1
|
Liang CY, Hsu PH, Chou DF, Pan CY, Wang LC, Huang WC, Tsai MD, Lo WS. The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1. Nucleic Acids Res 2011; 39:4151-65. [PMID: 21296759 PMCID: PMC3105397 DOI: 10.1093/nar/gkr040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The dynamics of histone methylation have emerged as an important issue since the identification of histone demethylases. We studied the regulatory function of Rph1/KDM4 (lysine demethylase), a histone H3K36 demethylase, on transcription in Saccharomyces cerevisiae. Overexpression of Rph1 reduced the expression of PHR1 and increased UV sensitivity. The catalytically deficient mutant (H235A) of Rph1 diminished the repressive transcriptional effect on PHR1 expression, which indicates that histone demethylase activity contributes to transcriptional repression. Chromatin immunoprecipitation analysis demonstrated that Rph1 was associated at the upstream repression sequence of PHR1 through zinc-finger domains and was dissociated after UV irradiation. Notably, overexpression of Rph1 and H3K36A mutant reduced histone acetylation at the URS, which implies a crosstalk between histone demethylation and acetylation at the PHR1 promoter. In addition, the crucial checkpoint protein Rad53 acted as an upstream regulator of Rph1 and dominated the phosphorylation of Rph1 that was required for efficient PHR1 expression and the dissociation of Rph1. The release of Rph1 from chromatin also required the phosphorylation at S652. Our study demonstrates that the histone demethylase Rph1 is associated with a specific chromatin locus and modulates histone modifications to repress a DNA damage responsive gene under control of damage checkpoint signaling.
Collapse
Affiliation(s)
- Chung-Yi Liang
- Institute of Plant and Microbial Biology, Academia Sinica, Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Fu Y, Pastushok L, Xiao W. DNA damage-induced gene expression inSaccharomyces cerevisiae. FEMS Microbiol Rev 2008; 32:908-26. [DOI: 10.1111/j.1574-6976.2008.00126.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Bucheli M, Sweder K. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol Microbiol 2004; 52:1653-63. [PMID: 15186415 DOI: 10.1111/j.1365-2958.2004.04081.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide excision repair (NER) in eukaryotes is a pathway conserved from yeast to humans that removes many bulky chemical adducts and UV-induced photoproducts from DNA in a relatively error-free manner. In addition to the recognition and excision of DNA damage throughout the genome (GGR), there exists a mechanism, transcription-coupled nucleotide excision repair (TCR), for recognizing some types of DNA damage in the transcribed strand of genes in Escherichia coli, yeast and mammalian cells. An obstacle in the repair of the transcribed strand of active genes is the RNA polymerase complex stalled at sites of DNA damage. The stalled RNA polymerase complex may then mediate recruitment of repair proteins to damage in the transcribed strand. Proteins enabling TCR are the Cockayne syndrome B (CSB) protein in humans and its yeast homologue Rad26. Both CSB and Rad26 belong to the Swi2/Snf2 family of DNA-dependent ATPases, which change DNA accessibility to proteins by altering chromatin structure. To address how Rad26 functions in yeast repair, we used the genetic approach of overexpressing Rad26 and examined phenotypic changes, i.e. changes in NER. We found that repair of both the transcribed and the non-transcribed strands is increased. In addition, overexpression of Rad26 partially bypasses the requirement for Rad7 in GGR, specifically in the repair of non-transcribed sequences. As TCR takes place in very localized regions of DNA (i.e. within genes) in wild-type cells, we propose that overexpression of recombinant Rad26 increases accessibility of the damaged DNA in chromatin for interaction with repair proteins.
Collapse
Affiliation(s)
- Miriam Bucheli
- Program in Microbiology and Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, NJ, USA
| | | |
Collapse
|
4
|
Alejandre-Durán E, Roldán-Arjona T, Ariza RR, Ruiz-Rubio M. The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and alpha-tomatine from tomato plant. Fungal Genet Biol 2004; 40:159-65. [PMID: 14516768 DOI: 10.1016/s1087-1845(03)00089-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The F. oxysporum phr1 cDNA was isolated and expressed in a photolyase deficient Escherichia coli strain. The complementation of the photoreactivation deficiency of this E. coli mutant by phr1 cDNA demonstrated that the photolyase gene from F. oxysporum encodes a functional protein. The F. oxysporum PHR1 protein has a domain characteristic of photolyases from fungi (Trichoderma harziaium, N. crassa, Magnaporthe grisea, Saccharomyces cerevisiae) to bacteria (E. coli), and clusters in the photolyases phylogenetic tree with fungal photolyases. The F. oxysporum phr1 gene was inducible by visible light. The phr1 expression was also detected in presence of alpha-tomatine, a glycoalkaloid from tomato damaging cell membranes, suggesting that phr1 is induced by this cellular stress.
Collapse
Affiliation(s)
- Encarna Alejandre-Durán
- Departamento de Genética, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
5
|
Shim YS, Jang YK, Lim MS, Lee JS, Seong RH, Hong SH, Park SD. Rdp1, a novel zinc finger protein, regulates the DNA damage response of rhp51(+) from Schizosaccharomyces pombe. Mol Cell Biol 2000; 20:8958-68. [PMID: 11073995 PMCID: PMC86550 DOI: 10.1128/mcb.20.23.8958-8968.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe DNA repair gene rhp51(+) encodes a RecA-like protein with the DNA-dependent ATPase activity required for homologous recombination. The level of the rhp51(+) transcript is increased by a variety of DNA-damaging agents. Its promoter has two cis-acting DNA damage-responsive elements (DREs) responsible for DNA damage inducibility. Here we report identification of Rdp1, which regulates rhp51(+) expression through the DRE of rhp51(+). The protein contains a zinc finger and a polyalanine tract similar to ones previously implicated in DNA binding and transactivation or repression, respectively. In vitro footprinting and competitive binding assays indicate that the core consensus sequences (NGG/TTG/A) of DRE are crucial for the binding of Rdp1. Mutations of both DRE1 and DRE2 affected the damage-induced expression of rhp51(+), indicating that both DREs are required for transcriptional activation. In addition, mutations in the DREs significantly reduced survival rates after exposure to DNA-damaging agents, demonstrating that the damage response of rhp51(+) enhances the cellular repair capacity. Surprisingly, haploid cells containing a complete rdp1 deletion could not be recovered, indicating that rdp1(+) is essential for cell viability and implying the existence of other target genes. Furthermore, the DNA damage-dependent expression of rhp51(+) was significantly reduced in checkpoint mutants, raising the possibility that Rdp1 may mediate damage checkpoint-dependent transcription of rhp51(+).
Collapse
Affiliation(s)
- Y S Shim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Jelinsky SA, Estep P, Church GM, Samson LD. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 2000; 20:8157-67. [PMID: 11027285 PMCID: PMC86425 DOI: 10.1128/mcb.20.21.8157-8167.2000] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure to carcinogenic alkylating agents, oxidizing agents, and ionizing radiation modulates transcript levels for over one third of Saccharomyces cerevisiae's 6,200 genes. Computational analysis delineates groups of coregulated genes whose upstream regions bear known and novel regulatory sequence motifs. One group of coregulated genes contain a number of DNA excision repair genes (including the MAG1 3-methyladenine DNA glycosylase gene) and a large selection of protein degradation genes. Moreover, transcription of these genes is modulated by the proteasome-associated protein Rpn4, most likely via its binding to MAG1 upstream repressor sequence 2-like elements, that turn out to be almost identical to the recently identified proteasome-associated control element (G. Mannhaupt, R. Schnall, V. Karpov, I. Vetter, and H. Feldmann, FEBS Lett. 450:27-34, 1999). We have identified a large number of genes whose transcription is influenced by Rpn4p.
Collapse
Affiliation(s)
- S A Jelinsky
- Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
7
|
Abstract
The discovery of enzymatic photoreactivation and of photolyase produced a paradigm shift in the way investigators thought about the cellular consequences of DNA damage and about how these consequences could be avoided. The in vitro photoreactivation system, which utilized crude extracts from Saccharomyces cerevisiae as the source of photolyase, not only provided information about the mechanism of photoreactivation, but also played an important role in the discovery of nucleotide excision repair (NER) and the identification of the pyrimidine dimer as the primary lethal lesion induced by 254 nm radiation. More recently, mechanistic studies using homogenous purified yeast photolyase have yielded insight into how DNA repair enzymes recognize specific structures in DNA, while investigations looking at the repair of lesions in chromatin have begun to elucidate how DNA repair enzymes deal with damage in the context of eukaryotic chromosomes. Additionally, genetic and molecular studies of PHR1, the S. cerevisiae gene encoding the apoenzyme of photolyase, have led to the identification of previously unknown damage-responsive transcriptional regulators.
Collapse
Affiliation(s)
- G B Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, CB# 7260, Chapel Hill, NC 27599-7260, USA.
| |
Collapse
|
8
|
Nelson LD, Musso M, Van Dyke MW. The yeast STM1 gene encodes a purine motif triple helical DNA-binding protein. J Biol Chem 2000; 275:5573-81. [PMID: 10681538 DOI: 10.1074/jbc.275.8.5573] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of triple helical DNA has been evoked in several cellular processes including transcription, replication, and recombination. Using conventional and affinity chromatography, we purified from Saccharomyces cerevisiae whole-cell extract a 35-kDa protein that avidly and specifically bound a purine motif triplex (with a K(d) of 61 pM) but not a pyrimidine motif triplex or duplex DNA. Peptide microsequencing identified this protein as the product of the STM1 gene. Confirmation that Stm1p is a purine motif triplex-binding protein was obtained by electrophoretic mobility shift assays using either bacterially expressed, recombinant Stm1p or whole-cell extracts from stm1Delta yeast. Stm1p has previously been identified as G4p2, a G-quartet nucleic acid-binding protein. This suggests that some proteins actually recognize features shared by G4 DNA and purine motif triplexes, e.g. Hoogsteen hydrogen-bonded guanines. Genetically, the STM1 gene has been identified as a multicopy suppressor of mutations in several genes involved in mitosis (e.g. TOM1, MPT5, and POP2). A possible role for multiplex DNA and its binding proteins in mitosis is discussed.
Collapse
Affiliation(s)
- L D Nelson
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer, Houston, Texas 77030, USA
| | | | | |
Collapse
|
9
|
Abstract
The Saccharomyces cerevisiae DNA repair gene PHR1 encodes a photolyase that catalyzes the light-dependent repair of pyrimidine dimers. PHR1 expression is induced at the level of transcription by a variety of DNA-damaging agents. The primary regulator of the PHR1 damage response is a 39-bp sequence called URS(PHR1) which is the binding site for a protein(s) that constitutes the damage-responsive repressor PRP. In this communication, we report the identification of two proteins, Rph1p and Gis1p, that regulate PHR1 expression through URS(PHR1). Both proteins contain two putative zinc fingers that are identical throughout the DNA binding region, and deletion of both RPH1 and GIS1 is required to fully derepress PHR1 in the absence of damage. Derepression of PHR1 increases the rate and extent of photoreactivation in vivo, demonstrating that the damage response of PHR1 enhances cellular repair capacity. In vitro footprinting and binding competition studies indicate that the sequence AG(4) (C(4)T) within URS(PHR1) is the binding site for Rph1p and Gis1p and suggests that at least one additional DNA binding component is present in the PRP complex.
Collapse
Affiliation(s)
- Y K Jang
- Department of Biochemistry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | | |
Collapse
|
10
|
Peng L, Rice MC, Kmiec EB. Analysis of the human RAD51L1 promoter region and its activation by UV light. Genomics 1998; 54:529-41. [PMID: 9878257 DOI: 10.1006/geno.1998.5536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human REC2/RAD51B gene (HGMW-approved symbol RAD51L1) encodes a 350-amino-acid protein with regional homologies to members of the RAD52 epistasis group. It is induced by DNA-damaging agents, and the overexpression of this gene product causes G1/S cell cycle arrest. In this report, the promoter region, containing the UV-responsive element, is revealed. Deletion analyses of a 1699-base fragment at the 5' end of the human REC2/RAD51B cDNA identified a 116-base sequence that appears to be responsible for radiation induction. This fragment contains many DNA sequences that have been identified in the promoter regions of other radiation-inducible genes in yeast and humans. Within this region are "consensus" binding sites for both the AP2 and the p53 proteins that may act to regulate the expression of the human REC2/RAD51B gene. Five putative transcripts have been identified from regions 5' of the promoter element that splice near the ATG translation start site. None of the transcripts contain the UV-inducible element nor the consensus transcription factor binding sites.
Collapse
Affiliation(s)
- L Peng
- Kimmel Cancer Center/Jefferson Center for Biomedical Research, Thomas Jefferson University, 700 East Butler Avenue, Doylestown, Pennsylvania, 18901-2697, USA
| | | | | |
Collapse
|
11
|
Sweet DH, Jang YK, Sancar GB. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:6223-35. [PMID: 9343383 PMCID: PMC232473 DOI: 10.1128/mcb.17.11.6223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Saccharomyces cerevisiae UV radiation and a variety of chemical DNA-damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of these genes is PHR1, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHR1 require an upstream activation sequence, UAS(PHR1), which has homology with DRC elements found upstream of at least 19 other DNA repair and DNA metabolism genes in yeast. Here we report the identification of the UME6 gene of S. cerevisiae as a regulator of UAS(PHR1) activity. Multiple copies of UME6 stimulate expression from UAS(PHR1) and the intact PHR1 gene. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHR1 is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UME6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHR1 mRNA, and increases the UV sensitivity of a rad2 mutant. Despite the fact that UAS(PHR1) does not contain the URS1 sequence, which has been previously implicated in UME6-mediated transcriptional regulation, we find that Ume6p binds to UAS(PHR1) with an affinity and a specificity similar to those seen for a URS1 site. Similar binding is also seen for DRC elements from RAD2, RAD7, and RAD53, suggesting that UME6 contributes to the regulated expression of a subset of damage-responsive genes in yeast.
Collapse
Affiliation(s)
- D H Sweet
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, 27599-7260, USA
| | | | | |
Collapse
|
12
|
Scott AD, Waters R. The Saccharomyces cerevisiae RAD7 and RAD16 genes are required for inducible excision of endonuclease III sensitive-sites, yet are not needed for the repair of these lesions following a single UV dose. Mutat Res 1997; 383:39-48. [PMID: 9042418 DOI: 10.1016/s0921-8777(96)00044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The RAD7 and RAD16 genes of Saccharomyces cerevisiae have roles in the repair of UV induced CPDs in nontranscribed genes [1], and in the repair of CPDs in the nontranscribed strand of transcribed genes [2]. Previously, we identified an inducible component to nucleotide excision repair (NER), which is absent in a rad16 delta strain [3]. We have examined the repair of UV induced endonuclease III sensitive-sites (EIIISS), and have shown repair of these lesions to proceed by NER but their removal from nontranscribed regions is independent of RAD7 and RAD16. Furthermore, EIIISS are repaired with equal efficiency from both transcribed and nontranscribed genes [4]. In order to dissect the roles of RAD7 and RAD16 in the above processes we examined the repair of EIIISS in the MAT alpha and HML alpha loci, which are, respectively, transcriptionally active and inactive in alpha haploid cells. These loci have elevated levels of these lesions after UV (in genomic DNA EIIISS constitute about 10% of total lesions, whereas CPDs are about 70% of total lesions). We have shown that excision of UV induced EIIISS is enhanced following a prior UV irradiation. No enhancement of repair was detected in either the rad7 delta or the rad16 delta mutant. The fact that RAD7 and RAD16 are not required for the repair of EIIISS per se yet are required for the enhanced excision of these lesions from MAT alpha and HML alpha suggests two possibilities. These genes have two roles in NER, namely in the repair of CPDs from nontranscribed sequences, and in enhancing NER itself regardless of whether these genes' products are required for the excision of the specific lesion being repaired. In the latter case, the induction of RAD7 and RAD16 may increase the turnover of complexes stalled in nontranscribed DNA so as to increase the availability of NER proteins for the repair of CPDs and EIIISS in all regions of the genome.
Collapse
Affiliation(s)
- A D Scott
- School of Biological Sciences, University of Wales Swansea, UK
| | | |
Collapse
|
13
|
Jang YK, Jin YH, Shim YS, Kim MJ, Yoo EJ, Choi IS, Lee JS, Seong RH, Hong SH, Park SD. Identification of the DNA damage-responsive elements of the rhp51+ gene, a recA and RAD51 homolog from the fission yeast Schizosaccharomyces pombe. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:167-75. [PMID: 8668127 DOI: 10.1007/bf02172915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Schizosaccharomyces pombe rhp51+ gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and the Saccharomyces cerevisiae RAD51 protein. Levels of rhp51+ mRNA increase following several types of DNA damage or inhibition of DNA synthesis. An rhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulating rhp51+ expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (for damage-responsive element), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes from S. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility of rhp51+ expression.
Collapse
Affiliation(s)
- Y K Jang
- Department of Molecular Biology, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|