1
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
2
|
Danielsen MB, Wengel J. Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein J Org Chem 2021; 17:1828-1848. [PMID: 34386102 PMCID: PMC8329367 DOI: 10.3762/bjoc.17.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have the ability of binding to endogenous nucleic acid targets, thereby inhibiting the gene expression. Although ASOs have great potential in the treatment of many diseases, the search for favorable toxicity profiles and distribution has been challenging and consequently impeded the widespread use of ASOs as conventional medicine. One strategy that has been employed to optimize the delivery profile of ASOs, is the functionalization of ASOs with cationic amine groups, either by direct conjugation onto the sugar, nucleobase or internucleotide linkage. The introduction of these positively charged groups has improved properties like nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has been separated into three sections, nucleobase, sugar and backbone modifications, highlighting what impact the cationic amine groups have on the ONs/ASOs physiochemical and biological properties. Finally, a concluding section has been added, summarizing the important knowledge from the three chapters, and examining the future design for ASOs.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
3
|
Sutton JM, Kim J, El Zahar NM, Bartlett MG. BIOANALYSIS AND BIOTRANSFORMATION OF OLIGONUCLEOTIDE THERAPEUTICS BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:334-358. [PMID: 32588492 DOI: 10.1002/mas.21641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, eight new oligonucleotide therapies have been approved which has led to increased interest in oligonucleotide analysis. There is a particular need for powerful bioanalytical tools to study the metabolism and biotransformation of these molecules. This review provides the background on the biological basis of these molecules as currently used in therapies. The article also reviews the current state of analytical methodology including state of the art sample preparation techniques, liquid chromatography-mass spectrometry methods, and the current limits of detection/quantitation. Finally, the article summarizes the challenges in oligonucleotide bioanalysis and provides future perspectives for this emerging field. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- James Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo, 11566, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| |
Collapse
|
4
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
5
|
Mojžíšek M. Triplex Forming Oligonucleotides – Tool for Gene Targeting. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review deals with the antigene strategy whereby an oligonucleotide binds to the major or minor groove of double helical DNA where it forms a local triple helix. Preoccupation of this article is triplex-forming oligonucleotides (TFO). These are short, synthetic single-stranded DNAs that recognize polypurine:polypyrimidine regions in double stranded DNA in a sequence-specific manner and form triplex. Therefore, the mechanisms for DNA recognition by triple helix formation are discussed, together with main characteristics of TFO and also major obstacles that remain to be overcome are highlighted. TFOs can selectively inhibit gene expression at the transcriptional level or repair genetic defect by direct genome modification in human cells. These qualities makes TFO potentially powerful therapeutic tool for gene repair and/or expression regulation.
Collapse
|
6
|
Vlaho D, Fakhoury JF, Damha MJ. Structural Studies and Gene Silencing Activity of siRNAs Containing Cationic Phosphoramidate Linkages. Nucleic Acid Ther 2017; 28:34-43. [PMID: 29195060 DOI: 10.1089/nat.2017.0702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A series of siRNA duplexes containing cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages was designed and synthesized using a combination of phosphoramidite and H-phosphonate chemistries. Modified oligonucleotides were assayed for their thermal stability, helical structure, and ability to modulate the expression of firefly luciferase. We demonstrate that PN modifications of siRNAs are, in general, minimally destabilizing with respect to duplex thermal stability; destabilization can be mitigated through the incorporation of 2'-modified RNA-like residues or PN conjugates containing ionizable pendant moieties. We also demonstrate that single cationic dimethylethylenediamine PN linkages have little effect on siRNA potency, whether located in the passenger or guide strand of the duplex. Highly modified siRNA passenger strands were further modified with up to four cationic PN linkages, with little effect on duplex potency or helical structure. We envision that PN modifications could be useful in the production of therapeutic siRNAs with optimal biological properties.
Collapse
Affiliation(s)
- Danielle Vlaho
- Department of Chemistry, McGill University , Montreal, Canada
| | | | - Masad J Damha
- Department of Chemistry, McGill University , Montreal, Canada
| |
Collapse
|
7
|
Saleh AF, Fellows MD, Ying L, Gooderham NJ, Priestley CC. The Lack of Mutagenic Potential of a Guanine-Rich Triplex Forming Oligonucleotide in Physiological Conditions. Toxicol Sci 2016; 155:101-111. [PMID: 27660205 DOI: 10.1093/toxsci/kfw179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Amer F Saleh
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Mick D Fellows
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Liming Ying
- Molecular medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Catherine C Priestley
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom;
| |
Collapse
|
8
|
Kosbar TR, Sofan MA, Abou-Zeid L, Pedersen EB. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA. Org Biomol Chem 2016; 13:5115-21. [PMID: 25833006 DOI: 10.1039/c5ob00535c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.
Collapse
Affiliation(s)
- Tamer R Kosbar
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
9
|
Rogers FA, Lloyd JA, Tiwari MK. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases. ARTIFICIAL DNA, PNA & XNA 2015; 5:e27792. [PMID: 25483840 DOI: 10.4161/adna.27792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis.
Collapse
Affiliation(s)
- Faye A Rogers
- a Department of Therapeutic Radiology; Yale University School of Medicine; New Haven, CT USA
| | | | | |
Collapse
|
10
|
Stellwagen NC, Peters JP, Dong Q, Maher LJ, Stellwagen E. The free solution mobility of DNA and other analytes varies as the logarithm of the fractional negative charge. Electrophoresis 2014; 35:1855-63. [PMID: 24648187 DOI: 10.1002/elps.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 11/09/2022]
Abstract
The free solution mobilities of ssDNA and dsDNA molecules with variable charge densities have been measured by CE. DNA charge density was modified either by appending positively or negatively charged groups to the thymine residues in a 98 bp DNA molecule, or by replacing some of the negatively charged phosphate internucleoside linkers in small ssDNA or dsDNA oligomers with positively charged phosphoramidate linkers. Mobility ratios were calculated for each dataset by dividing the mobility of a charge variant by the mobility of its unmodified parent DNA. Mobility ratios essentially eliminate the effect of the BGE on the observed mobility, making it possible to compare analytes measured under different experimental conditions. Neutral moieties attached to the thymine residues in the 98-bp DNA molecule had little or no effect on the mobility ratios, indicating that bulky substituents in the DNA major groove do not affect the mobility significantly. The mobility ratios observed for the thymine-modified and linker-modified DNA charge variants increased approximately linearly with the logarithm of the fractional negative charge of the DNA. Mobility ratios calculated from previous studies of linker-modified DNA charge variants and small multicharged organic molecules also increased approximately linearly with the logarithm of the fractional negative charge of the analyte. The results do not agree with the Debye-Hückel-Onsager theory of electrophoresis, which predicts that the mobility of an analyte should depend linearly on analyte charge, not the logarithm of the charge, when the frictional coefficient is held constant.
Collapse
|
11
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
12
|
Doluca O, Boutorine AS, Filichev VV. Triplex-Forming Twisted Intercalating Nucleic Acids (TINAs): Design Rules, Stabilization of Antiparallel DNA Triplexes and Inhibition of G-Quartet-Dependent Self-Association. Chembiochem 2011; 12:2365-74. [DOI: 10.1002/cbic.201100354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bomholt N, Filichev VV, Pedersen EB. Cationic modified nucleic acids for use in DNA hairpins and parallel triplexes. Org Biomol Chem 2011; 9:4527-34. [PMID: 21523298 DOI: 10.1039/c1ob05085k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-nucleosidic DNA monomers comprising partially protonated amines at low pH have been designed and synthesized. The modifications were incorporated into DNA oligonucleotides via standard DNA phosphoramidite synthesis. The ability of cationic modifications to stabilize palindromic DNA hairpins and parallel triplexes were evaluated using gel electrophoresis, circular dichroism and thermal denaturation measurements. The non-nucleosidic modifications were found to increase the thermal stability of palindromic hairpins at pH 8.0 as compared with a nucleosidic tetraloop (TCTC). Incorporation of modifications at the 5'-end of a triplex forming oligonucleotide resulted in a significant increase in thermal stability at low pH when the modifications were placed as the 5'-dangling end.
Collapse
Affiliation(s)
- Niels Bomholt
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | | | | |
Collapse
|
14
|
Sau SP, Kumar TS, Hrdlicka PJ. Invader LNA: efficient targeting of short double stranded DNA. Org Biomol Chem 2010; 8:2028-36. [PMID: 20401378 DOI: 10.1039/b923465a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite progress with triplex-forming oligonucleotides or helix-invading peptide nucleic acids (PNAs), there remains a need for probes facilitating sequence-unrestricted targeting of double stranded DNA (dsDNA) at physiologically relevant conditions. Invader LNA probes, i.e., DNA duplexes with "+1 interstrand zipper arrangements" of intercalator-functionalized 2'-amino-alpha-l-LNA monomers, are demonstrated herein to recognize short mixed sequence dsDNA targets. This approach, like pseudo-complementary PNA (pcPNA), relies on relative differences in stability between probe duplexes and the corresponding probe:target duplexes for generation of a favourable thermodynamic gradient. Unlike pcPNA, Invader LNA probes take advantage of the "nearest neighbour exclusion principle", i.e., intercalating units of Invader LNA monomers are poorly accommodated in probe duplexes but extraordinarily well tolerated in probe-target duplexes (DeltaT(m)/modification up to +11.5 degrees C). Recognition of isosequential dsDNA-targets occurs: a) at experimental temperatures much lower than the thermal denaturation temperatures (T(m)'s) of Invader LNAs or dsDNA-targets, b) at a wide range of ionic strengths, and c) with good mismatch discrimination. Recognition of dsDNA is monitored in real-time using inherent pyrene-pyrene excimer signals of Invader LNA probes, which provides insights into reaction kinetics and enables rational design of probes. These properties render Invader LNAs as promising probes for biomedical applications entailing sequence-unrestricted recognition of dsDNA.
Collapse
Affiliation(s)
- Sujay P Sau
- Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
| | | | | |
Collapse
|
15
|
Paramasivam M, Cogoi S, Filichev VV, Bomholt N, Pedersen EB, Xodo LE. Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation. Nucleic Acids Res 2008; 36:3494-507. [PMID: 18456705 PMCID: PMC2425464 DOI: 10.1093/nar/gkn242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA–TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA–TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA–TFOs were found to abrogate the formation of a DNA–protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA–TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome.
Collapse
|
16
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
17
|
Pons B, Kotera M, Zuber G, Behr JP. Online synthesis of diblock cationic oligonucleotides for enhanced hybridization to their complementary sequence. Chembiochem 2006; 7:1173-6. [PMID: 16874748 DOI: 10.1002/cbic.200600178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Bénédicte Pons
- Laboratoire de Chimie Génétique associé au C.N.R.S. Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, B.P. 24, 67401 Illkirch, France
| | | | | | | |
Collapse
|
18
|
Allen BG, Allen-Brady K, Weeks DL. Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart. Mech Dev 2006; 123:719-29. [PMID: 16949797 PMCID: PMC2094041 DOI: 10.1016/j.mod.2006.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 07/11/2006] [Accepted: 07/23/2006] [Indexed: 10/24/2022]
Abstract
Normal vertebrate heart development depends upon the expression of homeodomain containing proteins related to the Drosophila gene, tinman. In Xenopus laevis, three such genes have been identified in regions that will eventually give rise to the heart, XNkx2-3, XNkx2-5 and XNkx2-10. Although the expression domains of all three overlap in early development, distinctive differences have been noted. By the time the heart tube forms, there is little XNkx2-10 mRNA detected by in situ analysis in the embryonic heart while both XNkx2-3 and XNkx2-5 are clearly present. In addition, unlike XNkx2-3 and XNkx2-5, injection of XNkx2-10 mRNA does not increase the size of the embryonic heart. We have reexamined the expression and potential role of XNkx2-10 in development via oligonucleotide-mediated reduction of XNkx2-10 protein expression. We find that a decrease in XNkx2-10 leads to a broad spectrum of developmental abnormalities including a reduction in heart size. We conclude that XNkx2-10, like XNkx2-3 and XNkx2-5, is necessary for normal Xenopus heart development.
Collapse
Affiliation(s)
- Bryan G. Allen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Kristina Allen-Brady
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, USA
| | - Daniel L. Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
- * Corresponding author. Tel: +1 319 335 7918; fax: +1 319 335 9570. E-mail address: (D.L. Weeks)
| |
Collapse
|
19
|
Deglane G, Abes S, Michel T, Prévot P, Vives E, Debart F, Barvik I, Lebleu B, Vasseur JJ. Impact of the guanidinium group on hybridization and cellular uptake of cationic oligonucleotides. Chembiochem 2006; 7:684-92. [PMID: 16518865 DOI: 10.1002/cbic.200500433] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The grafting of cationic groups to synthetic oligonucleotides (ONs) in order to reduce the charge repulsion between the negatively charged strands of a duplex or triplex, and consequently to increase a complex's stability, has been extensively studied. Guanidinium groups, which are highly basic and positively charged over a wide pH range, could be an efficient ON modification to enhance their affinity for nucleic acid targets and to improve cellular uptake. A straightforward post-synthesis method to convert amino functions attached to ONs (on sugar, nucleobase or backbone) into guanidinium tethers has been perfected. In comparison to amino groups, such cationic groups anchored to alpha-oligonucleotide phosphoramidate backbones play important roles in duplex stability, particularly with RNA targets. This high affinity could be explained by dual recognition resulting from Watson-Crick or Hoogsteen base pairing combined with cationic/anionic backbone recognition between strands involving H-bond formation and salt bridging. Molecular-dynamics simulations corroborate interactions between the cationic backbones of the alpha-ONs and the anionic backbones of the nucleic acid targets. Moreover, ONs with guanidinium modification increased cellular uptake relative to negatively charged ONs. The cellular localization of these new cationic phosphoramidate ONs is mainly cytoplasmic. The uptake of these ON analogues might occur through endocytosis.
Collapse
Affiliation(s)
- Gaëlle Deglane
- LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hewett PW, Daft EL, Laughton CA, Ahmad S, Ahmed A, Murray JC. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites. Mol Med 2006; 12:8-16. [PMID: 16838069 PMCID: PMC1514554 DOI: 10.2119/2005-00046.hewett] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/13/2006] [Indexed: 11/06/2022] Open
Abstract
The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.
Collapse
Affiliation(s)
- Peter W Hewett
- Department of Vascular and Reproductive Biology, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK. p.w.hewett.@bham.ac.uk
| | | | | | | | | | | |
Collapse
|
21
|
Michel T, Debart F, Heitz F, Vasseur JJ. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Chembiochem 2005; 6:1254-62. [PMID: 15912553 DOI: 10.1002/cbic.200400436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of cationic phosphoramidate pyrimidine alpha-oligonucleotides (ONs) to form triplexes with DNA duplexes was investigated by UV melting experiments, circular dichroism spectroscopy and gel mobility shift experiments. Replacement of the phosphodiester linkages in alpha-ONs with positively charged phosphoramidate linkages results in more efficient triplex formation, the triplex stability increasing with the number of positive charges. At a neutral pH and in the absence of magnesium ions, it was found that a fully cationic phosphoramidate alpha-TFO (triplex-forming oligonucleotide) forms a highly stable triplex that melts at a higher temperature than the duplex target. No hysteresis between the annealing and melting curves was noticed; this indicates fast association. Moreover, the recognition of a DNA duplex with a cationic alpha-TFO through Hoogsteen base pairing is highly sequence-specific. To the best of our knowledge, this is the first report of stable triplexes in the pyrimidine motif formed by cationic alpha-oligonucleotides and duplex targets.
Collapse
Affiliation(s)
- Thibaut Michel
- LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
22
|
Mayer A, Häberli A, Leumann CJ. Synthesis and triplex forming properties of pyrrolidino pseudoisocytidine containing oligodeoxynucleotides. Org Biomol Chem 2005; 3:1653-8. [PMID: 15858646 DOI: 10.1039/b502799c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pyrrolidino pseudo-C-nucleosides are isosteres of natural deoxynucleosides which are protonated at the pyrrolidino ring nitrogen under physiological conditions. As constituents of a triplex forming oligodeoxynucleotide (TFO), the positive charge is expected to stabilise DNA triple helices via electrostatic interactions with the phosphodiester backbone of the target DNA. We describe the synthesis of the pyrrolidino isocytidine pseudonucleoside and the corresponding phosphoramidite building block and its incorporation into TFOs. Such TFOs show substantially increased DNA affinity compared to unmodified oligodeoxynucleotides. The increase in affinity is shown to be due to the positive charge at the pyrrolidino subunit.
Collapse
Affiliation(s)
- Alain Mayer
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | | | | |
Collapse
|
23
|
Michel T, Debart F, Vasseur JJ, Geinguenaud F, Taillandier E. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets. J Biomol Struct Dyn 2004; 21:435-45. [PMID: 14616038 DOI: 10.1080/07391102.2003.10506938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The triplexes formed by pyrimidine alpha-oligodeoxynucleotides, 15mers alpha dT(15) or 12mers alpha dCT having dimethoxyethyl (PNHdiME), morpholino (PMOR) or propyl (PNHPr) non-ionic phosphoramidate linkages with DNA duplex targets have been investigated by UV and FTIR spectroscopy. Due to the decrease in the electrostatic repulsion between partner strands of identical lengths all modifications result in triplexes more stable than those formed with unmodified phosphodiester beta-oligodeoxynucleotides (beta-ODNs). Among the alpha-ODN third strands having C and T bases and non-ionic phosphoramidate linkages (alpha dCTPN) the most efficient modification is (PNHdiME). The enhanced third strand stability of the alpha dCTPN obtained as diastereoisomeric mixtures is attenuated by the steric hindrance of the PMOR linkages or by the hydrophobicity of the PNHPr linkages. All alpha dCTPN strands form triplexes even at neutral pH. In the most favorable case (PNHdiME), we show by FTIR spectroscopy that the triplex formed at pH 7 is held by Hoogsteen T*A.T triplets and in addition by an hydrogen bond between O6 of G and C of the third strand (Tm = 30 degrees C). The detection of protonated cytosines is correlated at pH 6 with a high stabilization of the triplex (Tm = 65 degrees C). While unfavorable steric effects are overcome with alpha anomers, the limitation of the pH dependence is not completely suppressed. Different triplexes are evidenced for non pH dependent phosphoramidate alpha-thymidilate strands (alpha dT(15)PN) interacting with a target duplex of identical length. At low ionic strength and DNA concentration we observe the binding to beta dA(15) either of alpha dT(15)PN as duplex strand and beta dT(15) as third strand, or of two hydrophobic alpha dT(15)PNHPr strands. An increase in the DNA and counterion concentration stabilizes the anionic target duplex and then the alpha dT(15)PN binds as Hoogsteen third strand.
Collapse
Affiliation(s)
- Thibault Michel
- Laboratoire de Chimie Organique Biomoléculaire de Synthese, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Murphy D, Eritja R, Redmond G. Monitoring denaturation behaviour and comparative stability of DNA triple helices using oligonucleotide-gold nanoparticle conjugates. Nucleic Acids Res 2004; 32:e65. [PMID: 15107480 PMCID: PMC407843 DOI: 10.1093/nar/gnh065] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/10/2004] [Accepted: 03/29/2004] [Indexed: 11/12/2022] Open
Abstract
Gold nanoparticle labels, combined with UV-visible optical absorption spectroscopic methods, are employed to probe the temperature-dependent solution properties of DNA triple helices. By using oligonucleotide-nanoparticle conjugates to characterize triplex denaturation, for the first time triplex to duplex melting transitions may be sensitively monitored, with minimal signal interference from duplex to single strand melting, for both parallel and antiparallel triple helices. Further, the comparative sequence-dependent stability of DNA triple helices may also be examined using this approach. Specifically, triplex to duplex melting transitions for triplexes formed using oligonucleotides that incorporate 8-aminoguanine derivatives were successfully monitored and stabilization of both parallel and antiparallel triplexes following 8-aminoguanine substitutions is demonstrated.
Collapse
|
25
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
26
|
Michel T, Martinand-Mari C, Debart F, Lebleu B, Robbins I, Vasseur JJ. Cationic phosphoramidate alpha-oligonucleotides efficiently target single-stranded DNA and RNA and inhibit hepatitis C virus IRES-mediated translation. Nucleic Acids Res 2003; 31:5282-90. [PMID: 12954764 PMCID: PMC203318 DOI: 10.1093/nar/gkg733] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 07/24/2003] [Accepted: 07/24/2003] [Indexed: 12/29/2022] Open
Abstract
A potential means to improve the efficacy of steric-blocking antisense oligonucleotides (ON) is to increase their affinity for a target RNA. The grafting of cationic amino groups to the backbone of the ON is one way to achieve this, as it reduces the electrostatic repulsion between the ON and its target. We have examined the duplex stabilising effects of introducing cationic phosphoramidate internucleoside linkages into ON with a non-natural alpha-anomeric configuration. Cationic alpha-ON bound with high affinity to single-stranded DNA and RNA targets. Duplex stabilisation was proportional to the number of cationic modifications, with fully cationic ON having particularly high thermal stability. The average stabilisation was greatly increased at low ionic strength. The duplex formed between cationic alpha-ON and their RNA targets were not substrates for RNase H. The penalty in T(m) inflicted by a single mismatch, however, was high; suggesting that they are well suited as sequence-specific, steric-blocking, antisense agents. Using a well-described target sequence in the internal ribosome entry site of the human hepatitis C virus, we have confirmed this potential in a cell-free translation assay as well as in a whole cell assay. Interestingly, no vectorisation was necessary for the cationic alpha-ON in cell culture.
Collapse
Affiliation(s)
- Thibaut Michel
- Laboratoire de Chimie Organique Biomoléculaire de Synthèse, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. The specificity of this binding raises the possibility of using triplex formation for directed genome modification, with the ultimate goal of repairing genetic defects in human cells. Several studies have demonstrated that treatment of mammalian cells with TFOs can provoke DNA repair and recombination, in a manner that can be exploited to introduce desired sequence changes. This review will summarize recent advances in this field while also highlighting major obstacles that remain to be overcome before the application of triplex technology to therapeutic gene repair can be achieved.
Collapse
Affiliation(s)
- Michael M Seidman
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
28
|
Michel T, Debart F, Vasseur JJ. Efficient guanidination of the phosphate linkage towards cationic phosphoramidate oligonucleotides. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01694-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Antony T, Subramaniam V. A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:145-54. [PMID: 12162697 DOI: 10.1089/108729002760220743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.
Collapse
Affiliation(s)
- Thomas Antony
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
30
|
Ferdous A, Akaike T, Maruyama A. Inhibition of sequence-specific protein-DNA interaction and restriction endonuclease cleavage via triplex stabilization by poly(L-lysine)-graft-dextran copolymer. Biomacromolecules 2002; 1:186-93. [PMID: 11710099 DOI: 10.1021/bm9900141] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplex stabilization by poly(L-lysine)-graft-dextran copolymer within a mammalian gene promoter inhibits the DNA binding activity of nuclear proteins from HeLa cells as well as restriction endonuclease cleavage at physiological pH and ionic conditions in vitro. Electrophoretic mobility shift assays using a 30-mer homopurine-homopyrimidine stretch (located between -170 and -141 bp) of rat alpha 1 (I) collagen gene promoter reveal that the copolymer, at its wide range of charge ratio with DNA, stabilizes triplex DNA and enhances triplex-specific inhibition of the protein-DNA interaction. When the triplex-forming region (located between -165 and -146 bp) of the promoter is engineered at the Bam H1 and Pst 1 sites of a plasmid DNA, copolymer-mediated triplex stabilization also remarkably competes endonuclease activity of BamH1. Finally, the triplex-stabilizing efficiency of the copolymer is remarkably higher than that of spermine and benzo[e]pyridoindole. Our results indicate that the copolymer, regardless of the length of the target duplex, stabilizes triplexes for significant inhibition of protein-DNA interaction and endonuclease activity. Since stable triplex formation within a short region out of a long native duplex is a prerequisite to confer the therapeutic potential of antigene strategy, triplex stabilization on a long target duplex and inhibition of nuclear protein-DNA interaction may open the possible in vivo applicability of the copolymer.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
31
|
Abstract
Research on embryonic development and differentiation provides a sensitive, but challenging opportunity to use a variety of techniques designed to modulate gene expression. Changes in the expression of a single gene can alter levels of other genes and provide information on developmentally regulated gene expression pathways. The morphological consequences of altered gene expression can link gene expression to developmental fate. Oligonucleotide-based approaches offer a variety of means to potentially disrupt normal gene expression. The basis for some of these approaches is presented in this review.
Collapse
Affiliation(s)
- J M Dagle
- Department of Pediatrics, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
32
|
Vasquez KM, Dagle JM, Weeks DL, Glazer PM. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J Biol Chem 2001; 276:38536-41. [PMID: 11504712 DOI: 10.1074/jbc.m101797200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) bind specifically to duplex DNA and provide a strategy for site-directed modification of genomic DNA. Recently we demonstrated TFO-mediated targeted gene knockout following systemic administration in animals. However, a limitation to this approach is the requirement for a polypurine tract (typically 15-30 base pairs (bp)) in the target DNA to afford high affinity third strand binding, thus restricting the number of sites available for effective targeting. To overcome this limitation, we have investigated the ability of chemically modified TFOs to target a short (10 bp) site in a chromosomal locus in mouse cells and induce site-specific mutations. We report that replacement of the phosphodiester backbone with cationic phosphoramidate linkages, either N,N-diethylethylenediamine or N,N-dimethylaminopropylamine, in a 10-nucleotide, psoralen-conjugated TFO confers substantial increases in binding affinity in vitro and is required to achieve targeted modification of a chromosomal reporter gene in mammalian cells. The triplex-directed, site-specific induction of mutagenesis in the chromosomal target was charge- and modification-dependent, with the activity of N,N-diethylethylenediamine > N,N-dimethylaminopropylamine phosphodiester, resulting in 10-, 6-, and <2-fold induction of target gene mutagenesis, respectively. Similarly, N,N-diethylethylenediamine and N,N-dimethylaminopropylamine TFOs were found to enhance targeting at a 16-bp G:C bp-rich target site in a chromatinized episomal target in monkey COS cells, although this longer site was also targetable by a phosphodiester TFO. These results indicate that replacement of phosphodiester bonds with positively charged N,N-diethylethylenediamine linkages enhances intracellular activity and allows targeting of relatively short polypurine sites, thereby substantially expanding the number of potential triplex target sites in the genome.
Collapse
Affiliation(s)
- K M Vasquez
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
33
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
34
|
Abstract
The ability to specifically manipulate gene expression has wide-ranging applications in experimental biology and in gene-based therapeutics. The design of molecules that recognise specific sequences on the DNA double helix provides us with interesting tools to interfere with DNA information processing at an early stage of gene expression. Triplex-forming molecules specifically recognise oligopyrimidine-oligopurine sequences by hydrogen bonding interactions. Applications of such triplex-forming molecules (TFMs) are the subject of the present review. In cell cultures, TFMs have been successfully used to down- or up-regulate transcription in a gene-specific manner and to induce genomic DNA modifications at a selected site. The first evidence of a triplex-based activity in animals has been provided recently. In addition, TFMs are also powerful tools for gene-specific chemistry, in particular for gene transfer applications.
Collapse
Affiliation(s)
- M Faria
- Department of Microbiologia, Immunologia e Parasitologia, UNIFESP, Sao Paulo, SP, Brazil
| | | |
Collapse
|
35
|
Ehrenmann F, Vasseur JJ, Debart F. Alpha-oligonucleotides with anionic phosphodiester and cationic phosphoramidate linkages enhanced stability of DNA triple helix. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:797-9. [PMID: 11563118 DOI: 10.1081/ncn-100002432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synthesis of several alpha-oligonucleotides containing both anionic phosphodiester and cationic N-(dimethylaminopropyl)phosphoramidate internucleosidic linkages is described. Their ability to form triple helix with dsDNA was evaluated at various pH by UV melting experiments.
Collapse
Affiliation(s)
- F Ehrenmann
- Laboratoire de Chimie Organique Biomoléculaire de Synthèse, UMR 5625 CNRS-UM II, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier, France
| | | | | |
Collapse
|
36
|
Lin FL, Majumdar A, Klotz LC, Reszka AP, Neidle S, Seidman MM. Stability of DNA triplexes on shuttle vector plasmids in the replication pool in mammalian cells. J Biol Chem 2000; 275:39117-24. [PMID: 10993885 DOI: 10.1074/jbc.m005404200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.
Collapse
Affiliation(s)
- F L Lin
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ferdous A, Akaike T, Maruyama A. Mechanism of intermolecular purine-purine-pyrimidine triple helix stabilization by comb-type polylysine graft copolymer at physiologic potassium concentration. Bioconjug Chem 2000; 11:520-6. [PMID: 10898573 DOI: 10.1021/bc990166t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported a novel strategy to stabilize purine motif triplex DNA within a mammalian gene promoter at physiologically relevant pH, temperature, and potassium (K(+)) concentrations by a comb-type poly(L-lysine)-graft-dextran copolymer [Ferdous et al., (1998) Nucleic Acids Res. 26, 3949-3954]. Here we describe the major contribution(s) of the copolymer to stabilize the purine motif triplex DNA at physiological K(+) concentrations. Self-aggregation through guanine-quartet formation of guanine-rich (G-rich) triplex-forming oligonucleotides (TFOs) has long been proposed for K(+)-mediated inhibition of the purine motif triplex formation. However, this was not the case for the severe inhibitory effect of K(+) observed under our reaction conditions. Rather significant decrease in rate of triplex formation involving a G-rich TFO was a major factor to confer K(+) inhibition. Interestingly, in the presence of the copolymer the rate of triplex formation was tremendously increased and K(+)-induced dissociation of preformed triplexes was not observed. Moreover, the triplex-promoting/stabilizing efficiency of the copolymer was amazingly higher than that of physiological concentrations of spermine. An absolute increase in binding constant of the TFO to the target duplex could therefore be the predominant mechanistic source for the copolymer-mediated triplex stabilization under physiological conditions in vitro.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
38
|
Stellwagen NC, Magnusdottir S, Dagle JM, Gelfi C, Righetti PG. Free solution mobility of DNA molecules containing variable numbers of cationic phosphoramidate internucleoside linkages. J Chromatogr A 2000; 883:267-75. [PMID: 10910219 DOI: 10.1016/s0021-9673(00)00415-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The free solution electrophoretic mobility of an 118-base pair DNA fragment containing zero, three, six or nine cationic phosphoramidate internucleoside linkages has been measured by capillary electrophoresis. The electrophoretic mobility decreases with the increasing number of cationic phosphoramidate linkages, as expected because of the reduced negative charge on the DNA molecules. The decrease in mobility is approximately linear for DNA molecules containing three and six cationic phosphoramidate linkages, but begins to level off when nine cationic phosphoramidate linkages have been added. The mobility also varies somewhat depending on whether the modified phosphoramidate linkages are located at the 5'- or 3'-end of the DNA molecule.
Collapse
Affiliation(s)
- N C Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA.
| | | | | | | | | |
Collapse
|
39
|
Dagle JM, Littig JL, Sutherland LB, Weeks DL. Targeted elimination of zygotic messages in Xenopus laevis embryos by modified oligonucleotides possessing terminal cationic linkages. Nucleic Acids Res 2000; 28:2153-7. [PMID: 10773085 PMCID: PMC105372 DOI: 10.1093/nar/28.10.2153] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have designed a new class of modified antisense oligodeoxyribonucleotides (ODN) consisting of a central contiguous stretch of 6-8 unmodified nucleotides flanked by 3'- and 5'-regions containing several nucleotides joined by cationic internucleoside linkages. The positive charge results from modification of the internucleoside linkages as N, N -diethylethylene-diamine phosphoramidates. These zwitterionic compounds show improved antisense activity in both Xenopus oocytes and embryos compared to our previously described chimeric oligonucleotides possessing neutral terminal internucleoside linkages. Using the localized maternal mRNA An2 as a target, we have shown that chimeric oligonucleotides with terminal positive charges are very effective in the sequence-specific elimination of maternal messages present in both oocytes and embryos. In addition, using the embryonic mRNA GS17 as a target, we have shown that these oligonucleotides can direct RNase H-mediated cleavage of messages produced at the onset of zygotic transcription, after the mid-blastula stage. These new compounds should be useful in attenuating embryonic gene expression to study the role of specific proteins in early vertebrate development.
Collapse
Affiliation(s)
- J M Dagle
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
40
|
Bailey C, Weeks DL. Understanding oligonucleotide-mediated inhibition of gene expression in Xenopus laevis oocytes. Nucleic Acids Res 2000; 28:1154-61. [PMID: 10666457 PMCID: PMC102614 DOI: 10.1093/nar/28.5.1154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) modified with N,N-diethylethylenediamine can inhibit the expression of a reporter plasmid in Xenopus oocytes if the triplex is preformed prior to injection while unmodified oligonucleotides cannot. Here we show that merely forming a triplex in a reporter plasmid does not disrupt transcription, but when TFOs are targeted to sites within the transcribed region of a reporter gene then gene activity is inhibited. TFO-based inhibition did not lead to large scale degradation or mutation of the reporter plasmid, but dramatically lowered mRNA levels. Finally, we investigated the accessibility of a triplex target site on a reporter plasmid after injection into nuclei. We found that the site used for our previous studies was inaccessible to restriction endonuclease after injection into nuclei. This observation may explain why inhibition was dependent on forming the triplex before injection into oocytes. Based on the assumption that oligonucleotide association, like restriction enzyme access, was excluded by nucleosome formation, additional target sites were inserted so that all sites could not simultaneously be associated with the octamer core of a nucleosome. With multiple target sites prior association of the plasmid with nuclear proteins does not prevent oligonucleotide-mediated inhibition of gene activity.
Collapse
Affiliation(s)
- C Bailey
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
41
|
Laurent A, Naval M, Debart F, Vasseur JJ, Rayner B. Chiral and steric effects in the efficient binding of alpha-anomeric deoxyoligonucleoside N-alkylphosphoramidates to ssDNA and RNA. Nucleic Acids Res 1999; 27:4151-9. [PMID: 10518605 PMCID: PMC148688 DOI: 10.1093/nar/27.21.4151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report hybridization properties of new phosphate-modified alpha-oligonucleoside analogs with non-ionic or cationic internucleotide linkages such as methoxy-ethylphosphoramidate (PNHME), phosphoromorpholi-date (PMOR) and dimethylaminopropylphosphor-amidate (PNHDMAP). First we evaluated the chirality effect of the phosphorus atom on the affinity of alpha- or beta-dodecanucleoside phosphodiesters containing one chirally enriched N -alkylphosphoramidate linkage located in the middle of the sequence d(TCTT-AA*CCCACA). As for P-substituted beta-oligonucleo-tides, a difference in binding behavior between the two diastereoisomers (difference in Delta T (m)) exists in the hybridization properties of alpha-analogs when DNA was the target but this effect was not detrimental to duplex stability. This effect was considerably reduced when RNA was the target. Secondly we studied the effect of steric hindrance around phosphorus on the affinity of fully modified beta- and alpha-oligonucleoside N -alkylphosphoramidates for their DNA and RNA targets. This effect was very weak with alpha-analogs whereas it was more pronounced with beta-oligos. PNHME-modified alpha-oligonucleosides formed more stable duplexes with DNA (Delta T (m)+9.6 degrees C) and RNA (Delta T (m)+1.4 degrees C) targets than the 'parent' phosphodiester. Finally, base pairing specificity of these alpha-oligonucleo-side N -alkylphosphoramidates for their targets was found to be as high as for natural oligonucleoside phosphodiesters.
Collapse
Affiliation(s)
- A Laurent
- Laboratoire de Chimie Organique Biomoléculaire de Synthèse, UMR 5625 CNRS-UM II, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
42
|
Bijapur J, Keppler MD, Bergqvist S, Brown T, Fox KR. 5-(1-propargylamino)-2'-deoxyuridine (UP): a novel thymidine analogue for generating DNA triplexes with increased stability. Nucleic Acids Res 1999; 27:1802-9. [PMID: 10101187 PMCID: PMC148387 DOI: 10.1093/nar/27.8.1802] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used quantitative DNase I footprinting and UV-melting studies to examine the formation of DNA triplexes in which the third strand thymines have been replaced by 5-propargylamino-dU (UP). The intra-molecular triplex A6-L-T6-L-(UP)5T (L = two octanediol residues) shows a single UV-melting transition which is >20 degrees higher than that of the parent triplex A6-L-T6-L-T6at pH 5.5. Although a single transition is observed at all pHs, the melting temperature (Tm) of the modified oligonucleotide decreases at higher pHs, consistent with the requirement for protonation of the amino group. A similar intramolecular triplex with a longer overhanging duplex shows two melting transitions, the lower of which is stabilised by substitution of T by UP, in a pH dependent fashion. Triplex stability increases by approximately 12 K for each T to UP substitution. Quantitative footprinting studies have examined the interaction of three UP-containing 9mer oligonucleotides with the different portions of the 17mer sequence 5'-AGGAAGAGAAAAAAGAA. At pH 5.0, the UP-containing oligo-nucleotides footprint to much lower concentrations than their T-containing counterparts. In particular (UP)6CUPT binds approximately 1000-fold more tightly than the unmodified oligonucleotide T6CTT. Oligonucleotides containing fewer UP residues are stabilised to a lesser extent. The affinity of these modified third strands decreases at higher pHs. These results demonstrate that the stability of DNA triplexes can be dramatically increased by using positively charged analogues of thymine.
Collapse
Affiliation(s)
- J Bijapur
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
43
|
Blume SW, Lebowitz J, Zacharias W, Guarcello V, Mayfield CA, Ebbinghaus SW, Bates P, Jones DE, Trent J, Vigneswaran N, Miller DM. The integral divalent cation within the intermolecular purine*purine. pyrimidine structure: a variable determinant of the potential for and characteristics of the triple helical association. Nucleic Acids Res 1999; 27:695-702. [PMID: 9862999 PMCID: PMC148234 DOI: 10.1093/nar/27.2.695] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vitro assembly of an intermolecular purine*purine.pyrimidine triple helix requires the presence of a divalent cation. The relationships between cation coordination and triplex assembly were investigated, and we have obtained new evidence for at least three functionally distinct potential modes of divalent cation coordination. (i) The positive influence of the divalent cation on the affinity of the third strand for its specific target correlates with affinity of the cation for coordination to phosphate. (ii) Once assembled, the integrity of the triple helical structure remains dependent upon its divalent cation component. A mode of heterocyclic coordination/chelation is favorable to triplex formation by decreasing the relative tendency for efflux of integral cations from within the triple helical structure. (iii) There is also a detrimental mode of base coordination through which a divalent cation may actively antagonize triplex assembly, even in the presence of other supportive divalent cations. These results demonstrate the considerable impact of the cationic component, and suggest ways in which the triple helical association might be positively or negatively modulated.
Collapse
Affiliation(s)
- S W Blume
- Comprehensive Cancer Center and Department of Medicine and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ferdous A, Watanabe H, Akaike T, Maruyama A. Comb-type copolymer: stabilization of triplex DNA and possible application in antigene strategy. J Pharm Sci 1998; 87:1400-5. [PMID: 9811497 DOI: 10.1021/js980066g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
By employing a reductive amination reaction between the epsilon-amino groups of poly(L-lysine) (PLL) and the reductive ends of the hydrophilic dextran (Dex) side chain, we have prepared different comb-type copolymers which varied in the degree of grafting and the length of the hydrophilic Dex chains. The resulting copolymers, poly(L-lysine)-graft-dextran (PLL-g-Dex), were tested for their ability to stabilize triplex DNA in vitro under physiologically relevant conditions. Thermal denaturation (UV-Tm) and circular dichroism experiments revealed that the graft copolymer with the higher degree of grafting of long Dex chains significantly increased the thermal stability of triplex structure of poly(dA). 2poly(dT) by more than 50 degreesC without affecting the transition between triplex and single-stranded DNA or the native structure of DNA. Of importance is that when triplex formation involving a 30-mer target duplex from rat alpha1 (I) collagen promoter was analyzed by an in vitro electrophoretic mobility shift assay, the graft copolymer also remarkably diminished potassium inhibition of the purine motif triplex formation up to 200 mM as well as pH-dependence of the pyrimidine motif triplex formation. Moreover the triplex-stabilizing efficiency of the copolymer was significantly higher than that of other oligocations like spermine and spermidine. We suggest that a molecular design of comb-type copolymers consisting of various types of polycation backbones (e.g., PLL) grafted with different hydrophilic side chains (e.g., Dex) is a novel strategy to create efficient triplex stabilizers that will certainly shed light on possible in vivo application of the antigene strategy.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
Aich P, Ritchie S, Bonham K, Lee JS. Thermodynamic and kinetic studies of the formation of triple helices between purine-rich deoxyribo-oligonucleotides and the promoter region of the human c-src proto-oncogene. Nucleic Acids Res 1998; 26:4173-7. [PMID: 9722637 PMCID: PMC147831 DOI: 10.1093/nar/26.18.4173] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thermodynamic and kinetic parameters of triplex formation between four purine-rich oligonucleotides and a 22 bp pyrimidine. purine tract in the promoter region of the c-src gene were determined by fluorescence polarization studies. Three of these four oligonucleotides were 11 nt in length, corresponding to the left, central or right portion of the tract, while the fourth was a 22mer covering the whole tract. Binding constants ( Ka) were measured as a function of Mg2+ concentration (0-10 mM) and temperature (0-41 degrees C). In 10 mM Mg2+, K a for the left, central and right 11mers were 0.26, 0.75 and 1.4 x 10(8)/M, respectively, while for the 22mer the value was 1.8 x 10(8)/M at 22 degrees C. Under the same conditions, Ka was estimated by an electrophoretic band shift technique. The agreement between the two methods was acceptable for the 22mer but not for the 11mers. Kinetic measurements demonstrated that the rate of dissociation of the 22mer from the triplex was significantly slower than that of the 11mers, providing an explanation for the observed discrepancy. The entropy and enthalpy of triplex formation were calculated from van't Hoff plots. In all cases the entropy was favourable, especially for the 22mer and for the 11mer with the lowest guanine content. The enthalpy was unfavourable for the 22mer and most favourable for the 11mer with the highest guanine content. These results provide a thermodynamic explanation for length and sequence effects on the formation of purine.pyrimidine.purine triplexes.
Collapse
Affiliation(s)
- P Aich
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada and Saskatoon Cancer Research Unit, 20 Campus Drive, Saskatoon, SK S7N 5E5, Canada
| | | | | | | |
Collapse
|
46
|
Ferdous A, Watanabe H, Akaike T, Maruyama A. Poly(L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro). Nucleic Acids Res 1998; 26:3949-54. [PMID: 9705503 PMCID: PMC147801 DOI: 10.1093/nar/26.17.3949] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triplex DNA formation involving unmodified triplex-forming oligonucleotides (TFOs) is very unstable under physiological conditions. Here, we report a novel strategy to stabilize both purine and pyrimidine motif triplex DNA within the rat alpha1 (I) collagen gene promoter under physiologically relevant conditions by a poly(L-lysine)- graft -dextran copolymer. Using an in vitro electrophoretic mobility shift assay, we show that the copolymer almost completely abrogates the inhibitory effects of physiological concentrations of monovalent cations, particularly potassium ion (K+), on purine motif triplex formation involving very low concentrations of an unmodified guanine-rich TFO. Of importance, pH dependency in pyrimidine motif triplex formation involving an unmodified cytosine-rich TFO is also significantly overcome by the copolymer. Finally, the triplex-stabilizing efficiency of the copolymer is remarkably higher than that of other oligocations, like spermine and spermidine. We suggest that the ability of the graft copolymer to stabilize triplex DNA under physiologically relevant pH and salt concentrations will be a cue for further progress in the antigene strategy.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
47
|
Mignet N, Gryaznov SM. Zwitterionic oligodeoxyribonucleotide N3'-->P5' phosphoramidates: synthesis and properties. Nucleic Acids Res 1998; 26:431-8. [PMID: 9421496 PMCID: PMC147269 DOI: 10.1093/nar/26.2.431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Zwitterionic, net neutral oligonucleotides containing alternating negatively charged N3'-->P5' phosphoramidate monoester and positively charged phosphoramidate diester groups were synthesized. The ability of zwitterionic phosphoramidates to form complexes with complementary DNA and RNA was evaluated. Stoichiometry and salt dependency of these complexes were determined as a function of the nature of the heterocyclic bases of the zwitterionic compounds. Unlike the melting temperatures of the natural phosphodiester-containing oligomers, the T m of the duplexes formed with the zwitterionic oligothymidylates was salt concentration independent. The thermal stability of these duplexes was much higher with Delta T m values of 20-35 degrees C relatively to phosphodiester counterparts at low salt concentrations. The zwitterionic oligoadenylate formed only 2Py:1Pu triplexes with complementary poly(U) or poly(dT) strands. The thermal stability of these complexes was dependent on salt concentration. Also, the T m values of the complexes formed by the zwitterionic oligoadenylate with poly(U) were 6-41 degrees C higher than for the natural phosphodiester counterpart. Triplexes of this compound with poly(dT) were also more stable with a Delta T m value of 22 degrees C at low salt concentrations. Complexes formed by the zwitterionic oligonucleotides with complementary RNAs were not substrates for RNase H. Surprisingly, the duplex formed by the all anionic alternating N3'-->P5'phosphoramidate-phosphodiester oligothymidylate and poly(A) was a good substrate for RNase H.
Collapse
Affiliation(s)
- N Mignet
- Lynx Therapeutics Inc., 3832 Bay Center Place, Hayward, CA 94545, USA
| | | |
Collapse
|
48
|
Joseph J, Kandala JC, Veerapanane D, Weber KT, Guntaka RV. Antiparallel polypurine phosphorothioate oligonucleotides form stable triplexes with the rat alpha1(I) collagen gene promoter and inhibit transcription in cultured rat fibroblasts. Nucleic Acids Res 1997; 25:2182-8. [PMID: 9153319 PMCID: PMC146703 DOI: 10.1093/nar/25.11.2182] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rat alpha1(I) collagen promoter contains a unique polypurine-polypyrimidine sequence between -141 and -200 upstream of the transcription start site. The polypurine sequence from -171 to -200 (C2) is on the coding strand and the adjacent polypurine sequence from -141 to -170 (C1) is on the non-coding strand. Earlier we demonstrated triplex formation with a polypurine 30 nt parallel triplex-forming oligonucleotide (TFO) corresponding to C1 and inhibition of transcriptional activity of the rat alpha1(I) collagen promoter. In the present work we have tested triplex-forming abilities of shorter (18 nt) purine and pyrimidine TFOs in parallel and antiparallel orientation to the C1 purine sequence. Our results show that purine antiparallel TFOs formed triplexes with the highest binding affinities, while pyrimidine oligodeoxyribonucleotides (ODNs) did not show appreciable binding. Phosphorothioate modification of purine TFOs did not significantly reduce binding affinity. We also demonstrate that preformed triplexes are quite stable when precipitated with ethanol and resuspended in water. Further analysis was carried out using two purine phosphorothioate antiparallel TFOs, 158 APS and 164 APS, designed to bind to the promoter region from -141 to -158 and -147 to -164, respectively, which were found to form triplexes even under physiological conditions. DNase I footprinting experiments showed the ability of these TFOs to protect target sequences in the promoter region; both purine sequences (C1 and C2) were protected in the case of 158 APS. Transfection experiments using preformed triplexes with a reporter plasmid containing the collagen promoter sequence showed significant inhibition of transcription when compared with a control phosphorothioate ODN. The effect of 164 APS was greater than that of 158 APS. These results indicate that this triplex strategy could be used in the down-regulation of collagen synthesis in cultured cells and offer the potential to control fibrosis in vivo.
Collapse
Affiliation(s)
- J Joseph
- Department of Medicine, Division of Cardiology, School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|
49
|
Blume SW, Guarcello V, Zacharias W, Miller DM. Divalent transition metal cations counteract potassium-induced quadruplex assembly of oligo(dG) sequences. Nucleic Acids Res 1997; 25:617-25. [PMID: 9016604 PMCID: PMC146479 DOI: 10.1093/nar/25.3.617] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleic acids containing tracts of contiguous guanines tend to self-associate into four-stranded (quadruplex) structures, based on reciprocal non-Watson-Crick (G*G*G*G) hydrogen bonds. The quadruplex structure is induced/stabilized by monovalent cations, particularly potassium. Using circular dichroism, we have determined that the induction/stabilization of quadruplex structure by K+is specifically counteracted by low concentrations of Mn2+(4-10 mM), Co2+(0.3-2 mM) or Ni2+(0.3-0.8 mM). G-Tract-containing single strands are also capable of sequence-specific non-Watson-Crick interaction with d(G. C)-tract-containing (target) sequences within double-stranded DNA. The assembly of these G*G.C-based triple helical structures is supported by magnesium, but is potently inhibited by potassium due to sequestration of the G-tract single strand into quadruplex structure. We have used DNase I protection assays to demonstrate that competition between quadruplex self-association and triplex assembly is altered in the presence of Mn2+, Co2+or Ni2+. By specifically counteracting the induction/stabilization of quadruplex structure by potassium, these divalent transition metal cations allow triplex formation in the presence of K+and shift the position of equilibrium so that a very high proportion of triplex target sites are bound. Thus, variation of the cation environment can differentially promote the assembly of multistranded nucleic acid structural alternatives.
Collapse
Affiliation(s)
- S W Blume
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|