1
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy. J Immunol Res 2017; 2017:5604891. [PMID: 28154831 PMCID: PMC5244029 DOI: 10.1155/2017/5604891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.
Collapse
|
3
|
Orizio F, Damiati E, Giacopuzzi E, Benaglia G, Pianta S, Schauer R, Schwartz-Albiez R, Borsani G, Bresciani R, Monti E. Human sialic acid acetyl esterase: Towards a better understanding of a puzzling enzyme. Glycobiology 2015; 25:992-1006. [DOI: 10.1093/glycob/cwv034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/17/2015] [Indexed: 01/09/2023] Open
|
4
|
Déjean G, Blanvillain-Baufumé S, Boulanger A, Darrasse A, de Bernonville TD, Girard AL, Carrére S, Jamet S, Zischek C, Lautier M, Solé M, Büttner D, Jacques MA, Lauber E, Arlat M. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. THE NEW PHYTOLOGIST 2013; 198:899-915. [PMID: 23442088 DOI: 10.1111/nph.12187] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.
Collapse
Affiliation(s)
- Guillaume Déjean
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Servane Blanvillain-Baufumé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Alice Boulanger
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Armelle Darrasse
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Thomas Dugé de Bernonville
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Anne-Laure Girard
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Sébastien Carrére
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Stevie Jamet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Claudine Zischek
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Martine Lautier
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Magali Solé
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle (Saale), Germany
| | - Daniela Büttner
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle (Saale), Germany
| | - Marie-Agnès Jacques
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences (IRHS), 42 rue Georges Morel, 49071, Beaucouzé CEDEX 01, France
| | - Emmanuelle Lauber
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Matthieu Arlat
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
7
|
Rangarajan ES, Ruane KM, Proteau A, Schrag JD, Valladares R, Gonzalez CF, Gilbert M, Yakunin AF, Cygler M. Structural and enzymatic characterization of NanS (YjhS), a 9-O-Acetyl N-acetylneuraminic acid esterase from Escherichia coli O157:H7. Protein Sci 2011; 20:1208-19. [PMID: 21557376 DOI: 10.1002/pro.649] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/08/2022]
Abstract
There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.
Collapse
|
8
|
Szymański K, Skórka A, Szypowska A, Bednarczuk T, Płoski R. Functionally defective germline variant of sialic acid acetylesterase (Met89Val) is not associated with type 1 diabetes mellitus and Graves' disease in a Polish population. ACTA ACUST UNITED AC 2011; 78:214-6. [PMID: 21615338 DOI: 10.1111/j.1399-0039.2011.01703.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recently, rare genotypes encoding defective variants of sialic acid acetylesterase (SIAE), such as homozygous Met89Val substitution, were strongly associated [odds ratio (OR) = 8] with a panel of autoimmune diseases including type 1 diabetes mellitus (T1DM). Our purpose was to replicate this finding in T1DM and explore whether Met89Val predisposes to Graves' diseases (GD). We studied 561 GD patients, 379 T1DM patients and 1822 controls. The prevalence of Met89Val homozygosity was similar among patients (GD: 0.4%, n = 2; T1DM: 0.3%, n = 1) and controls (0.4%, n = 7) yielding OR of 0.93 [95% confidence interval (CI): 0.19-4.48, P = 0.9] and 0.69 (95% CI: 0.08-5.59, P = 0.71) for GD and T1DM, respectively. We conclude that further studies are needed before the proposed strong effect of defective SIAE variants on susceptibility to autoimmunity can be universally accepted.
Collapse
Affiliation(s)
- K Szymański
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
9
|
Tsai S, Hardison NE, James AH, Motsinger-Reif AA, Bischoff SR, Thames BH, Piedrahita JA. Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta 2010; 32:175-82. [PMID: 21183218 DOI: 10.1016/j.placenta.2010.11.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/09/2010] [Accepted: 11/19/2010] [Indexed: 02/08/2023]
Abstract
The placenta plays an important role as a regulator of fetal nutrition and growth throughout development and placental factors contribute to gestational abnormalities such as preeclampsia. This study describes the genome-wide gene expression profiles of a large (n = 60) set of human placentas in order to uncover gene expression patterns associated with preeclampsia. In addition to confirming changes in expression of soluble factors associated with preeclampsia such as sFLT1 (soluble fms-like tyrosine kinase-1), sENG (soluble endoglin), and INHA (inhibin alpha), we also find changes in immune-associated signaling pathways, offering a potential upstream explanation for the shallow trophoblast invasion and inadequate uterine remodeling typically observed in pathogenesis of preeclampsia. Notably, we also find evidence of preeclampsia-associated placental upregulation of sialic acid acetylesterase (SIAE), a gene functionally associated with autoimmune diseases.
Collapse
Affiliation(s)
- S Tsai
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 2009; 9:767-77. [PMID: 19855403 DOI: 10.1038/nri2656] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived B cells make an important cell fate choice to develop into either follicular B cells or marginal zone B cells in the spleen, which depends on signalling through the B cell receptor, Notch2, the receptor for B cell-activating factor and the canonical nuclear factor-kappaB pathway, as well as signals involved in the migration and anatomical retention of marginal zone B cells. Recent information discussed in this Review reconciles some of the controversies regarding the role of the B cell receptor in this cell fate decision and a clearer picture has also emerged regarding the anatomical location of ligands for Notch2 in the spleen. This cell fate decision could provide mechanistic insights that are relevant to other commitment events in lymphocytes.
Collapse
|
11
|
Pillai S, Cariappa A, Pirnie SP. Esterases and autoimmunity: the sialic acid acetylesterase pathway and the regulation of peripheral B cell tolerance. Trends Immunol 2009; 30:488-93. [PMID: 19766537 DOI: 10.1016/j.it.2009.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 11/16/2022]
Abstract
The best studied mechanisms of B cell tolerance are receptor editing, clonal deletion and anergy. All of these mechanisms of B cell tolerance depend on the induction of signaling downstream of the B cell receptor by self-antigens. Another important and distinct mechanism of B cell tolerance involves the repression of antigen receptor signaling rather than its induction, utilizes the Lyn Src-family kinase, the SHP-1 tyrosine phosphatase, inhibitory members of the Siglec family, and a carbohydrate-modifying enzyme that is capable of negatively regulating B cell receptor activation known as sialic acid acetylesterase.
Collapse
Affiliation(s)
- Shiv Pillai
- Cancer Center, Massachusetts General Hospital, Boston MA 02129, USA.
| | | | | |
Collapse
|
12
|
Gross AJ, Lyandres JR, Panigrahi AK, Prak ETL, DeFranco AL. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2009; 182:5382-92. [PMID: 19380785 DOI: 10.4049/jimmunol.0803941] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected. Correspondingly, Lyn deficiency substantially enhanced the sensitivity of mature B cells to activation via the BCR, but minimally affected events associated with tolerance induction at the immature stage. The effects of CD22 deficiency on BCR signaling were very similar in B cells at different stages of maturation. These results indicate that the Lyn-CD22-Src homology region 2 domain-containing phosphatase-1 inhibitory pathway largely becomes operational as B cell mature, and sets a threshold for activation that appears to be critical for the maintenance of tolerance in the B cell compartment.
Collapse
Affiliation(s)
- Andrew J Gross
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
13
|
Cariappa A, Takematsu H, Liu H, Diaz S, Haider K, Boboila C, Kalloo G, Connole M, Shi HN, Varki N, Varki A, Pillai S. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. ACTA ACUST UNITED AC 2008; 206:125-38. [PMID: 19103880 PMCID: PMC2626685 DOI: 10.1084/jem.20081399] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of α2–6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage.
Collapse
Affiliation(s)
- Annaiah Cariappa
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Isolation and properties of two sialate-O-acetylesterases from horse liver with 4- and 9-O-acetyl specificities. Glycoconj J 2008; 25:625-32. [PMID: 18246423 DOI: 10.1007/s10719-008-9109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/11/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Sialate-O-acetylesterase was purified almost 900-fold from particle-free supernatants of horse liver by gel filtration, ion-exchange chromatography and isoelectric focussing. The native enzyme on gel filtration exhibits a molecular weight of 54,000 Da. It was separated by isoelectric focussing into two forms with pI values of 4.8 and 5.7, respectively. The esterase with a lower pI hydrolyses only 9-O-acetyl groups from sialic acids (K(M) 1.1 mM), while that with the higher pI esterifies both 4- and 9-O-acetylated monosaccharides at similar rates (K(M) 0.3 M and 1.3 mM, respectively). Both forms are inactive with 7-O-acetylated N-acetylneuraminic acid. Enzyme assays were carried out at the pH optimum (pH 8.4-8.6) using free O-acetylated sialic acids followed by direct analysis of the reaction products by isocratic anion-exchange HPLC. Glycosidically bound sialic acids can also be de-O-acetylated. Horse liver esterase seems to be an essential enzyme for the catabolism of 4-O-acetylated sialoglycoconjugates, since sialidase from this tissue cannot act on 4-O-acetylated sialic acids.
Collapse
|
15
|
Zhu H, Chang Chan H, Zhou Z, Li J, Zhu H, Yin L, Xu M, Cheng L, Sha J. A Gene Encoding Sialic-Acid-Specific 9-O-Acetylesterase Found in Human Adult Testis. J Biomed Biotechnol 2004; 2004:130-136. [PMID: 15292578 PMCID: PMC551583 DOI: 10.1155/s1110724304307084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Using differential display RT-PCR, we identified a gene of 2750 bp from human adult testis, named H-Lse, which encoded a putative protein of 523 amino acids and molecular weight of 58 kd with structural characteristics similar to that of mouse lysosome sialic-acid-specific 9-O-acetylesterase. Northern blot analysis showed a widespread distribution of H-Lse in various human tissues with high expression in the testis, prostate, and colon. In situ hybridization results showed that while H-Lse was not detected in embryonic testis, positive signals were found in spermatocytes but not spermatogonia in adult testis of human. The subcellular localization of H-Lse was visualized by green fluorescent protein (GFP) fused to the amino terminus of H-Lse, showing compartmentalization of H-Lse in large dense-core vesicles, presumably lysosomes, in the cytoplasm. The developmentally regulated and spermatogenic stage-specific expression of H-Lse suggests its possible involvement in the development of the testis and/or differentiation of germ cells.
Collapse
Affiliation(s)
- Hu Zhu
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, Department of Physiology, The Chinese University of Hong Kong, Hong Kong
| | - Zuoming Zhou
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Jianming Li
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Hui Zhu
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Lanlan Yin
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Ming Xu
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Lijun Cheng
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
| | - Jiahao Sha
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029,
China
- *Jiahao Sha:
| |
Collapse
|
16
|
Zhang Y, Lu L, Furlonger C, Wu GE, Paige CJ. Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat Immunol 2000; 1:392-7. [PMID: 11062498 DOI: 10.1038/80826] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report here the molecular cloning of a newly identified preprotachykinin gene, Pptc, which specifies the sequence for a new preprotachykinin protein and bioactive peptide designated hemokinin 1 (HK-1). PPT-C mRNA was detected primarily in hematopoietic cells in contrast to the previously described Ppta and Pptb genes, which are predominantly expressed in neuronal tissues. HK-1 has several biological activities that are similar to the most studied tachykinin, substance P, such as induction of plasma extravasation and mast cell degranulation. However, HK-1 also has properties that are indicative of a critical role in mouse B cell development. HK-1 stimulated the proliferation of interleukin 7-expanded B cell precursors, whereas substance P had no effect. HK-1, but not substance P, promoted the survival of freshly isolated bone marrow B lineage cells or cultured, lipopolysaccharide-stimulated pre-B cells. N-acetyl-L-trytophan-3,5-bistrifluromethyl benzyl ester, a tachykinin receptor antagonist, increased apoptosis of these cells and in vivo administration of this antagonist led to specific reductions of the B220lowCD43 population (the pre-B cell compartment) in the bone marrow and the IgMhighIgDlow population (the newly generated B cells) in the spleen. Thus, HK-1 may be an autocrine factor that is important for the survival of B cell precursors at a critical phase of development.
Collapse
Affiliation(s)
- Y Zhang
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and Department of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada, M5G 2M9
| | | | | | | | | |
Collapse
|
17
|
Takematsu H, Diaz S, Stoddart A, Zhang Y, Varki A. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus. J Biol Chem 1999; 274:25623-31. [PMID: 10464298 DOI: 10.1074/jbc.274.36.25623] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation is one of the most common modifications of sialic acids, and it can affect several sialic acid-mediated recognition phenomena. We previously reported a cDNA encoding a lysosomal sialic acid-specific 9-O-acetylesterase, which traverses the endoplasmic reticulum-Golgi pathway and localizes primarily to lysosomes and endosomes. In this study, we report a variant cDNA derived from the same gene that contains a different 5' region. This cDNA has a putative open reading frame lacking a signal peptide-encoding sequence and is thus a candidate for the previously described cytosolic sialic acid 9-O-acetylesterase activity. Epitope-tagged constructs confirm that the new sequence causes the protein product to be targeted to the cytosol and has esterase activity. Using reverse transcription-polymerase chain reaction to distinguish the two forms of message, we show that although the lysosomal sialic acid-specific 9-O-acetylesterase message has a widespread pattern of expression in adult mouse tissues, this cytosolic sialic acid 9-O-acetylesterase form has a rather restricted distribution, with the strongest expression in the liver, ovary, and brain. Using a polyclonal antibody directed against the 69-amino acid region common to both proteins, we confirmed that the expression of glycosylated and nonglycosylated polypeptides occurred in appropriate subcellular fractions of normal mouse tissues. Rodent liver polypeptides reacting to the antibody also co-purify with previously described lysosomal sialic acid esterase activity and at least a portion of the cytosolic activity. Thus, two sialic acid 9-O-acetylesterases found in very different subcellular compartments can be encoded by a single gene by differential usage of a signal peptide-encoding exon at the N terminus. The 5'-rapid amplification of cDNA ends results and the differences in tissue-specific expression suggest that expression of these two products may be differentially regulated by independent promoters.
Collapse
Affiliation(s)
- H Takematsu
- Glycobiology Research and Training Center, Divisions of Hematology-Oncology and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Sialic acids can be acetylated at the 4, 7, 8 and/or 9 position. Biological roles of these substitutions have been missed until recently because of their low abundance and lability to conventional purification methods. The recent advances in the analysis of sialic acids have allowed to demonstrate that O-acetylation has a selective but widespread distribution. The metabolism of acetylated sialic acids is under the control of two groups of enzymes, O-acetyl transferases and 9-O-acetyl esterases. O-acetyl transferases are difficult to purify, and furthermore, attempts at expression cloning have failed in isolating the true 9-O-acetyl transferase cDNA. This explains that the regulation of the selective expression of O-acetylated sialic acid in not completely understood. Acetylation of sialic acid is expressed on the outer most part of the carbohydrate moiety of membrane and secreted glycoconjugates. This particular location explains why this modification is involved in cell/cell interactions and in the non-immune protection of mucosa.
Collapse
Affiliation(s)
- A Klein
- Unité INSERM 377, Lille, France
| | | |
Collapse
|
19
|
Cornelissen LA, Wierda CM, van der Meer FJ, Herrewegh AA, Horzinek MC, Egberink HF, de Groot RJ. Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 1997; 71:5277-86. [PMID: 9188596 PMCID: PMC191764 DOI: 10.1128/jvi.71.7.5277-5286.1997] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have characterized the 3'-most 3 kb of the genome of bovine torovirus (BoTV) strain Breda. A novel 1.2-kb gene, located between the genes for the membrane and nucleocapsid proteins, was identified. This gene, the 3'-most 0.5 kb of which is also present in the genome of the equine torovirus isolate Berne virus (BEV), codes for a class I membrane protein displaying 30% sequence identity with the hemagglutinin-esterases (HEs) of coronaviruses and influenza C viruses. Heterologous expression of the BoTV HE gene yielded a 65,000-molecular weight N-glycosylated protein displaying acetylesterase activity. Serologic evidence indicates that the HE homolog is expressed during the natural infection and represents a prominent antigen. By using an antiserum raised against residues 13 to 130 of HE, the HE protein was detected in radioiodinated, sucrose gradient-purified BoTV preparations. Formal evidence that HE is a structural protein was provided by immunoelectron microscopy. In addition to the large, 17- to 20-nm spikes, BoTV virions possess shorter surface projections (6 nm on average). We postulate that these surface projections, which are absent from the BEV virion, are composed of the BoTV HE homolog. The HE gene, which has now been demonstrated in three different virus genera, is a showpiece example of modular evolution.
Collapse
Affiliation(s)
- L A Cornelissen
- Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|