1
|
Berkyurek AC, Furlan G, Lampersberger L, Beltran T, Weick E, Nischwitz E, Cunha Navarro I, Braukmann F, Akay A, Price J, Butter F, Sarkies P, Miska EA. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J 2021; 40:e105565. [PMID: 33533030 PMCID: PMC7917558 DOI: 10.15252/embj.2020105565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.
Collapse
Affiliation(s)
- Ahmet C Berkyurek
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Giulia Furlan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Lisa Lampersberger
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eva‐Maria Weick
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Structural Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Emily Nischwitz
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Isabela Cunha Navarro
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Alper Akay
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Present address:
School of Biological SciencesUniversity of East AngliaNorwich, NorfolkUK
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Falk Butter
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Wellcome Sanger InstituteWellcome Trust Genome CampusCambridgeUK
| |
Collapse
|
2
|
Knippa K, Peterson DO. Fidelity of RNA Polymerase II Transcription: Role of Rbp9 in Error Detection and Proofreading. Biochemistry 2013; 52:7807-17. [DOI: 10.1021/bi4009566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kevin Knippa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - David O. Peterson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| |
Collapse
|
3
|
Kaplan CD. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:39-54. [PMID: 23022618 DOI: 10.1016/j.bbagrm.2012.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 01/12/2023]
Abstract
Transcription by RNA polymerase II (Pol II), and all RNA polymerases for that matter, may be understood as comprising two cycles. The first cycle relates to the basic mechanism of the transcription process wherein Pol II must select the appropriate nucleoside triphosphate (NTP) substrate complementary to the DNA template, catalyze phosphodiester bond formation, and translocate to the next position on the DNA template. Performing this cycle in an iterative fashion allows the synthesis of RNA chains that can be over one million nucleotides in length in some larger eukaryotes. Overlaid upon this enzymatic cycle, transcription may be divided into another cycle of three phases: initiation, elongation, and termination. Each of these phases has a large number of associated transcription factors that function to promote or regulate the gene expression process. Complicating matters, each phase of the latter transcription cycle are coincident with cotranscriptional RNA processing events. Additionally, transcription takes place within a highly dynamic and regulated chromatin environment. This chromatin environment is radically impacted by active transcription and associated chromatin modifications and remodeling, while also functioning as a major platform for Pol II regulation. This review will focus on our basic knowledge of the Pol II transcription mechanism, and how altered Pol II activity impacts gene expression in vivo in the model eukaryote Saccharomyces cerevisiae. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
4
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
5
|
Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol Cell Biol 2008; 28:3883-93. [PMID: 18426909 DOI: 10.1128/mcb.00380-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.
Collapse
|
6
|
Chen X, Ruggiero C, Li S. Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage. Mol Cell Biol 2007; 27:4617-25. [PMID: 17452455 PMCID: PMC1951484 DOI: 10.1128/mcb.00404-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/09/2007] [Accepted: 04/11/2007] [Indexed: 01/28/2023] Open
Abstract
Rpb9, a nonessential subunit of RNA polymerase II (Pol II), has multiple transcription-related functions in Saccharomyces cerevisiae, including transcription elongation and transcription-coupled repair (TCR). Here we show that, in response to UV radiation, Rpb9 also functions in promoting ubiquitylation and degradation of Rpb1, the largest subunit of Pol II. This function of Rpb9 is not affected by any pathways of nucleotide excision repair, including TCR mediated by Rpb9 itself and by Rad26. Rpb9 is composed of three distinct domains: the N-terminal Zn1, the C-terminal Zn2, and the central linker. The Zn2 domain, which is dispensable for transcription elongation and TCR functions, is essential for Rpb9 to promote Rpb1 degradation, whereas the Zn1 and linker domains, which are essential for transcription elongation and TCR functions, play a subsidiary role in Rpb1 degradation. Coimmunoprecipitation analysis suggests that almost the full length of Rpb9 is required for a strong interaction with the core Pol II: deletion of the Zn2 domain causes dramatically weakened interaction, whereas deletion of Zn1 and the linker resulted in undetectable interaction. Furthermore, we show that Rpb1, rather than the whole Pol II complex, is degraded in response to UV radiation and that the degradation is primarily mediated by the 26S proteasome.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
7
|
Li S, Ding B, Chen R, Ruggiero C, Chen X. Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:9430-41. [PMID: 17030604 PMCID: PMC1698543 DOI: 10.1128/mcb.01656-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/25/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022] Open
Abstract
Rpb9, a small nonessential subunit of RNA polymerase II, has been shown to have multiple transcription-related functions in Saccharomyces cerevisiae. These functions include promoting transcription elongation and mediating a subpathway of transcription-coupled repair (TCR) that is independent of Rad26, the homologue of human Cockayne syndrome complementation group B protein. Rpb9 is composed of three distinct domains: the N-terminal Zn1, the C-terminal Zn2, and the central linker. Here we show that the Zn1 and linker domains are essential, whereas the Zn2 domain is almost dispensable, for both transcription elongation and TCR functions. Impairment of transcription elongation, which does not dramatically compromise Rad26-mediated TCR, completely abolishes Rpb9-mediated TCR. Furthermore, Rpb9 appears to be dispensable for TCR if its transcription elongation function is compensated for by removing a transcription repression/elongation factor. Our data suggest that the transcription elongation function of Rpb9 is involved in TCR.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
8
|
Kuehner JN, Brow DA. Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J Biol Chem 2006; 281:14119-28. [PMID: 16571719 DOI: 10.1074/jbc.m601937200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of transcription by RNA polymerase II (RNAP II) on Saccharomyces cerevisiae messenger RNA (mRNA) genes typically occurs at multiple sites 40-120 bp downstream of the TATA box. The mechanism that accommodates this extended and variable promoter architecture is unknown, but one model suggests that RNAP II forms an open promoter complex near the TATA box and then scans the template DNA strand for start sites. Unlike most protein-coding genes, small nuclear RNA gene transcription starts predominantly at a single position. We identify a highly efficient initiator element as the primary start site determinant for the yeast U4 small nuclear RNA gene, SNR14. Consistent with the scanning model, transcription of an SNR14 allele with tandemly duplicated start sites initiates primarily from the upstream site, yet the downstream site is recognized with equivalent efficiency by the diminished population of RNAP II molecules that encounter it. A quantitative in vivo assay revealed that SNR14 initiator efficiency is nearly perfect (approximately 90%), which explains the precision of U4 RNA 5' end formation. Initiator efficiency was reduced by cis-acting mutations at -8, -7, -1, and +1 and trans-acting substitutions in the TFIIB B-finger. These results expand our understanding of RNAP II initiation preferences and provide new support for the scanning model.
Collapse
Affiliation(s)
- Jason N Kuehner
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
9
|
Affiliation(s)
- Lilia R Nunez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
10
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
11
|
Seshadri V, McArthur AG, Sogin ML, Adam RD. Giardia lamblia RNA polymerase II: amanitin-resistant transcription. J Biol Chem 2003; 278:27804-10. [PMID: 12734189 DOI: 10.1074/jbc.m303316200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giardia lamblia is an early branching eukaryote, and although distinctly eukaryotic in its cell and molecular biology, transcription and translation in G. lamblia demonstrate important differences from these processes in higher eukaryotes. The cyclic octapeptide amanitin is a relatively selective inhibitor of eukaryotic RNA polymerase II (RNAP II) and is commonly used to study RNAP II transcription. Therefore, we measured the sensitivity of G. lamblia RNAP II transcription to alpha-amanitin and found that unlike most other eukaryotes, RNAP II transcription in Giardia is resistant to 1 mg/ml amanitin. In contrast, 50 microg/ml amanitin inhibits 85% of RNAP III transcription activity using leucyl-tRNA as a template. To better understand transcription in G. lamblia, we identified 10 of the 12 known eukaryotic rpb subunits, including all 10 subunits that are required for viability in Saccharomyces cerevisiae. The amanitin motif (amanitin binding site) of Rpb1 from G. lamblia has amino acid substitutions at six highly conserved sites that have been associated with amanitin resistance in other organisms. These observations of amanitin resistance of Giardia RNA polymerase II support previous proposals of the mechanism of amanitin resistance in other organisms and provide a molecular framework for the development of novel drugs with selective activity against G. lamblia.
Collapse
Affiliation(s)
- Vishwas Seshadri
- Department of Microbiology, University of Arizona College of Medicine, Tucson, Arizona 85724-5049, USA
| | | | | | | |
Collapse
|
12
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
13
|
Zhang DY, Carson DJ, Ma J. The role of TFIIB-RNA polymerase II interaction in start site selection in yeast cells. Nucleic Acids Res 2002; 30:3078-85. [PMID: 12136090 PMCID: PMC135743 DOI: 10.1093/nar/gkf422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/20/2002] [Accepted: 05/20/2002] [Indexed: 11/14/2022] Open
Abstract
Previous studies have established a critical role of both TFIIB and RNA polymerase II (RNAPII) in start site selection in the yeast Saccharomyces cerevisiae. However, it remains unclear how the TFIIB-RNAPII interaction impacts on this process since such an interaction can potentially influence both preinitiation complex (PIC) stability and conformation. In this study, we further investigate the role of TFIIB in start site selection by characterizing our newly generated TFIIB mutants, two of which exhibit a novel upstream shift of start sites in vivo. We took advantage of an artificial recruitment system in which an RNAPII holoenzyme component is covalently linked to a DNA-binding domain for more direct and stable recruitment. We show that TFIIB mutations can exert their effects on start site selection in such an artificial recruitment system even though it has a relaxed requirement for TFIIB. We further show that these TFIIB mutants have normal affinity for RNAPII and do not alter the promoter melting/scanning step. Finally, we show that overexpressing the genetically isolated TFIIB mutant E62K, which has a reduced affinity for RNAPII, can correct its start site selection defect. We discuss a model in which the TFIIB-RNAPII interaction controls the start site selection process by influencing the conformation of PIC prior to or during PIC assembly, as opposed to PIC stability.
Collapse
Affiliation(s)
- Dong-Yi Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
14
|
Abstract
The Saccharomyces cerevisiae Paf1-RNA polymerase II (Pol II) complex is biochemically and functionally distinct from the Srb-mediator form of Pol II holoenzyme and is required for full expression of a subset of genes. In this work we have used tandem affinity purification tags to isolate the Paf1 complex and mass spectrometry to identify additional components. We have established that Ctr9, Rtf1, and Leo1 are factors that associate with Paf1, Cdc73, and Pol II, but not with the Srb-mediator. Deletion of either PAF1 or CTR9 leads to similar severe pleiotropic phenotypes, which are unaltered when the two mutations are combined. In contrast, we found that deletion of LEO1 or RTF1 leads to few obvious phenotypes, although mutation of RTF1 suppresses mutations in TATA-binding protein, alters transcriptional start sites, and affects elongation. Remarkably, deletion of LEO1 or RTF1 suppresses many paf1Delta phenotypes. In particular, an rtf1Delta paf1Delta double mutant grew faster, was less temperature sensitive, and was more resistant to caffeine and hydroxyurea than a paf1Delta single mutant. In addition, expression of the G(1) cyclin CLN1, reduced nearly threefold in paf1Delta, is restored to wild-type levels in the rtf1Delta paf1Delta double mutant. We suggest that lack of Paf1 results in a defective complex and a block in transcription, which is relieved by removal of Leo1 or Rtf1.
Collapse
Affiliation(s)
- Cherie L Mueller
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
15
|
Hemming SA, Jansma DB, Macgregor PF, Goryachev A, Friesen JD, Edwards AM. RNA polymerase II subunit Rpb9 regulates transcription elongation in vivo. J Biol Chem 2000; 275:35506-11. [PMID: 10938084 DOI: 10.1074/jbc.m004721200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II lacking the Rpb9 subunit uses alternate transcription initiation sites in vitro and in vivo and is unable to respond to the transcription elongation factor TFIIS in vitro. Here, we show that RPB9 has a synthetic phenotype with the TFIIS gene. Disruption of RPB9 in yeast also resulted in sensitivity to 6-azauracil, which is a phenotype linked to defects in transcription elongation. Expression of the TFIIS gene on a high-copy plasmid partially suppressed the 6-azauracil sensitivity of Deltarpb9 cells. We set out to determine the relevant cellular role of yeast Rpb9 by assessing the ability of 20 different site-directed and deletion mutants of RPB9 to complement the initiation and elongation defects of Deltarpb9 cells in vivo. Rpb9 is composed of two zinc ribbons. The N-terminal zinc ribbon restored the wild-type pattern of initiation start sites, but was unable to complement the growth defects associated with defects in elongation. Most of the site-directed mutants complemented the elongation-specific growth phenotypes and reconstituted the normal pattern of transcription initiation sites. The anti-correlation between the growth defects of cells disrupted for RPB9 and the selection of transcription start sites suggests that this is not the primary cellular role for Rpb9. Genome-wide transcription profiling of Deltarpb9 cells revealed only a few changes, predominantly in genes related to metabolism.
Collapse
Affiliation(s)
- S A Hemming
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Hausner W, Lange U, Musfeldt M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J Biol Chem 2000; 275:12393-9. [PMID: 10777522 DOI: 10.1074/jbc.275.17.12393] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the function of an archaeal protein (now called transcription factor S (TFS)) that shows sequence similarity to eukaryotic transcription factor IIS (TFIIS) as well as to small subunits of eukaryotic RNA polymerases I (A12.6), II (B12.2), and III (C11). Western blot analysis with antibodies against recombinant TFS demonstrated that this protein is not a subunit of the RNA polymerase. In vitro transcription experiments with paused elongation complexes at position +25 showed that TFS is able to induce cleavage activity in the archaeal RNA polymerase in a similar manner to TFIIS. In the presence of TFS, the cleavage activity of the RNA polymerase truncates the RNA back to position +15 by releasing mainly dinucleotides from the 3'-end of the nascent RNA. Furthermore, TFS reduces the amount of non-chaseable elongation complexes at position +25 as well as position +45. These findings clearly demonstrate that this protein has a similar function to eukaryotic TFIIS.
Collapse
Affiliation(s)
- W Hausner
- Institut für Allgemeine Mikrobiologie, University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Federal Republic of Germany.
| | | | | |
Collapse
|
17
|
Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 2000; 288:640-9. [PMID: 10784442 DOI: 10.1126/science.288.5466.640] [Citation(s) in RCA: 429] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A backbone model of a 10-subunit yeast RNA polymerase II has been derived from x-ray diffraction data extending to 3 angstroms resolution. All 10 subunits exhibit a high degree of identity with the corresponding human proteins, and 9 of the 10 subunits are conserved among the three eukaryotic RNA polymerases I, II, and III. Notable features of the model include a pair of jaws, formed by subunits Rpb1, Rpb5, and Rpb9, that appear to grip DNA downstream of the active center. A clamp on the DNA nearer the active center, formed by Rpb1, Rpb2, and Rpb6, may be locked in the closed position by RNA, accounting for the great stability of transcribing complexes. A pore in the protein complex beneath the active center may allow entry of substrates for polymerization and exit of the transcript during proofreading and passage through pause sites in the DNA.
Collapse
MESH Headings
- Amino Acid Motifs
- Binding Sites
- Catalytic Domain
- Crystallization
- Crystallography, X-Ray
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Enzyme Stability
- Escherichia coli/enzymology
- Humans
- Models, Molecular
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Thermus/enzymology
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription Factors, General
- Transcription, Genetic
- Transcriptional Elongation Factors
Collapse
Affiliation(s)
- P Cramer
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ostapenko D, Gileadi O. Rad25p, a DNA helicase subunit of yeast transcription factor TFIIH, is required for promoter escape in vivo. Gene 2000; 245:109-17. [PMID: 10713451 DOI: 10.1016/s0378-1119(00)00029-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The general transcription factor TFIIH is required for initial DNA unwinding and promoter escape by RNA polymerase II in vitro. We examined whether Rad25p, a DNA helicase subunit of TFIIH, mediates promoter opening and promoter escape in the yeast Saccharomyces cerevisiae. DNA unwinding was probed with an in vivo permanganate reactivity assay, in a temperature-sensitive mutant of RAD25. The consequences of Rad25p inactivation were promoter-specific. Whereas in the TDH2 promoter permanganate reactivity was entirely abolished, the reactivity at the GAL1 and GAL10 promoter regions was only moderately affected. In the GAL genes permanganate reactivity uniformly decreased downstream of the transcription start site, indicating that progression of RNA polymerase II to this region was impaired. Our results suggest that in yeast cells, promoter opening is not sufficient for productive initiation and that Rad25p-mediated promoter escape may be a limiting step in the transcription of some promoters.
Collapse
MESH Headings
- Blotting, Northern
- DNA Helicases/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Fungal Proteins/metabolism
- Galactokinase/genetics
- Galactose/pharmacology
- Gene Expression Regulation, Fungal/drug effects
- Mutation
- Nucleic Acid Conformation
- Potassium Permanganate
- Promoter Regions, Genetic/genetics
- RNA Polymerase II/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Saccharomyces cerevisiae Proteins
- TATA-Binding Protein Associated Factors
- Temperature
- Transcription Factor TFIID
- Transcription Factor TFIIH
- Transcription Factors/metabolism
- Transcription Factors, TFII
- Transcription, Genetic
Collapse
Affiliation(s)
- D Ostapenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
19
|
Hemming SA, Edwards AM. Yeast RNA polymerase II subunit RPB9. Mapping of domains required for transcription elongation. J Biol Chem 2000; 275:2288-94. [PMID: 10644677 DOI: 10.1074/jbc.275.4.2288] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RPB9 subunit of RNA polymerase II regulates transcription elongation activity and is required for the action of the transcription elongation factor, TFIIS. RPB9 comprises two zinc ribbon domains joined by a conserved linker region. The C-terminal zinc ribbon is similar in sequence to that found in TFIIS. To elucidate the relationship between the structure and transcription elongation function of RPB9, we initiated a mutagenesis study on the Saccharomyces cerevisiae homologue. The individual zinc ribbon domains, in isolation or in combination, could not stimulate transcription by a polymerase lacking RPB9, pol IIDelta9. Mutations in the N-terminal zinc ribbon had little effect on transcription activity. By contrast, mutations in the acidic loop that connects the second and third beta-strands of the C-terminal zinc ribbon were completely inactive for transcription. Interestingly, the analogous residues in TFIIS are also critical for elongation activity. A conserved charged stretch in the linker region (residues 89-95, DPTLPR) mediated the interaction with RNA polymerase II.
Collapse
Affiliation(s)
- S A Hemming
- Banting and Best Department of Medical Research, C.H. Best Institute, Toronto, Ontario M5G 1L6, Canada
| | | |
Collapse
|
20
|
Cho EJ, Buratowski S. Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 1999; 274:25807-13. [PMID: 10464320 DOI: 10.1074/jbc.274.36.25807] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of glutamate 62 to lysine in yeast transcription factor (TF) IIB (Sua7) causes a cold-sensitive phenotype. This mutant also leads to preferential transcription of downstream start sites on some promoters in vivo. To explore the molecular nature of these phenotypes, the TFIIB E62K mutant was characterized in vitro. The mutant interacts with TATA-binding protein normally. In three different assays, the mutant can also interact with RNA polymerase II and recruit it and the other basal transcription factors to a promoter. Despite the ability to assemble a transcription complex, the TFIIB E62K protein is severely defective in transcription in vitro. Therefore, the role of TFIIB must be more than simply bridging TATA-binding protein and polymerase at the promoter. We propose that the region around Glu-62 in yeast TFIIB plays a role in start site selection, perhaps mediating a conformational change in the polymerase or the DNA during the search for initiation sites. This step may be related to the yeast-specific spacing between TATA elements and start sites since mutations of the corresponding glutamate in mammalian TFIIB do not produce a similar effect.
Collapse
Affiliation(s)
- E J Cho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Woychik NA. Fractions to functions: RNA polymerase II thirty years later. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:311-7. [PMID: 10384295 DOI: 10.1101/sqb.1998.63.311] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N A Woychik
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
22
|
Hawkes NA, Roberts SG. The role of human TFIIB in transcription start site selection in vitro and in vivo. J Biol Chem 1999; 274:14337-43. [PMID: 10318856 DOI: 10.1074/jbc.274.20.14337] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIIB plays a crucial role in selecting the transcription initiation site in yeast. We have analyzed the human homologs of TFIIB mutants that have previously been shown to affect transcription start site selection in the yeast Saccharomyces cerevisiae. Despite the distinct mechanisms of transcription start site selection observed in S. cerevisiae and humans, the role of TFIIB in this process is similar. However, unlike their yeast counterparts, the human mutants do not show a severe defect in supporting either basal transcription or transcription stimulated by an acidic activator in vitro. Transient transfection analysis revealed that, in addition to a role in transcription start site selection, human TFIIB residue Arg-66 performs a critical function in vivo that is bypassed in vitro. Furthermore, although correct transcription start site selection is dependent upon an arginine residue at position 66 in human TFIIB, innate function in vivo is determined by the charge of the residue alone. Our observations raise questions as to the evolutionary conservation of TFIIB and uncover an additional function for TFIIB that is required in vivo but can be bypassed in vitro.
Collapse
Affiliation(s)
- N A Hawkes
- Division of Gene Expression, Department of Biochemistry, Wellcome Trust Building, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | |
Collapse
|
23
|
Chédin S, Riva M, Schultz P, Sentenac A, Carles C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev 1998; 12:3857-71. [PMID: 9869639 PMCID: PMC317263 DOI: 10.1101/gad.12.24.3857] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Budding yeast RNA polymerase III (Pol III) contains a small, essential subunit, named C11, that is conserved in humans and shows a strong homology to TFIIS. A mutant Pol III, heterocomplemented with Schizosaccharomyces pombe C11, was affected in transcription termination in vivo. A purified form of the enzyme (Pol III Delta), deprived of C11 subunit, initiated properly but ignored pause sites and was defective in termination. Remarkably, Pol III Delta lacked the intrinsic RNA cleavage activity of complete Pol III. In vitro reconstitution experiments demonstrated that Pol III RNA cleavage activity is mediated by C11. Mutagenesis in C11 of two conserved residues, which are critical for the TFIIS-dependent cleavage activity of Pol II, is lethal. Immunoelectron microscopy data suggested that C11 is localized on the mobile thumb-like stalk of the polymerase. We propose that C11 allows the enzyme to switch between an RNA elongation and RNA cleavage mode and that the essential role of the Pol III RNA cleavage activity is to remove the kinetic barriers to the termination process. The integration of TFIIS function into a specific Pol III subunit may stem from the opposite requirements of Pol III and Pol II in terms of transcript length and termination efficiency.
Collapse
Affiliation(s)
- S Chédin
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Kober I, Teichmann M, Seifart KH. hTFIIIB-beta stably binds to pol II promoters and recruits RNA polymerase III in a hTFIIIC1 dependent way. J Mol Biol 1998; 284:7-20. [PMID: 9811538 DOI: 10.1006/jmbi.1998.2165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been shown that under specific conditions, transcription of protein coding genes can be efficiently initiated by RNA polymerase (pol) III in vitro. We examined the formation and composition of such pol III transcription complexes on the duck histone H5 and alphaA-globin promoters and found that the essential step for the formation of pol III transcription complexes on these pol II promoters was the stable binding of transcription factor (TF) IIIB-beta. For this process, the intact TFIIIB-beta complex, consisting of TBP and associated factors (TAFs) was needed and the prior association of pol III assembly factors was not necessary. We demonstrate for the first time that hTFIIIB-beta alone is able to bind to pol II promoter DNA. This resulted in a very stable complex which was resistant to high concentrations of heparin. Although immunodepletion revealed that TBP is essentially required for complex formation, other components of hTFIIIB-beta must also be involved, since TBP itself is unable to form heparin-resistant complexes and does not mediate pol III commitment per se. pol III is recruited to these pol II promoters in a strictly TFIIIC1 dependent way. After binding of TFIIIB-beta, the addition of TFIIIC1 and pol III were sufficient to yield productive pol III transcription complexes, which utilized the correct pol II initiation site. From these findings, we postulate that TFIIIC1 is involved in the recruitment of pol III and may thus form a bridge between TFIIIB-beta and the enzyme. This finding provides the first evidence for functional contacts between TFIIIC1 and pol III, which could be of general importance for the assembly of pol III transcription complexes.
Collapse
Affiliation(s)
- I Kober
- Institut für Molekularbiologie und Tumorforschung, Lahnstrasse 3, Marburg, D-35033, Germany
| | | | | |
Collapse
|
25
|
Sakurai H, Kimura M, Ishihama A. Identification of the gene and the protein of RNA polymerase II subunit 9 (Rpb9) from the fission yeast Schizosacharomyces pombe. Gene 1998; 221:11-6. [PMID: 9852944 DOI: 10.1016/s0378-1119(98)00449-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13,175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.
Collapse
Affiliation(s)
- H Sakurai
- National Institute of Genetics, Department of Molecular Genetics, Shizuoka, Japan
| | | | | |
Collapse
|
26
|
Pardee TS, Bangur CS, Ponticelli AS. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J Biol Chem 1998; 273:17859-64. [PMID: 9651390 DOI: 10.1074/jbc.273.28.17859] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor IIB (TFIIB) is required for accurate and efficient transcription of protein-coding genes by RNA polymerase II (RNAPII). To define functional domains in the highly conserved N-terminal region of TFIIB, we have analyzed 14 site-directed substitution mutants of yeast TFIIB for their ability to support cell viability, transcription in vitro, accurate start site selection in vitro and in vivo, and to form stable complexes with purified RNAPII in vitro. Mutations impairing the formation of stable TFIIB.RNAPII complexes mapped to the zinc ribbon fold, whereas mutations conferring downstream shifts in transcription start site selection were identified at multiple positions within a highly conserved homology block adjacent and C-terminal to the zinc ribbon. These results demonstrate that the N-terminal region of yeast TFIIB contains two separable and adjacent functional domains involved in stable RNAPII binding and transcription start site selection, suggesting that downstream shifts in transcription start site selection do not result from impairment of stable TFIIB.RNAPII binding. We discuss models for yeast start site selection in which TFIIB may affect the ability of preinitiation complexes to interact with downstream DNA or to affect start site recognition by a scanning polymerase.
Collapse
Affiliation(s)
- T S Pardee
- Department of Biochemistry and the Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo New York 14214-3000, USA
| | | | | |
Collapse
|
27
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
28
|
Acker J, de Graaff M, Cheynel I, Khazak V, Kedinger C, Vigneron M. Interactions between the human RNA polymerase II subunits. J Biol Chem 1997; 272:16815-21. [PMID: 9201987 DOI: 10.1074/jbc.272.27.16815] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.
Collapse
Affiliation(s)
- J Acker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), F-67404 Illkirch Cedex C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
29
|
Awrey DE, Weilbaecher RG, Hemming SA, Orlicky SM, Kane CM, Edwards AM. Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J Biol Chem 1997; 272:14747-54. [PMID: 9169440 DOI: 10.1074/jbc.272.23.14747] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The role of yeast RNA polymerase II (pol II) subunit RPB9 in transcript elongation was investigated by examining the biochemical properties of pol II lacking RPB9 (pol IIDelta9). The maximal rate of chain elongation was nearly identical for pol II and pol IIDelta9. By contrast, pol IIDelta9 elongated more efficiently through DNA sequences that signal the elongation complex to pause or arrest. The addition of purified recombinant RPB9 to pol IIDelta9 restored the elongation properties of the mutant polymerase to those of the wild-type enzyme. Arrested pol IIDelta9 complexes were refractory to levels of TFIIS that promoted maximal read-through with pol II. However, both pol II and pol IIDelta9 complexes stimulated with TFIIS undergo transcript cleavage, confirming that transcript cleavage and read-through activities can be uncoupled. Our observations suggest that both TFIIS and RPB9 are required to stimulate the release of RNA polymerase II from the arrested state.
Collapse
Affiliation(s)
- D E Awrey
- Cancer Research Group, Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Weis L, Reinberg D. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol Cell Biol 1997; 17:2973-84. [PMID: 9154795 PMCID: PMC232149 DOI: 10.1128/mcb.17.6.2973] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two promoter elements, the TATA element and initiator (Inr), are capable of directing specific transcription initiation of protein-encoding genes by RNA polymerase II (RNAPII). Although binding to the TATA element by the TATA-binding protein (TBP) has been shown to be the initial recognition step in transcription complex formation in vitro, the mechanism through which the basal machinery assembles into a functional complex on TATA-less promoters is controversial. Evidence supporting numerous models of Inr-mediated transcription complex formation exists, including the nucleation of a complex by Inr-binding proteins, a component of the TFIID complex, or a specific upstream activator common to many TATA-less promoters, Sp1. Using various techniques, we have undertaken a systematic analysis of the natural TATA-less human DNA polymerase beta (beta-pol) gene promoter. Although the beta-pol promoter contains upstream Sp1 elements and a functional Inr that binds YY1, neither of these factors is essential for Inr-mediated transcription complex formation. A complex containing TBP, TFIIB, TFIIF, and RNAPII (DBPolF complex) is capable of forming on the promoter in an Inr-dependent manner. A single point mutation within the Inr that affects DBPolF complex formation diminishes beta-pol transcriptional activity.
Collapse
Affiliation(s)
- L Weis
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | |
Collapse
|
31
|
Wang Z, Roeder RG. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 1997; 11:1315-26. [PMID: 9171375 DOI: 10.1101/gad.11.10.1315] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcription by RNA polymerase III involves recruitment of the polymerase by template-bound accessory factors, followed by initiation, elongation, and termination steps. An immunopurification approach has been used to demonstrate that human RNA Pol III is composed of 16 subunits, some of which are apparently modified in HeLa cells. Partial denaturing conditions and sucrose gradient sedimentation at high salt result in the dissociation of a subcomplex that includes hRPC32, hRPC39, and hRPC62. Cognate cDNAs were isolated and shown to encode three subunits that are specific to RNA Pol III and homologous to three yeast subunits. The human RNA Pol III core lacking the subcomplex functions in transcription elongation and termination following nonspecific initiation on a tailed template, but fails to show promoter-dependent transcription initiation in conjunction with accessory factors. The capability for specific transcription initiation can be restored either by the natural subcomplex or by a stable subcomplex composed of recombinant hRPC32, hRPC39, and hRPC62 polypeptides. One component (hRPC39) of this subcomplex interacts physically with both hTBP and hTFIIIB90, two subunits of human RNA Pol III transcription initiation factor IIIB. These data strongly suggest that the hRPC32-hRPC39-hRPC62 subcomplex directs RNA Pol III binding to the TFIIIB-DNA complex via the interactions between TFIIIB and hRPC39.
Collapse
Affiliation(s)
- Z Wang
- The Rockefeller University, Laboratory of Biochemistry and Molecular Biology, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Künzler M, Springer C, Braus GH. The transcriptional apparatus required for mRNA encoding genes in the yeast Saccharomyces cerevisiae emerges from a jigsaw puzzle of transcription factors. FEMS Microbiol Rev 1996; 19:117-36. [PMID: 8988567 DOI: 10.1111/j.1574-6976.1996.tb00256.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The number of identified yeast factors involved in transcription has dramatically increased in recent years and the understanding of the interplay between the different factors has become more and more puzzling. Transcription initiation at the core promoter of mRNA encoding genes consisting of upstream, TATA and initiator elements requires an approximately ribosome-sized complex of more than 50 polypeptides. The recent identification and isolation of an RNA polymerase holoenzyme which seems to be preassembled before interacting with a promoter allowed a better understanding of the roles, assignments and interplays of the various constituents of the basal transcription machinery. Recruitment of this complex to the promoter is achieved by numerous interactions with a variety of DNA-bound proteins. These interactions can be direct or mediated by additional adaptor proteins. Other proteins negatively affect transcription by interrupting the recruitment process through protein-protein or protein-DNA interactions. Some basic features of cis-acting elements, the transcriptional apparatus and various trans-acting factors involved in the initiation of mRNA synthesis in yeast are summarized.
Collapse
Affiliation(s)
- M Künzler
- Institute of Microbiology, Biochemistry and Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | | | | |
Collapse
|
33
|
Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev 1996; 10:2657-83. [PMID: 8946909 DOI: 10.1101/gad.10.21.2657] [Citation(s) in RCA: 776] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Orphanides
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | |
Collapse
|
34
|
Sun ZW, Tessmer A, Hampsey M. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:2560-6. [PMID: 8692696 PMCID: PMC145985 DOI: 10.1093/nar/24.13.2560] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recessive mutations in the SSU71, SSU72 and SSU73 genes of Saccharomyces cerevisiae were identified as either suppressors or enhancers of a TFIIB defect (sua7-1) that confers both a cold-sensitive growth phenotype and a downstream shift in transcription start site selection. The SSU71 (TFG1) gene encodes the largest subunit of TFIIF and SSU72 encodes a novel protein that is essential for cell viability. Here we report that SSU73 is identical to RPB9, the gene encoding the 14.2 kDa subunit of RNA polymerase II. The ssu73-1 suppressor compensates for both the growth defect and the downstream shift in start site selection associated with sua7-1. These effects are similar to those of the ssu71-1 suppressor and distinct from the ssu72-1 enhancer. The ssu73-1 allele was retrieved and sequenced, revealing a nonsense mutation at codon 107. Consequently, ssu73-1 encodes a truncated form of Rpb9 lacking the C-terminal 16 amino acids. This Rpb9 derivative retains at least partial function since the ssu73-1 mutant exhibits none of the growth defects associated with rpb9 null mutants. However, in a SUA7+ background, ssu73-1 confers the same upstream shift at ADH1 as an rpb9 null allele. This suggests that the C-terminus of Rpb9 functions in start site selection and demonstrates that the previously observed effects of rpb9 mutations on start site selection are not necessarily due to complete loss of function. These results establish a functional interaction between TFIIB and the Rpb9 subunit of RNA polymerase II and suggest that these two components of the preinitiation complex interact during transcription start site selection.
Collapse
Affiliation(s)
- Z W Sun
- Department of Biochemistry and Molecular Biology, Louisianna State University Medical Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
35
|
Leuther KK, Bushnell DA, Kornberg RD. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 1996; 85:773-9. [PMID: 8646784 DOI: 10.1016/s0092-8674(00)81242-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Transcription factors IIB (TFIIB) and IIE (TFIIE) bound to RNA polymerase II have been revealed by electron crystallography in projection at 15.7 A resolution. The results lead to simple hypotheses for the roles of these factors in the initiation of transcription. TFIIB is suggested to define the distance from TATA box to transcription start site by bringing TATA DNA in contact with polymerase at that distance from the active center of the enzyme. TFIIE is suggested to participate in a key conformational switch occurring at the active center upon polymerase-DNA interaction.
Collapse
Affiliation(s)
- K K Leuther
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | |
Collapse
|
36
|
Sun ZW, Hampsey M. Synthetic enhancement of a TFIIB defect by a mutation in SSU72, an essential yeast gene encoding a novel protein that affects transcription start site selection in vivo. Mol Cell Biol 1996; 16:1557-66. [PMID: 8657130 PMCID: PMC231141 DOI: 10.1128/mcb.16.4.1557] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An ssu72 mutant of Saccharomyces cerevisiae was identified as an enhancer of a TFIIB defect (sua7-1) that confers both a cold-sensitive growth defect and a downstream shift in transcription start site selection. The ssu72-1 allele did not affect cold sensitivity but, in combination with sua7-1, created a heat-sensitive phenotype. Moreover, start site selection at the ADH1 gene was dramatically shifted further downstream of the normal sites. Both of these effects could be rescued by either SUA7 or SSU72, thereby defining a functional relationship between the two genes. SSU72 is a single-copy, essential gene encoding a novel protein of 206 amino acids. The ssu72-1 allele is the result of a 30-bp duplication creating a sequence encoding a Cys-X2-Cys-X6-Cys-X2-Cys zinc binding motif near the N terminus of Ssu72p. Mutational analysis demonstrated that the N terminus of Ssu72p is essential for function and that cysteine residues in both the normal and mutant proteins are critical. We discuss the possibility that the potential zinc binding motif of Ssu72 facilitates assembly of the transcription preinitiation complex and that this effect is important for accurate start site selection in vivo.
Collapse
Affiliation(s)
- Z W Sun
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, 71130, USA
| | | |
Collapse
|
37
|
Archambault J, Jansma DB, Friesen JD. Underproduction of the largest subunit of RNA polymerase II causes temperature sensitivity, slow growth, and inositol auxotrophy in Saccharomyces cerevisiae. Genetics 1996; 142:737-47. [PMID: 8849884 PMCID: PMC1207015 DOI: 10.1093/genetics/142.3.737] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
38
|
McKune K, Moore PA, Hull MW, Woychik NA. Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol Cell Biol 1995; 15:6895-900. [PMID: 8524256 PMCID: PMC230944 DOI: 10.1128/mcb.15.12.6895] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To assess functional relatedness of individual components of the eukaryotic transcription apparatus, three human subunits (hsRPB5, hsRPB8, and hsRPB10) were tested for their ability to support yeast cell growth in the absence of their essential yeast homologs. Two of the three subunits, hsRPB8 and hsRPB10, supported normal yeast cell growth at moderate temperatures. A fourth human subunit, hsRPB9, is a homolog of the nonessential yeast subunit RPB9. Yeast cells lacking RPB9 are unable to grow at high and low temperatures and are defective in mRNA start site selection. We tested the ability of hsRPB9 to correct the growth and start site selection defect seen in the absence of RPB9. Expression of hsRPB9 on a high-copy-number plasmid, but not a low-copy-number plasmid, restored growth at high temperatures. Recombinant human hsRPB9 was also able to completely correct the start site selection defect seen at the CYC1 promoter in vitro as effectively as the yeast RPB9 subunit. Immunoprecipitation of the cell extracts from yeast cells containing either of the human subunits that function in place of their yeast counterparts in vivo suggested that they assemble with the complete set of yeast RNA polymerase II subunits. Overall, a total of six of the seven human subunits tested previously or in this study are able to substitute for their yeast counterparts in vivo, underscoring the remarkable similarities between the transcriptional machineries of lower and higher eukaryotes.
Collapse
Affiliation(s)
- K McKune
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110, USA
| | | | | | | |
Collapse
|