1
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
2
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- znbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
3
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
4
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
5
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- azli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
6
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
7
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
8
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
9
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
10
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
11
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021; 9:640755. [PMID: 33718381 PMCID: PMC7947261 DOI: 10.3389/fcell.2021.640755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund-Thomson syndrome (RTS), Baller-Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
Affiliation(s)
- Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anthony J. Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Van Vu T, Thi Hai Doan D, Kim J, Sung YW, Thi Tran M, Song YJ, Das S, Kim J. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:230-239. [PMID: 33047464 PMCID: PMC7868975 DOI: 10.1111/pbi.13490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 05/05/2023]
Abstract
Gene editing and/or allele introgression with absolute precision and control appear to be the ultimate goals of genetic engineering. Precision genome editing in plants has been developed through various approaches, including oligonucleotide-directed mutagenesis (ODM), base editing, prime editing and especially homologous recombination (HR)-based gene targeting. With the advent of CRISPR/Cas for the targeted generation of DNA breaks (single-stranded breaks (SSBs) or double-stranded breaks (DSBs)), a substantial advancement in HR-mediated precise editing frequencies has been achieved. Nonetheless, further research needs to be performed for commercially viable applications of precise genome editing; hence, an alternative innovative method for genome editing may be required. Within this scope, we summarize recent progress regarding precision genome editing mediated by microhomology-mediated end joining (MMEJ) and discuss their potential applications in crop improvement.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- National Key Laboratory for Plant Cell BiotechnologyAgricultural Genetics InstituteKm 02, Pham Van Dong RoadCo Nhue 1, Bac Tu Liem, Hanoi11917Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- Division of Life ScienceGyeongsang National University501 Jinju‐daeroJinju52828Republic of Korea
| |
Collapse
|
13
|
Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 2018. [PMID: 29530982 DOI: 10.1074/jbc.tm117.000375] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative end-joining (a-EJ) pathways, which repair DNA double-strand breaks (DSBs), are initiated by end resection that generates 3' single strands. This reaction is shared, at least in part, with homologous recombination but distinguishes a-EJ from the major nonhomologous end-joining pathway. Although the a-EJ pathways make only a minor and poorly understood contribution to DSB repair in nonmalignant cells, there is growing interest in these pathways, as they generate genomic rearrangements that are hallmarks of cancer cells. Here, we review and discuss the current understanding of the mechanisms and regulation of a-EJ pathways, the role of a-EJ in human disease, and the potential utility of a-EJ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Annahita Sallmyr
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
14
|
Greco GE, Matsumoto Y, Brooks RC, Lu Z, Lieber MR, Tomkinson AE. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair (Amst) 2016; 43:18-23. [PMID: 27235626 DOI: 10.1016/j.dnarep.2016.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 11/15/2022]
Abstract
DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.
Collapse
Affiliation(s)
- George E Greco
- Department of Chemistry, Goucher College, Baltimore, MD, United States
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Rhys C Brooks
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Zhengfei Lu
- Departments of Pathology, Biochemistry and Molecular Biology, Biological Sciences, and Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Michael R Lieber
- Departments of Pathology, Biochemistry and Molecular Biology, Biological Sciences, and Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
15
|
Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem Sci 2015; 40:701-714. [PMID: 26439531 DOI: 10.1016/j.tibs.2015.08.006] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks (DSBs) disrupt the continuity of chromosomes and their repair by error-free mechanisms is essential to preserve genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism that involves alignment of microhomologous sequences internal to the broken ends before joining, and is associated with deletions and insertions that mark the original break site, as well as chromosome translocations. Whether MMEJ has a physiological role or is simply a back-up repair mechanism is a matter of debate. Here we review recent findings pertaining to the mechanism of MMEJ and discuss its role in normal and cancer cells.
Collapse
|
16
|
Decottignies A. Alternative end-joining mechanisms: a historical perspective. Front Genet 2013; 4:48. [PMID: 23565119 PMCID: PMC3613618 DOI: 10.3389/fgene.2013.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/15/2013] [Indexed: 12/29/2022] Open
Abstract
In the presence of functional DNA repair pathways, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR), two conserved pathways that protect cells from aberrant chromosomal rearrangements. During the past two decades however, unusual and presumably distinct DNA end-joining repair activities have been unraveled in NHEJ-deficient cells and these are likely to operate in various chromosomal contexts and species. Most alternative DNA end-joining events reported so far appear to involve microhomologous sequences and are likely to rely on a subset of HR enzymes, namely those responsible for the single-strand annealing mechanism of HR, and on DNA Ligase III. Usually, microhomologies are not initially present at DSB ends and thus need to be unmasked through DNA end resection, a process that can lead to extensive nucleotide loss and is therefore highly mutagenic. In addition to microhomology-mediated end-joining events, recent studies in mammalian cells point toward the existence of a distinct and still ill defined alternative end-joining pathway that does not appear to rely on pre-existing microhomologies and may possibly involve DNA Ligase I. Whether dependent on microhomologies or not, alternative DNA end-joining mechanisms are likely to be highly mutagenic in vivo, being able to drive telomere fusion events and cancer-associated chromosomal translocations in mouse models. In the future, it will be important to better characterize the genetic requirements of these mutagenic alternative mechanisms of DNA end-joining.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Catholic University of Louvain Brussels, Belgium
| |
Collapse
|
17
|
The NF90/NF45 complex participates in DNA break repair via nonhomologous end joining. Mol Cell Biol 2011; 31:4832-43. [PMID: 21969602 DOI: 10.1128/mcb.05849-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor 90 (NF90), an RNA-binding protein implicated in the regulation of gene expression, exists as a heterodimeric complex with NF45. We previously reported that depletion of the NF90/NF45 complex results in a multinucleated phenotype. Time-lapse microscopy revealed that binucleated cells arise by incomplete abscission of progeny cells followed by fusion. Multinucleate cells arose through aberrant division of binucleated cells and displayed abnormal metaphase plates and anaphase chromatin bridges suggestive of DNA repair defects. NF90 and NF45 are known to interact with the DNA-dependent protein kinase (DNA-PK), which is involved in telomere maintenance and DNA repair by nonhomologous end joining (NHEJ). We hypothesized that NF90 modulates the activity of DNA-PK. In an in vitro NHEJ assay system, DNA end joining was reduced by NF90/NF45 immunodepletion or by RNA digestion to an extent similar to that for catalytic subunit DNA-PKcs immunodepletion. In vivo, NF90/NF45-depleted cells displayed increased γ-histone 2A.X foci, indicative of an accumulation of double-strand DNA breaks (DSBs), and increased sensitivity to ionizing radiation consistent with decreased DSB repair. Further, NF90/NF45 knockdown reduced end-joining activity in vivo. These results identify the NF90/NF45 complex as a regulator of DNA damage repair mediated by DNA-PK and suggest that structured RNA may modulate this process.
Collapse
|
18
|
Beck BD, Lee SS, Williamson E, Hromas RA, Lee SH. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 2011; 50:4360-70. [PMID: 21491884 PMCID: PMC3388547 DOI: 10.1021/bi200333k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metnase (SETMAR) is a SET-transposase fusion protein that promotes nonhomologous end joining (NHEJ) repair in humans. Although both SET and the transposase domains were necessary for its function in DSB repair, it is not clear what specific role Metnase plays in the NHEJ. In this study, we show that Metnase possesses a unique endonuclease activity that preferentially acts on ssDNA and ssDNA-overhang of a partial duplex DNA. Cell extracts lacking Metnase poorly supported DNA end joining, and addition of wt-Metnase to cell extracts lacking Metnase markedly stimulated DNA end joining, while a mutant (D483A) lacking endonuclease activity did not. Given that Metnase overexpression enhanced DNA end processing in vitro, our finding suggests a role for Metnase's endonuclease activity in promoting the joining of noncompatible ends.
Collapse
Affiliation(s)
- Brian D. Beck
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sung-Sook Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
19
|
Sharma S, Choudhary B, Raghavan SC. Efficiency of nonhomologous DNA end joining varies among somatic tissues, despite similarity in mechanism. Cell Mol Life Sci 2011; 68:661-76. [PMID: 20680388 PMCID: PMC11114952 DOI: 10.1007/s00018-010-0472-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/07/2010] [Accepted: 07/16/2010] [Indexed: 01/09/2023]
Abstract
Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.
Collapse
Affiliation(s)
- Sheetal Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| | - Bibha Choudhary
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 071 India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| |
Collapse
|
20
|
Sharma S, Raghavan SC. Nonhomologous DNA end joining in cell-free extracts. J Nucleic Acids 2010; 2010. [PMID: 20936167 PMCID: PMC2945661 DOI: 10.4061/2010/389129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 08/05/2010] [Indexed: 12/19/2022] Open
Abstract
Among various DNA damages, double-strand breaks (DSBs) are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ) is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.
Collapse
Affiliation(s)
- Sheetal Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
21
|
Canfield C, Rains J, De Benedetti A. TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1. BMC Mol Biol 2009; 10:110. [PMID: 20021694 PMCID: PMC2803485 DOI: 10.1186/1471-2199-10-110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Tousled-like kinases are involved in chromatin assembly, DNA repair, transcription, and chromosome segregation. Previous evidence indicated that TLK1B can promote repair of plasmids with cohesive ends in vitro, but it was inferred that the mechanism was indirect and via chromatin assembly, mediated by its interaction with the chromatin assembly factor Asf1. We recently identified Rad9 as a substrate of TLK1B, and we presented evidence that the TLK1B-Rad9 interaction plays some role in DSB repair. Hence the relative contribution of Asf1 and Rad9 to the protective effect of TLK1B in DSBs repair is not known. Using an adeno-HO-mediated cleavage system in MM3MG cells, we previously showed that overexpression of either TLK1B or a kinase-dead protein (KD) promoted repair and the assembly of Rad9 in proximity of the DSB at early time points post-infection. This established that it is a chaperone activity of TLK1B and not directly the kinase activity that promotes recruitment of 9-1-1 to the DSB. However, the phosphorylation of Rad9(S328) by TLK1B appeared important for mediating a cell cycle checkpoint, and thus, this phosphorylation of Rad9 may have other effects on 9-1-1 functionality. Results Here we present direct evidence that TLK1B can promote repair of linearized plasmids with incompatible ends that require processing prior to ligation. Immunodepletion of Rad9 indicated that Rad9 was important for processing the ends preceding ligation, suggesting that the interaction of TLK1B with Rad9 is a key mediator for this type of repair. Ligation of incompatible ends also required DNA-PK, as addition of wortmannin or immunodepletion of Ku70 abrogated ligation. Depletion of Ku70 prevented the ligation of the plasmid but did not affect stimulation of the fill-in of the ends by added TLK1B, which was attributed to Rad9. From experiments with the HO-cleavage system, we now show that Rad17, a subunit of the "clamp loader", associates normally with the DSB in KD-overexpressing cells. However, the subsequent release of Rad17 and Rad9 upon repair of the DSB was significantly slower in these cells compared to controls or cells expressing wt-TLK1B. Conclusions TLKs play important roles in DNA repair, not only by modulation of chromatin assembly via Asf1, but also by a more direct function in processing the ends of a DSB via interaction with Rad9. Inhibition of Rad9 phosphorylation in KD-overexpressing cells may have consequences in signaling completion of the repair and cell cycle re-entry, and could explain a loss of viability from DSBs in these cells.
Collapse
Affiliation(s)
- Caroline Canfield
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, 71130, USA.
| | | | | |
Collapse
|
22
|
Burton P, McBride DJ, Wilkes JM, Barry JD, McCulloch R. Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology. EUKARYOTIC CELL 2007; 6:1773-81. [PMID: 17693593 PMCID: PMC2043400 DOI: 10.1128/ec.00212-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/01/2007] [Indexed: 12/26/2022]
Abstract
DNA double-strand breaks (DSBs) are repaired primarily by two distinct pathways: homologous recombination and nonhomologous end joining (NHEJ). NHEJ has been found in all eukaryotes examined to date and has been described recently for some bacterial species, illustrating its ancestry. Trypanosoma brucei is a divergent eukaryotic protist that evades host immunity by antigenic variation, a process in which homologous recombination plays a crucial function. While homologous recombination has been examined in some detail in T. brucei, little work has been done to examine what other DSB repair pathways the parasite utilizes. Here we show that T. brucei cell extracts support the end joining of linear DNA molecules. These reactions are independent of the Ku heterodimer, indicating that they are distinct from NHEJ, and are guided by sequence microhomology. We also demonstrate bioinformatically that T. brucei, in common with other kinetoplastids, does not encode recognizable homologues of DNA ligase IV or XRCC4, suggesting that NHEJ is either absent or mechanistically diverged in these pathogens.
Collapse
Affiliation(s)
- Peter Burton
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
23
|
Sharma S. Age-related nonhomologous end joining activity in rat neurons. Brain Res Bull 2007; 73:48-54. [PMID: 17499636 DOI: 10.1016/j.brainresbull.2007.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
DNA double strand break (DSB) represents a potentially lethal form of DNA damage. Reports suggest that DSBs are introduced in neurons during the course of normal development, and repair of such DSBs is essential for neuronal survival. The molecular mechanisms of DSB repair by nonhomologous end joining (NHEJ) have been described in several cell types. The present study describes age-related NHEJ activity in the isolated neurons from rat cerebral cortex. Cell-free extracts prepared from rat cortical neurons support efficient NHEJ of linearized plasmid DNA in an in vitro DSB repair assay. End joining efficiency of young neurons is dependent on DNA end structure. A linear plasmid with blunt ends was joined less efficiently by the neuronal extracts than the cohesive or non-matching protruding DNA ends. NHEJ in neurons was blocked by the DNA-PKcs inhibitor wortmannin, and dNTP, and could occur in the absence of exogenously added ATP. The end joining process in young rat neurons is nonfaithful. In vitro NHEJ activity was considerably lower in adult brain, and neurons from old brain failed to support significant end joining. The age-dependent profile of neuronal NHEJ indicates that neurons in postnatal brain utilize error-prone NHEJ to repair DNA double strand breaks accumulated within the genome and this activity declines gradually with age.
Collapse
Affiliation(s)
- Sudha Sharma
- ICMR Center for Research on Aging and Brain (CRAB), Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
24
|
Pacher M, Schmidt-Puchta W, Puchta H. Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 2007; 175:21-9. [PMID: 17057227 PMCID: PMC1775016 DOI: 10.1534/genetics.106.065185] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/06/2006] [Indexed: 11/18/2022] Open
Abstract
Using the rare-cutting endonuclease I-SceI we were able to demonstrate before that the repair of a single double-strand break (DSB) in a plant genome can be mutagenic due to insertions and deletions. However, during replication or due to irradiation several breaks might be induced simultaneously. To analyze the mutagenic potential of such a situation we established an experimental system in tobacco harboring two unlinked transgenes, each carrying an I-SceI site. After transient expression of I-SceI a kanamycin-resistance marker could be restored by joining two previously unlinked broken ends, either by homologous recombination (HR) or by nonhomologous end joining (NHEJ). Indeed, we were able to recover HR and NHEJ events with similar frequencies. Despite the fact that no selection was applied for joining the two other ends, the respective linkage could be detected in most cases tested, demonstrating that the respective exchanges were reciprocal. The frequencies obtained indicate that DSB-induced translocation is up to two orders of magnitude more frequent in somatic cells than ectopic gene conversion. Thus, DSB-induced reciprocal exchanges might play a significant role in plant genome evolution. The technique applied in this study may also be useful for the controlled exchange of unlinked sequences in plant genomes.
Collapse
Affiliation(s)
- Michael Pacher
- Botany II, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|
25
|
Pfeiffer P, Kuhfittig-Kulle S, Goedecke W. Mechanisms of Non-Homologous DNA End Joining:Aspects of In Vitro Assays. Genome Integr 2006. [DOI: 10.1007/7050_008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Boán F, Blanco MG, Barros P, Gómez-Márquez J. DNA end-joining driven by microhomologies catalyzed by nuclear extracts. Biol Chem 2006; 387:263-7. [PMID: 16542147 DOI: 10.1515/bc.2006.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a previous work we used an in vitro system for the generation and analysis of double-strand breaks (DSBs) using nuclear extracts from rat testes as a source of DSB activity. Since the recombination process can be triggered by the formation of DSB, in the present study we developed a strategy to isolate and characterize recombinant molecules using the same in vitro system. Our results indicate that the mechanism for the formation of recombinants was non-homologous end-joining driven by microhomologies. The procedure described here represents an alternative to investigate the mechanisms of DNA end-joining and other forms of DNA repair.
Collapse
Affiliation(s)
- Francisco Boán
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Bioloxía, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
27
|
Abstract
Proper repair of DNA double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity. Here, a new simple assay was used to study extrachromosomal DSB repair in Schizosaccharomyces pombe. Strikingly, DSB repair was associated with the capture of fission yeast mitochondrial DNA (mtDNA) at high frequency. Capture of mtDNA fragments required the Lig4p/Pku70p nonhomologous end-joining (NHEJ) machinery and its frequency was highly increased in fission yeast cells grown to stationary phase. The fission yeast Mre11 complex Rad32p/Rad50p/Nbs1p was also required for efficient capture of mtDNA at DSBs, supporting a role for the complex in promoting intermolecular ligation. Competition assays further revealed that microsatellite DNA from higher eukaryotes was preferentially captured at yeast DSBs. Finally, cotransformation experiments indicated that, in NHEJ-deficient cells, capture of extranuclear DNA at DSBs was observed if homologies--as short as 8 bp--were present between DNA substrate and DSB ends. Hence, whether driven by NHEJ, microhomology-mediated end-joining, or homologous recombination, DNA capture associated with DSB repair is a mutagenic process threatening genomic stability.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, Avenue Hippocrate 74+3, 1200 Brussels, Belgium.
| |
Collapse
|
28
|
Datta K, Neumann RD, Winters TA. Characterization of a complex 125I-induced DNA double-strand break: implications for repair. Int J Radiat Biol 2005; 81:13-21. [PMID: 15962759 DOI: 10.1080/09553000400017713] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the role of radiation-induced DNA double-strand break (DSB) structural organization in DSB repair, and characterize the structural features of 125I-induced DSBs that may impact the repair process. METHODS Plasmid DNA was linearized by sequence-specific targeting using an 125I-labeled triplex-forming oligonucleotide (TFO). Following isolation from agarose gels, base damage structures associated with the DSB ends in plasmids linearized by the 125I-TFO were characterized by probing with the E. coli DNA damage-specific endonuclease and DNA-glycosylases, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-glycosylase (Fpg). RESULTS Plasmid DNA containing DSBs produced by the high-LET-like effects of 125I-TFO has been shown to support at least 2-fold lower end joining than gamma-ray linearized plasmid, and this may be a consequence of the highly complex structure expected near an 125I-induced DSB end. Therefore, to determine if a high density of base damage exists proximal to the DSBs produced by 125I-TFOs, short fragments of DNA recovered from the DSB end of 125I-TFO-linearized plasmid were enzymatically probed. Base damage and AP site clustering was demonstrated within 3 bases downstream and 7 bases upstream of the targeted base. Furthermore, the pattern and extent of base damage varied depending upon the presence or absence of 2 M DMSO during irradiation. CONCLUSIONS 125I-TFO-induced DSBs exhibit a high degree of base damage clustering proximal to the DSB end. At least 60% of the nucleotides within 10 bp of the 125I decay site are sensitive to cleavage by endo IV, endo III, or Fpg following damage accumulation in the presence of DMSO, whereas > or = 80% are sensitive in the absence of DMSO. The high degree of base damage clustering associated with the 125I-TFO-induced DSB end may be a major factor leading to its negligible in vitro repair by the non-homologous end-joining pathway (NHEJ).
Collapse
Affiliation(s)
- Kamal Datta
- Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
29
|
Abstract
Functional analysis of the XRCC genes continues to make an important contribution to the understanding of mammalian DNA double-strand break repair processes and mechanisms of genetic instability leading to cancer. New data implicate XRCC genes in long-standing questions, such as how homologous recombination (HR) intermediates are resolved and how DNA replication slows in the presence of damage (intra-S checkpoint). Examining the functions of XRCC genes involved in non-homologous end joining (NHEJ), paradoxical roles in repair fidelity and telomere maintenance have been found. Thus, XRCC5-7 (DNA-PK)-dependent NHEJ commonly occurs with fidelity, perhaps by aligning ends accurately in the absence of sequence microhomologies, but NHEJ-deficient mice show reduced frequencies of mutation. NHEJ activity seems to be involved in both mitigating and mediating telomere fusions; however, defective NHEJ can lead to telomere elongation, while loss of HR activity leads to telomere shortening. The correct functioning of XRCC genes involved in both HR and NHEJ is important for genetic stability, but loss of each pathway leads to different consequences, with defects in HR additionally leading to mitotic disruption and aneuploidy. Confirmation that these responses are likely to contribute to cancer induction and/or progression, is given by studies of humans and mice with XRCC gene disruptions: those affecting NHEJ show increased lymphoid tumours, while those affecting HR lead to breast cancer and perhaps to gynaecological tumours.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
30
|
Budman J, Chu G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 2005; 24:849-60. [PMID: 15692565 PMCID: PMC549622 DOI: 10.1038/sj.emboj.7600563] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/03/2005] [Indexed: 12/22/2022] Open
Abstract
In mammalian cells, nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. We have developed a cell-free system capable of processing and joining noncompatible DNA ends. The system had key features of NHEJ in vivo, including dependence on Ku, DNA-PKcs, and XRCC4/Ligase4. The NHEJ reaction had striking properties. Processing of noncompatible ends involved polymerase and nuclease activities that often stabilized the alignment of opposing ends by base pairing. To achieve this, polymerase activity efficiently synthesized DNA across discontinuities in the template strand, and nuclease activity removed a limited number of nucleotides back to regions of microhomology. Processing was suppressed for DNA ends that could be ligated directly, biasing the reaction to preserve DNA sequence and maintain genomic integrity. DNA sequence internal to the ends influenced the spectrum of processing events for noncompatible ends. Furthermore, internal DNA sequence strongly influenced joining efficiency, even in the absence of processing. These results support a model in which DNA-PKcs plays a central role in regulating the processing of ends for NHEJ.
Collapse
Affiliation(s)
- Joe Budman
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA, USA
| | - Gilbert Chu
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA, USA
- Departments of Medicine and Biochemistry, Stanford University, CCSR Building Room 1145, 269 Campus Drive, Stanford, CA 94305-5151, USA. Tel.: +1 650 725 6442; Fax: +1 650 736 2282; E-mail:
| |
Collapse
|
31
|
Bentley J, Diggle CP, Harnden P, Knowles MA, Kiltie AE. DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res 2004; 32:5249-59. [PMID: 15466592 PMCID: PMC521655 DOI: 10.1093/nar/gkh842] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3' overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PK(cs). These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer.
Collapse
Affiliation(s)
- Johanne Bentley
- Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, LS9 7TF, UK.
| | | | | | | | | |
Collapse
|
32
|
Raghavan SC, Raman MJ. Nonhomologous end joining of complementary and noncomplementary DNA termini in mouse testicular extracts. DNA Repair (Amst) 2004; 3:1297-310. [PMID: 15336625 DOI: 10.1016/j.dnarep.2004.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/24/2022]
Abstract
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
33
|
Yatagai F, Morimoto S, Kato T, Honma M. Further characterization of loss of heterozygosity enhanced by p53 abrogation in human lymphoblastoid TK6 cells: disappearance of endpoint hotspots. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 560:133-45. [PMID: 15157651 DOI: 10.1016/j.mrgentox.2004.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 02/19/2004] [Accepted: 02/19/2004] [Indexed: 11/27/2022]
Abstract
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.
Collapse
Affiliation(s)
- Fumio Yatagai
- Division of Radioisotope Technology, The Institute of Physical and Chemical Research, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
34
|
Abstract
Much work has been focused on the pathways that restore the integrity of the genome after different kinds of lesions, especially double-strand breaks. A classical method to investigate double-strand break repair is the incubation of a DNA substrate with cell-free extracts. In these end-joining assays, the DNA is efficiently ligated by the proteins present in the extract, generating circular molecules and/or multimers. In contrast, using a similar in vitro system, we detected DNA cleavage rather than end ligation. When comparing our results with previous works, a paradox emerges: lower amounts of DNA become multimerized instead of degraded and higher amounts of DNA are degraded rather than multimerized. Here, we have demonstrated that when the DNA/protein ratio is low enough, the DNA-binding proteins of the nuclear extract protect the DNA substrate, avoiding DNA degradation and vice versa. Therefore, the variation of the DNA/protein ratio is enough to switch the outcome of the experiment from a DNA cleavage assay to a typical end-joining assay.
Collapse
Affiliation(s)
- Miguel G Blanco
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruna, Spain
| | | | | |
Collapse
|
35
|
Ma JL, Kim EM, Haber JE, Lee SE. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 2003; 23:8820-8. [PMID: 14612421 PMCID: PMC262689 DOI: 10.1128/mcb.23.23.8820-8828.2003] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 08/19/2003] [Accepted: 08/27/2003] [Indexed: 12/22/2022] Open
Abstract
End joining of double-strand breaks (DSBs) requires Ku proteins and frequently involves base pairing between complementary terminal sequences. To define the role of terminal base pairing in end joining, two oppositely oriented HO endonuclease cleavage sites separated by 2.0 kb were integrated into yeast chromosome III, where constitutive expression of HO endonuclease creates two simultaneous DSBs with no complementary end sequence. Lack of complementary sequence in their 3' single-strand overhangs facilitates efficient repair events distinctly different from when the 3' ends have a 4-bp sequence base paired in various ways to create 2- to 3-bp insertions. Repair of noncomplementary ends results in a set of nonrandom deletions of up to 302 bp, annealed by imperfect microhomology of about 8 to 10 bp at the junctions. This microhomology-mediated end joining (MMEJ) is Ku independent, but strongly dependent on Mre11, Rad50, and Rad1 proteins and partially dependent on Dnl4 protein. The MMEJ also occurs when Rad52 is absent, but the extent of deletions becomes more limited. The increased gamma ray sensitivity of rad1Delta rad52Delta yku70Delta strains compared to rad52Delta yku70Delta strains suggests that MMEJ also contributes to the repair of DSBs induced by ionizing radiation.
Collapse
Affiliation(s)
- Jia-Lin Ma
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | |
Collapse
|
36
|
Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2003; 2:655-72. [PMID: 12767346 DOI: 10.1016/s1568-7864(03)00062-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Analysis of the XRCC genes has played an important part in understanding mammalian DNA repair processes, especially those involved in double-strand break (DSB) repair. Most of these genes were identified through their ability to correct DNA damage hypersensitivity in rodent cell lines, and they represent components of several different repair pathways including base-excision repair, non-homologous end joining, and homologous recombination. We document the phenotypic effects of mutation of the XRCC genes, and the current state of our knowledge of their functions. In addition to their continuing importance in discovering mechanisms of DNA repair, analysis of the XRCC genes is making a substantial contribution to the understanding of specific human disorders, including cancer.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
37
|
Pastwa E, Neumann RD, Mezhevaya K, Winters TA. Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. Radiat Res 2003; 159:251-61. [PMID: 12537531 DOI: 10.1667/0033-7587(2003)159[0251:roridd]2.0.co;2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cells primarily repair DSBs by nonhomologous end joining (NHEJ). To assess the ability of human cells to mediate end joining of complex DSBs such as those produced by chemicals, oxidative events, or high- and low-LET radiation, we employed an in vitro double-strand break repair assay using plasmid DNA linearized by these various agents. We found that human HeLa cell extracts support end joining of complex DSBs and form multimeric plasmid products from substrates produced by the radiomimetic drug bleomycin, 60Co gamma rays, and the effects of 125I decay in DNA. End joining was found to be dependent on the type of DSB-damaging agent, and it decreased as the cytotoxicity of the DSB-inducing agent increased. In addition to the inhibitory effects of DSB end-group structures on repair, NHEJ was found to be strongly inhibited by lesions proximal to DSB ends. The initial repair rate for complex non-ligatable bleomycin-induced DSBs was sixfold less than that of similarly configured (blunt-ended) but less complex (ligatable) restriction enzyme-induced DSBs. Repair of DSBs produced by gamma rays was 15-fold less efficient than repair of restriction enzyme-induced DSBs. Repair of the DSBs produced by 125I was near the lower limit of detection in our assay and was at least twofold lower than that of gamma-ray-induced DSBs. In addition, DSB ends produced by 125I were shown to be blocked by 3'-nucleotide fragments: the removal of these by E. coli endonuclease IV permitted ligation.
Collapse
Affiliation(s)
- Elzbieta Pastwa
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
38
|
Siebert R, Puchta H. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. THE PLANT CELL 2002; 14:1121-31. [PMID: 12034901 PMCID: PMC150611 DOI: 10.1105/tpc.001727] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Accepted: 02/11/2002] [Indexed: 05/18/2023]
Abstract
Previous studies demonstrated that in somatic plant cells, homologous recombination (HR) is several orders of magnitude less efficient than nonhomologous end joining and that HR is little used for genomic double-strand break (DSB) repair. Here, we provide evidence that if genomic DSBs are induced in close proximity to homologous repeats, they can be repaired in up to one-third of cases by HR in transgenic tobacco. Our findings are relevant for the evolution of plant genomes because they indicate that sequences containing direct repeats such as retroelements might be less stable in plants that harbor active mobile elements than anticipated previously. Furthermore, our experimental setup enabled us to demonstrate that transgenic sequences flanked by sites of a rare cutting restriction enzyme can be excised efficiently from the genome of a higher eukaryote by HR as well as by nonhomologous end joining. This makes DSB-induced recombination an attractive alternative to the currently applied sequence-specific recombination systems used for genome manipulations, such as marker gene excision.
Collapse
Affiliation(s)
- Ralph Siebert
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | |
Collapse
|
39
|
Grandi P, Eltsov M, Nielsen I, Raska I. DNA double-strand breaks induce formation of RP-A/Ku foci on in vitro reconstituted Xenopus sperm nuclei. J Cell Sci 2001; 114:3345-57. [PMID: 11591822 DOI: 10.1242/jcs.114.18.3345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication protein A (RP-A) is involved in DNA replication, repair and recombination. It has been demonstrated that RP-A clusters in foci prior to DNA replication and redistributes over chromatin during S-phase. Here, we show that RP-A foci also form in response to DNA double-strand (ds) breaks produced on Xenopus laevis sperm nuclei by restriction enzymes and then reconstituted with Xenopus egg high-speed extracts. Ku86 co-localizes with RP-A in the same foci. An unscheduled RP-A-dependent DNA synthesis takes place overlapping with RP-A and Ku86 foci. Immunoelectron-microscopy analysis reveals that these foci correspond to spherical bodies up to 300 nm in diameter, which contain RP-A, Ku86 and DNA. In an independent in vitro assay, we incubated linear dsDNA bound to magnetic beads with Xenopus egg extracts. Here, also RP-A and Ku cluster in foci as seen through immunofluorescence. Both proteins appear to enrich themselves in sequences near the ends of the DNA molecules and influence ligation efficiency of ds linear DNA to these ends. Thus, the Xenopus in vitro system allows for the generation of specific DNA ds breaks, RP-A and Ku can be used as markers for these lesions and the repair of this type of DNA damage can be studied under conditions of a normal nuclear environment.
Collapse
Affiliation(s)
- P Grandi
- Department of Biochemistry and Molecular Biology, University of Geneva, CH1211-Geneva 4, Switzerland
| | | | | | | |
Collapse
|
40
|
Pastwa E, Neumann RD, Winters TA. In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts. Nucleic Acids Res 2001; 29:E78. [PMID: 11504886 PMCID: PMC55862 DOI: 10.1093/nar/29.16.e78] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a new assay for in vitro repair of oxidatively induced DNA double-strand breaks (DSBs) by HeLa cell nuclear extracts. The assay employs linear plasmid DNA containing DNA DSBs produced by the radiomimetic drug bleomycin. The bleomycin-induced DSB possesses a complex structure similar to that produced by oxidative processes and ionizing radiation. Bleomycin DSBs are composed of blunt ends or ends containing a single 5'-base overhang. Regardless of the 5'-end structure, all bleomycin-induced DSBs possess 3'-ends blocked by phosphoglycolate. Cellular extraction and initial end joining conditions for our assay were optimized with restriction enzyme-cleaved DNA to maximize ligation activity. Parameters affecting ligation such as temperature, time, ionic strength, ATP utilization and extract protein concentration were examined. Similar reactions were performed with the bleomycin-linearized substrate. In all cases, end-joined molecules ranging from dimers to higher molecular weight forms were produced and observed directly in agarose gels stained with Vistra Green and imaged with a FluorImager 595. This detection method is at least 50-fold more sensitive than ethidium bromide and permits detection of </=0.25 ng double-stranded DNA per band in post-electrophoretically stained agarose gels. Consequently, our end-joining reaction requires </=100 ng substrate DNA and >/=50% conversion of substrate to product is achieved with simple substrates such as restriction enzyme-cleaved DNA. Using our assay we have observed a 6-fold lower repair rate and a lag in reaction initiation for bleomycin-induced DSBs as compared to blunt-ended DNA. Also, end joining reaction conditions are DSB end group dependent. In particular, bleomycin-induced DSB repair is considerably more sensitive to inhibition by increased ionic strength than repair of blunt-ended DNA.
Collapse
Affiliation(s)
- E Pastwa
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Pospiech H, Rytkönen AK, Syväoja JE. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 2001; 29:3277-88. [PMID: 11470886 PMCID: PMC55831 DOI: 10.1093/nar/29.15.3277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5' or 3' overhangs was stimulated by 20-53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of alpha-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase alpha were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases beta and epsilon did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.
Collapse
Affiliation(s)
- H Pospiech
- Biocenter Oulu and Department of Biochemistry, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | |
Collapse
|
42
|
de Jager M, Dronkert ML, Modesti M, Beerens CE, Kanaar R, van Gent DC. DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 2001; 29:1317-25. [PMID: 11238998 PMCID: PMC29748 DOI: 10.1093/nar/29.6.1317] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.
Collapse
Affiliation(s)
- M de Jager
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, Dr Molewaterplein 50, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Frit P, Li RY, Arzel D, Salles B, Calsou P. Ku entry into DNA inhibits inward DNA transactions in vitro. J Biol Chem 2000; 275:35684-91. [PMID: 10945984 DOI: 10.1074/jbc.m004315200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Association of the DNA end-binding Ku70/Ku80 heterodimer with the 460-kDa serine/threonine kinase catalytic subunit forms the DNA-dependent protein kinase (DNA-PK) that is required for double-strand break repair by non-homologous recombination in mammalian cells. Recently, we have proposed a model in which the kinase activity is required for translocation of the DNA end-binding subunit Ku along the DNA helix when DNA-PK assembles on DNA ends. Here, we have questioned the consequences of Ku entry into DNA on local DNA processes by using human nuclear cell extracts incubated in the presence of linearized plasmid DNA. As two model processes, we have chosen nucleotide excision repair (NER) of UVC DNA lesions and transcription from viral promoters. We show that although NER efficiency is strongly reduced on linear DNA, it can be fully restored in the presence of DNA-PK inhibitors. Simultaneously, the amount of NER proteins bound to the UVC-damaged linear DNA is increased and the amount of Ku bound to the same DNA molecules is decreased. Similarly, the poor transcription efficiency exhibited by viral promoters on linear DNA is enhanced in the presence of DNA-PK inhibitor concentrations that prevent Ku entry into the DNA substrate molecule. The present results show that DNA-PK catalytic activity can regulate DNA transactions including transcription in the vicinity of double-strand breaks by controlling Ku entry into DNA.
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077 Toulouse and the Société Française de Recherches et d'Investissements, Berganton, 33127 Saint Jean d'Illac, France
| | | | | | | | | |
Collapse
|
44
|
Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 2000; 28:2585-96. [PMID: 10871410 PMCID: PMC102716 DOI: 10.1093/nar/28.13.2585] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2000] [Revised: 05/18/2000] [Accepted: 05/18/2000] [Indexed: 01/30/2023] Open
Abstract
Non-homologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair in mammalian cells and depends, among other things, on the DNA end-binding Ku70/80 hetero-dimer. To investigate the function of Ku in NHEJ we have compared the ability of cell-free extracts from wild-type CHO-K1 cells, Ku80-deficient xrs6 cells and Ku80-cDNA-complemented xrs6 cells (xrs6-Ku80) to rejoin different types of DSB in vitro. While the two Ku80-proficient extracts were highly efficient and accurate in rejoining all types of DNA ends, the xrs6 extract displayed strongly decreased NHEJ efficiency and accuracy. The lack of accuracy is most evident in non-homologous terminus configurations containing 3'-overhangs that abut a 5'-overhang or blunt end. While the sequences of the 3'-overhangs are mostly preserved by fill-in DNA synthesis in the Ku80-proficient extracts, they are always completely lost in the xrs6 extract so that, instead, small deletions displaying microhomology patches at their breakpoints arise. In summary, our results are consistent with previous results from Ku-deficient yeast strains and indicate that Ku may serve as an alignment factor that not only increases NHEJ efficiency but also accuracy. Furthermore, a secondary NHEJ activity is present in the absence of Ku which is error-prone and possibly assisted by base pairing interactions.
Collapse
Affiliation(s)
- E Feldmann
- Institut für Zellbiologie des Universitätsklinikums Essen, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.
Collapse
Affiliation(s)
- L K Lewis
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, 111 Alexander Drive, NIH, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
46
|
Mezhevaya K, Winters TA, Neumann RD. Gene targeted DNA double-strand break induction by (125)I-labeled triplex-forming oligonucleotides is highly mutagenic following repair in human cells. Nucleic Acids Res 1999; 27:4282-90. [PMID: 10518622 PMCID: PMC148705 DOI: 10.1093/nar/27.21.4282] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A parallel binding motif 16mer triplex-forming oligonucleotide (TFO) complementary to a polypurine-polypyrimidine target region near the 3'-end of the SupF gene of plasmid pSP189 was labeled with [5-(125)I]dCMP at position 15. Following triplex formation and decay accumulation, radiation-induced site-specific double-strand breaks (DSBs) were produced in the pSP189 SupF gene. Bulk damaged DNA and the isolated site-specific DSB-containing DNA were separately transfected into human WI38VA13 cells and allowed to repair prior to recovery and analysis of mutants. Bulk damaged DNA had a relatively low mutation frequency of 2.7 x 10(-3). In contrast, the isolated linear DNA containing site-specific DSBs had an unusually high mutation frequency of 7.9 x 10(-1). This was nearly 300-fold greater than that observed for the bulk damaged DNA mixture, and >1.5 x 10(4)-fold greater than background. The mutation spectra displayed a high proportion of deletion mutants targeted to the(125)I binding position within the SupF gene for both bulk damaged DNA and isolated linear DNA. Both spectra were characterized by complex mutations with mixtures of changes. However, mutations recovered from the linear site-specific DSB-containing DNA presented a much higher proportion of complex deletion mutations.
Collapse
Affiliation(s)
- K Mezhevaya
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
47
|
Abstract
Double strand DNA breaks are usually caused by ionizing radiation and radiomimetic drugs, but can also occur under normal physiological conditions during double strand break-induced recombination, such as the rearrangement of T-cell receptor and immunoglobulin genes during lymphoid development or the mating type switching in yeast. The main repair mechanism for double strand breaks in higher eukaryotes is nonhomologous DNA end joining (NHEJ), which modifies and ligates the two DNA ends without the help of extensive base-pairing interactions for alignment. Defects in double strand break repair are associated with radiosensitivity, predisposition to cancer and immunodeficiency syndromes, and the analysis of the underlying mutations has lead to the identification of several proteins involved in NHEJ. However, these genetic studies have yielded little information on the mechanism of NHEJ, and while some of the protein factors identified possess the expected enzymatic or DNA-binding activities, the precise role of others remains unclear. Systems for cell-free NHEJ have been available for over 10 years, but the biochemical analysis of NHEJ has lagged behind the genetic analysis, and not a single protein factor required for NHEJ has been identified by biochemical purification and reconstitution of NHEJ activity. Here I review the current status of in vitro systems for NHEJ, summarize the results obtained and information gained, and discuss the outlook for biochemical approaches to study NHEJ.
Collapse
Affiliation(s)
- P Labhart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
48
|
Thacker J. Repair of ionizing radiation damage in mammalian cells. Alternative pathways and their fidelity. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:103-8. [PMID: 10196659 DOI: 10.1016/s0764-4469(99)80030-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ionizing radiation causes a variety of types of damage to DNA in cells, requiring the concerted action of a number of DNA repair enzymes to restore genomic integrity. The DNA base-excision repair and DNA double-strand break repair pathways are particularly important. While single base damages are rapidly excised and repaired using the opposite (undamaged) strand as a template, the correct repair of DNA double-strand breaks may present more difficulties to cellular enzymes owing to the loss of template. In the last few years evidence in support of several enzymatic pathways for the repair of such double-stranded damage has been found. At present we may distinguish at least three pathways: homologous recombination repair, non-homologous (DNA-PK-dependent) end joining, and repeat-driven end joining. This paper focuses on evidence for the first and third of these pathways, and considers in particular their relative importance in mammalian cells and implications for the fidelity of repair.
Collapse
Affiliation(s)
- J Thacker
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire, UK.
| |
Collapse
|
49
|
Sathees CR, Raman MJ. Mouse testicular extracts process DNA double-strand breaks efficiently by DNA end-to-end joining. Mutat Res 1999; 433:1-13. [PMID: 10047774 DOI: 10.1016/s0921-8777(98)00055-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA double-strand break (DSB) processing was studied in mouse testicular extracts using a defined DSB created by cleaving supercoiled pUC12 DNA at a unique site as the substrate, and analysing the processed DNA by gel electrophoresis. Our results demonstrated that enzymatic activity in the extracts promoted multimerization of DNA and suppressed its circularization. This was distinctly different from T4 DNA ligase activity in the control and therefore the process must be more complex than simple ligation. Efficiency of this end-to-end joining was ATP and Mg(2+)-dependent and was much higher with cohesive (especially with 5') than with blunt ends. On recleaving, the joining was predominantly faithful, especially for cohesive ends; but a detectable fraction of DNA had undergone end-processed joining causing junctional deletions, mostly with blunt ends. Redigestion of end-joined products from time course experiments established that the end-deleted joining occurred concurrent to the faithful joining. Junctional segments were cloned and their restriction analysis confirmed the presence of large deletions from both the sides. These results suggested the association of an end-processing activity (exonuclease/helicase + flap endonuclease) along with the end-joining ligase(s). Suppression of end-edited joining on lowering the reaction temperature to 17 degrees or 14 degrees C, despite efficient faithful joining, indicated that this enzymatic activity is retarded at low temperature. Though the efficiency and fidelity of joining were termini-dependent, the orientation of joining was random. Lack of preference for homologous ends (H:H or T:T), as well as efficient joining of heterologous DNA (pUC12/pBR322) having two different blunt termini, showed that the end joining could occur independent of extensive/terminal homology. Retention of radioactivity on end joining of (alpha-32P)dCTP end-filled cohesive termini, and lack of their junctional cleavability, apparently due to restriction site duplication, suggested direct double strand ligation. Thus it is demonstrated that mouse male germ cells possess an efficient DNA end-joining activity, involving either a major pathway of precise joining, or a minor end-deleted joining, and it seems to be achieved by a multienzymatic complex as suggested also for somatic cells by others. These results show that mammalian male germ cells that are proficient in homologous recombination utilize nonhomologous end-joining (NHEJ) mechanism for DSB processing and therefore NHEJ is a conserved, universal pathway for the vital function of DSB repair.
Collapse
Affiliation(s)
- C R Sathees
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
50
|
Kabotyanski EB, Gomelsky L, Han JO, Stamato TD, Roth DB. Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res 1998; 26:5333-42. [PMID: 9826756 PMCID: PMC147996 DOI: 10.1093/nar/26.23.5333] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Ku86 and XRCC4 proteins perform critical but poorly understood functions in the repair of DNA double-strand breaks. Both Ku 86- and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombination, including excessive deletions at recombinant junctions. Previous workers have suggested that these phenomena may reflect defects in joining of the broken DNA ends or in protection of the ends from nucleases. However, end joining in XRCC4-deficient cells has not been examined. Here we show that joining of both matched and mismatched DNA ends occurs efficiently in XRCC4-deficient cells. Furthermore, analysis of junctions shows that XRCC4 is not required to protect the ends from degradation. However, nucleotide sequence analysis of junctions derived from joining of mismatched DNA ends in XRCC4-deficient cells revealed a strong preference for a junction containing a 7 nt homology. Similar results were obtained in Ku86-deficient cells. These data suggest that in the absence of XRCC4 or Ku86, joining is assisted by base pairing interactions, supporting the hypothesis that these proteins may participate in aligning or stabilizing intermediates in end joining.
Collapse
Affiliation(s)
- E B Kabotyanski
- The Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|