineage-restricted expression unit when randomly integrated into the genome and passed through the murine germ line. Therefore, yet unidentified genomic locus control elements are required to efficiently drive B29 expression in B lymphocytes.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
4
|
Marinkovic D, Marinkovic T, Mahr B, Hess J, Wirth T. Reversible lymphomagenesis in conditionally c-MYC expressing mice. Int J Cancer 2004; 110:336-42. [PMID: 15095297 DOI: 10.1002/ijc.20099] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is well documented that deregulation of MYC leads to tumor development, yet many aspects of this process are only partially understood. We have established a transgenic mouse model in which c-MYC is conditionally expressed in lymphoid cells using the tetracycline-regulated system of gene regulation. Mice with continuously expressed transgenic c-MYC died of invasive T- or B-cell lymphomas within 4 months. Lymphomas developing in transgenic mice were c-MYC dependent since doxycycline treatment led to tumor regression. Using transplantation of established tumor cell lines labeled with GFP, we followed the fate of neoplastic cells in recipients upon MYC inactivation. This approach allowed us to elucidate both apoptosis and differentiation as mechanisms of tumor elimination. Comparative genomic hybridization (CGH) and FISH analyses were performed in order to analyze possible chromosomal aberrations induced by c-MYC. We observed that overexpression of c-MYC is sufficient to induce recurrent patterns of genomic instability. The main observation was a gain of genomic material that corresponded to chromosome 15 in several T-cell tumors, which could be identified as trisomy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line, Tumor
- Cell Separation
- Chromosome Aberrations
- Chromosomes, Human, Pair 15
- DNA, Complementary/metabolism
- Doxycycline/pharmacology
- Flow Cytometry
- Green Fluorescent Proteins
- Humans
- In Situ Hybridization, Fluorescence
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Lymphoma/metabolism
- Lymphoma, B-Cell/metabolism
- Lymphoma, T-Cell/metabolism
- Mice
- Mice, Transgenic
- Models, Genetic
- Neoplasm Transplantation
- Nucleic Acid Hybridization
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Messenger/metabolism
- Time Factors
- Transgenes
Collapse
|
5
|
Hess J, Nielsen PJ, Fischer KD, Bujard H, Wirth T. The B lymphocyte-specific coactivator BOB.1/OBF.1 is required at multiple stages of B-cell development. Mol Cell Biol 2001; 21:1531-9. [PMID: 11238890 PMCID: PMC86699 DOI: 10.1128/mcb.21.5.1531-1539.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional coactivator BOB.1/OBF.1 confers B-cell specificity on the transcription factors Oct1 and Oct2 at octamer site-containing promoters. A hallmark of the BOB.1/OBF.1 mutation in the mouse is the absence of germinal center development in secondary lymphoid organs, demonstrating the requirement for BOB.1/OBF.1 in antigen-dependent stages of B-cell differentiation. Here we analyzed earlier stages of B lymphopoiesis in BOB.1/OBF.1-deficient mice. Examination of B-cell development in the bone marrow revealed that the numbers of transitional immature (B220(+) IgM(hi)) B cells were reduced and that B-cell apoptosis was increased. When in competition with wild-type cells, BOB.1/OBF.1(-/-) bone marrow cells exhibited defects in repopulating the bone marrow B-cell compartment and were unable to establish a presence in the periphery of host mice. The defective bone marrow populations in BOB.1/OBF.1(-/-) mice were rescued by conditional expression of a BOB.1/OBF.1 transgene controlled by the tetracycline gene expression system. However, the restored populations did not restore the numbers of IgD(hi) B cells in the periphery, where the BOB.1/OBF.1 transgene was not expressed. These results show that BOB.1/OBF.1(-/-) B cells exhibit multistage defects in B-cell development, including impaired production of transitional B cells and defective maturation of recirculating B cells.
Collapse
Affiliation(s)
- J Hess
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Hess J, Werner A, Wirth T, Melchers F, Jäck HM, Winkler TH. Induction of pre-B cell proliferation after de novo synthesis of the pre-B cell receptor. Proc Natl Acad Sci U S A 2001; 98:1745-50. [PMID: 11172022 PMCID: PMC29328 DOI: 10.1073/pnas.98.4.1745] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of a pre-B cell receptor (pre-BCR) composed of an Ig mu heavy chain (mu H-chain), the surrogate light (SL) chain, and the Ig alpha/beta dimer is critical for late pro-B cells to advance to the pre-B cell stage. By using a transgenic mouse model, in which mu H-chain synthesis is solely driven by a tetracycline-controlled transactivator, we show that de novo synthesis of mu H-chain in transgenic pro-B cells not only induces differentiation but also proliferation. This positive effect of mu H-chain synthesis on proliferation requires the presence of SL chain and costimulatory signals provided by stromal cells or IL-7. We conclude that pre-BCR signaling induces clonal expansion of early pre-B cells.
Collapse
Affiliation(s)
- J Hess
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Versbacher Strasse 5, D-97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Induction of pre-B cell proliferation after de novo synthesis of the pre-B cell receptor. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172022 PMCID: PMC29328 DOI: 10.1073/pnas.041492098] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The assembly of a pre-B cell receptor (pre-BCR) composed of an Ig mu heavy chain (mu H-chain), the surrogate light (SL) chain, and the Ig alpha/beta dimer is critical for late pro-B cells to advance to the pre-B cell stage. By using a transgenic mouse model, in which mu H-chain synthesis is solely driven by a tetracycline-controlled transactivator, we show that de novo synthesis of mu H-chain in transgenic pro-B cells not only induces differentiation but also proliferation. This positive effect of mu H-chain synthesis on proliferation requires the presence of SL chain and costimulatory signals provided by stromal cells or IL-7. We conclude that pre-BCR signaling induces clonal expansion of early pre-B cells.
Collapse
|
8
|
König H, Pfisterer P, Corcoran LM, Wirth T. Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev 1995; 9:1598-607. [PMID: 7543064 DOI: 10.1101/gad.9.13.1598] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Oct-2 transcription factor is expressed predominantly in B lymphocytes and has been shown previously to be important for the terminal phase of B-cell differentiation in mice. A number of genes specifically expressed in B cells contain Oct-2-binding sites in their regulatory regions. However, the analysis of expression levels of these genes in Oct-2-deficient B cells revealed that they were unaffected. Hence, there were no genes known that critically depend on Oct-2 for their expression. To understand the molecular basis for the Oct-2 effect on B-cell development, we searched for Oct-2 target genes by subtractive cDNA cloning. We show here that expression of the murine CD36 gene in B cells and macrophages requires a functional Oct-2 protein. Nuclear run-on experiments demonstrate that this gene is regulated transcriptionally by Oct-2. Moreover, CD36 levels correlated with the levels of Oct-2 expression in several mouse B-cell and macrophage cell lines. Finally, compared to wild-type and heterozygous mice, CD36 mRNA levels were markedly reduced in spleens and B-cell-enriched splenocyte fractions from oct-2-/- mice. The data identify CD36 as the first target gene critically dependent on Oct-2 for its expression. Because CD36 expression is also dependent on Oct-2 in vivo, it is a candidate gene through which Oct-2 could affect B-cell differentiation.
Collapse
Affiliation(s)
- H König
- Zentrum für Molekulare Biologie Heidelberg, Germany
| | | | | | | |
Collapse
|
9
|
Ernst P, Smale ST. Combinatorial regulation of transcription II: The immunoglobulin mu heavy chain gene. Immunity 1995; 2:427-38. [PMID: 7749979 DOI: 10.1016/1074-7613(95)90024-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Ernst
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, Los Angeles School of Medicine 90095-1662, USA
| | | |
Collapse
|
10
|
|
11
|
Schanke JT, Marcuzzi A, Podzorski RP, Van Ness B. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression. Nucleic Acids Res 1994; 22:5425-32. [PMID: 7816634 PMCID: PMC332092 DOI: 10.1093/nar/22.24.5425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells.
Collapse
Affiliation(s)
- J T Schanke
- Department of Biochemistry, University of Minnesota, Minneapolis 55455
| | | | | | | |
Collapse
|
12
|
Corcoran LM, Karvelas M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1994; 1:635-45. [PMID: 7600291 DOI: 10.1016/1074-7613(94)90035-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oct-2, a POU homeodomain protein expressed primarily in B cells, is a powerful transcriptional activator that binds to DNA at sites appropriately placed for major effects on immunoglobulin gene expression. Our examination of B cell development and function in Oct-2 null mice did not support an essential role for Oct-2 early in B cell development. Rather, Oct-2 was required later, when B cells were induced to differentiate to antibody-secreting cells. We show here that Oct-2 is not required for normal immunoglobulin production by mature B lymphocytes. Instead, it is essential for a normal proliferative response to polyclonal mitogens. Responses to signals from activated T cells are unaffected. The requirement for Oct-2 maps to an early activation step in G1, during which B cells make the commitment to progress through the cell cycle and to divide.
Collapse
Affiliation(s)
- L M Corcoran
- Walter and Eliza Hall Institute of Medical Research Post Office, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
13
|
Lernbecher T, Müller U, Wirth T. Distinct NF-kappa B/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature 1993; 365:767-70. [PMID: 7692309 DOI: 10.1038/365767a0] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The NF-kappa B/Rel family is a growing class of transcriptional regulators whose members share the conserved Rel-homology domain, involved in specific DNA binding and dimerization. They interact with the regulatory elements of many different genes and are involved in the regulation of lymphoid-specific and inducible transcription. We tested whether these factors could alone activate a gene in transgenic mice. We report here that a minimal promoter containing three copies of a binding site for these proteins allows tissue-specific and inducible transgene activation. In lymphoid tissues constitutive transgene expression correlates with the presence of a constitutively active p50/RelB heterodimer. Other organs that only contain the p50 homodimer do not express the transgene. In contrast to this constitutive activity mediated by p50/RelB, the p50/p65 heterodimer (which is NF-kappa B) could confer inducible transgene activation in embryo fibroblasts. Thus two different members of the NF-kappa B/Rel family of transcriptional activators are involved in tissue-specific and inducible gene activation in transgenic mice.
Collapse
Affiliation(s)
- T Lernbecher
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Verrijzer CP, Van der Vliet PC. POU domain transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:1-21. [PMID: 8485147 DOI: 10.1016/0167-4781(93)90237-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C P Verrijzer
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | |
Collapse
|
15
|
Oct2 transactivation from a remote enhancer position requires a B-cell-restricted activity. Mol Cell Biol 1992. [PMID: 1620119 DOI: 10.1128/mcb.12.7.3107] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous cotransfection experiments had demonstrated that ectopic expression of the lymphocyte-specific transcription factor Oct2 could efficiently activate a promoter containing an octamer motif. Oct2 expression was unable to stimulate a multimerized octamer enhancer element in HeLa cells, however. We have tested a variety of Oct2 isoforms generated by alternative splicing for the capability to activate an octamer enhancer in nonlymphoid cells and a B-cell line. Our analyses show that several Oct2 isoforms can stimulate from a remote position but that this stimulation is restricted to B cells. This result indicates the involvement of either a B-cell-specific cofactor or a specific modification of a cofactor or the Oct2 protein in Oct2-mediated enhancer activation. Mutational analyses indicate that the carboxy-terminal domain of Oct2 is critical for enhancer activation. Moreover, this domain conferred enhancing activity when fused to the Oct1 protein, which by itself was unable to stimulate from a remote position. The glutamine-rich activation domain present in the amino-terminal portion of Oct2 and the POU domain contribute only marginally to the transactivation function from a distal position.
Collapse
|
16
|
Annweiler A, Müller-Immerglück M, Wirth T. Oct2 transactivation from a remote enhancer position requires a B-cell-restricted activity. Mol Cell Biol 1992; 12:3107-16. [PMID: 1620119 PMCID: PMC364525 DOI: 10.1128/mcb.12.7.3107-3116.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous cotransfection experiments had demonstrated that ectopic expression of the lymphocyte-specific transcription factor Oct2 could efficiently activate a promoter containing an octamer motif. Oct2 expression was unable to stimulate a multimerized octamer enhancer element in HeLa cells, however. We have tested a variety of Oct2 isoforms generated by alternative splicing for the capability to activate an octamer enhancer in nonlymphoid cells and a B-cell line. Our analyses show that several Oct2 isoforms can stimulate from a remote position but that this stimulation is restricted to B cells. This result indicates the involvement of either a B-cell-specific cofactor or a specific modification of a cofactor or the Oct2 protein in Oct2-mediated enhancer activation. Mutational analyses indicate that the carboxy-terminal domain of Oct2 is critical for enhancer activation. Moreover, this domain conferred enhancing activity when fused to the Oct1 protein, which by itself was unable to stimulate from a remote position. The glutamine-rich activation domain present in the amino-terminal portion of Oct2 and the POU domain contribute only marginally to the transactivation function from a distal position.
Collapse
Affiliation(s)
- A Annweiler
- Zentrum für Molekulare Biologie Heidelberg, Germany
| | | | | |
Collapse
|