1
|
Börner J, Friedrich T, Klug G. RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. Mol Microbiol 2023; 120:874-892. [PMID: 37823424 DOI: 10.1111/mmi.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Tu C, Zhang Y, Zhu P, Sun L, Xu P, Wang T, Luo J, Yu J, Xu L. Enhanced toxicity of entomopathogenic fungi Beauveria bassiana with bacteria expressing immune suppressive dsRNA in a leaf beetle. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105431. [PMID: 37248009 DOI: 10.1016/j.pestbp.2023.105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
The entomopathogenic fungus is recognized as an ideal alternative to chemical pesticides, nonetheless, its efficacy is often limited by insect's innate immune system. The suppression of the host immunity may overcome the obstacle and promote the toxicity of the fungi. Here, by using an entomopathogenic fungus Beauveria bassiana and immune genes dsRNA-expressing bacteria, we explored the potentially synergistic toxicity of the two agents on a leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). We first determined the susceptibilities of P. versicolora to a B. bassiana 476 strain (hereafter referred to Bb476). And the immune genes were identified based on the transcriptome of Bb476 challenged beetles. Subsequently, five immune genes (PGRP1, Toll1, Domeless,SPN1,and Lysozyme) were targeted by feeding dsRNA-expressing bacteria, which produced a 71.4, 39.0, 72.0, 49.0, and 68.7% gene silencing effect, respectively. Furthermore, we found a significantly increased mortality of P. versicolora when combined the Bb476 and the immune suppressive dsRNAs. Taking together, this study highlights the importance of insect immunity in the defense of entomopathogens and also paves the way toward the development of a more efficient pest management strategy that integrates both entomopathogens and immune suppressive dsRNAs.
Collapse
Affiliation(s)
- Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Peipei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Liuwei Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pei Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tianjing Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jingya Yu
- Institute of Plant Protection, Wuhan Institute of Landscape Architecture, Wuhan, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
4
|
Spanka DT, Klug G. Maturation of UTR-Derived sRNAs Is Modulated during Adaptation to Different Growth Conditions. Int J Mol Sci 2021; 22:ijms222212260. [PMID: 34830143 PMCID: PMC8625941 DOI: 10.3390/ijms222212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNAs play a major role in bacterial gene regulation by binding their target mRNAs, which mostly influences the stability or translation of the target. Expression levels of sRNAs are often regulated by their own promoters, but recent reports have highlighted the presence and importance of sRNAs that are derived from mRNA 3′ untranslated regions (UTRs). In this study, we investigated the maturation of 5′ and 3′ UTR-derived sRNAs on a global scale in the facultative phototrophic alphaproteobacterium Rhodobacter sphaeroides. Including some already known UTR-derived sRNAs like UpsM or CcsR1-4, 14 sRNAs are predicted to be located in 5 UTRs and 16 in 3′ UTRs. The involvement of different ribonucleases during maturation was predicted by a differential RNA 5′/3′ end analysis based on RNA next generation sequencing (NGS) data from the respective deletion strains. The results were validated in vivo and underline the importance of polynucleotide phosphorylase (PNPase) and ribonuclease E (RNase E) during processing and maturation. The abundances of some UTR-derived sRNAs changed when cultures were exposed to external stress conditions, such as oxidative stress and also during different growth phases. Promoter fusions revealed that this effect cannot be solely attributed to an altered transcription rate. Moreover, the RNase E dependent cleavage of several UTR-derived sRNAs varied significantly during the early stationary phase and under iron depletion conditions. We conclude that an alteration of ribonucleolytic processing influences the levels of UTR-derived sRNAs, and may thus indirectly affect their mRNA targets.
Collapse
|
5
|
Spanka DT, Reuscher CM, Klug G. Impact of PNPase on the transcriptome of Rhodobacter sphaeroides and its cooperation with RNase III and RNase E. BMC Genomics 2021; 22:106. [PMID: 33549057 PMCID: PMC7866481 DOI: 10.1186/s12864-021-07409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polynucleotide phosphorylase (PNPase) is conserved among both Gram-positive and Gram-negative bacteria. As a core part of the Escherichia coli degradosome, PNPase is involved in maintaining proper RNA levels within the bacterial cell. It plays a major role in RNA homeostasis and decay by acting as a 3'-to-5' exoribonuclease. Furthermore, PNPase can catalyze the reverse reaction by elongating RNA molecules in 5'-to-3' end direction which has a destabilizing effect on the prolonged RNA molecule. RNA degradation is often initiated by an endonucleolytic cleavage, followed by exoribonucleolytic decay from the new 3' end. RESULTS The PNPase mutant from the facultative phototrophic Rhodobacter sphaeroides exhibits several phenotypical characteristics, including diminished adaption to low temperature, reduced resistance to organic peroxide induced stress and altered growth behavior. The transcriptome composition differs in the pnp mutant strain, resulting in a decreased abundance of most tRNAs and rRNAs. In addition, PNPase has a major influence on the half-lives of several regulatory sRNAs and can have both a stabilizing or a destabilizing effect. Moreover, we globally identified and compared differential RNA 3' ends in RNA NGS sequencing data obtained from PNPase, RNase E and RNase III mutants for the first time in a Gram-negative organism. The genome wide RNA 3' end analysis revealed that 885 3' ends are degraded by PNPase. A fair percentage of these RNA 3' ends was also identified at the same genomic position in RNase E or RNase III mutant strains. CONCLUSION The PNPase has a major influence on RNA processing and maturation and thus modulates the transcriptome of R. sphaeroides. This includes sRNAs, emphasizing the role of PNPase in cellular homeostasis and its importance in regulatory networks. The global 3' end analysis indicates a sequential RNA processing: 5.9% of all RNase E-dependent and 9.7% of all RNase III-dependent RNA 3' ends are subsequently degraded by PNPase. Moreover, we provide a modular pipeline which greatly facilitates the identification of RNA 5'/3' ends. It is publicly available on GitHub and is distributed under ICS license.
Collapse
Affiliation(s)
- Daniel-Timon Spanka
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany
| | - Carina Maria Reuscher
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany.
| |
Collapse
|
6
|
Ma ZZ, Zhou H, Wei YL, Yan S, Shen J. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing. PEST MANAGEMENT SCIENCE 2020; 76:2505-2512. [PMID: 32077251 DOI: 10.1002/ps.5792] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi)-based pest management requires efficient delivery and large-batch production of double-stranded (ds)RNA. We previously developed a nanocarrier-mediated dsRNA delivery system that could penetrate an insect's body and efficiently silence gene expression. However, there is a great need to improve the plasmid-Escherichia coli system for the mass production of dsRNA. Here, for efficient dsRNA production, we removed the rnc gene encoding endoribonuclease RNase III in E. coli BL21(DE3) and matched with the RNAi expression vector containing a single T7 promoter. RESULTS The novel pET28-BL21(DE3) RNase III-system was successfully constructed to express vestigial (vg)-dsRNA against Harmonia axyridis. dsRNA was extracted and purified from cell cultures in four E. coil systems, and the yields of dsRNA in pET28-BL21(DE3) RNase III-, pET28-HT115(DE3), L4440-BL21(DE3) RNase III- and L4440-HT115(DE3) were 4.23, 2.75, 0.88 and 1.30 μg mL-1 respectively. The dsRNA expression efficiency of our novel E. coil system was three times that of L4440-HT115(DE3), a widely used dsRNA production system. The RNAi efficiency of dsRNA produced by our system and by biochemical synthesis was comparable when injected into Harmonia axyridis. CONCLUSION Our system expressed dsRNA more efficiently than the widely used L4440-HT115(DE3) system, and the produced dsRNA showed a high gene-silencing effect. Notably, our pET28-BL21(DE3) RNase III-system provides a novel method for the mass production of dsRNA at low cost and high efficiency, which may promote gene function analysis and RNAi-based pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Zheng Ma
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan-Long Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuo Yan
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Asgari M, Ilbeigikhamsehnejad M, Rismani E, Dinparast Djadid N, Raz A. Molecular characterization of RNase III protein of Asaia sp. for developing a robust RNAi-based paratransgensis tool to affect the sexual life-cycle of Plasmodium or Anopheles fitness. Parasit Vectors 2020; 13:42. [PMID: 31996254 PMCID: PMC6990573 DOI: 10.1186/s13071-020-3889-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/04/2020] [Indexed: 01/02/2023] Open
Abstract
Background According to scientific recommendations, paratransgenesis is one of the solutions for improving the effectiveness of the Global Malaria Eradication Programme. In paratransgenesis, symbiont microorganisms are used for distorting or blocking the parasite life-cycle, affecting the fitness and longevity of vectors or reducing the vectorial competence. It has been revealed recently that bacteria could be used as potent tools for double stranded RNA production and delivery to insects. Moreover, findings showed that RNase III mutant bacteria are more competent for this aim. Asaia spp. have been introduced as potent paratransgenesis candidates for combating malaria and, based on their specific features for this goal, could be considered as effective dsRNA production and delivery tools to Anopheles spp. Therefore, we decided to characterize the rnc gene and its related protein to provide the basic required information for creating an RNase III mutant Asaia bacterium. Methods Asaia bacteria were isolated from field-collected Anopheles stephensi mosquitoes. The rnc gene and its surrounding sequences were characterized by rapid amplification of genomic ends. RNase III recombinant protein was expressed in E. coli BL21 and biological activity of the purified recombinant protein was assayed. Furthermore, Asaia RNaseIII amino acid sequence was analyzed by in silico approaches such as homology modeling and docking to determine its structural properties. Results In this study, the structure of rnc gene and its related operon from Asaia sp. was determined. In addition, by performing superimposition and docking with specific substrate, the structural features of Asaia RNaseIII protein such as critical residues which are involved and essential for proper folding of active site, binding of magnesium ions and double stranded RNA molecule to protein and cleaving of dsRNA molecules, were determined. Conclusions In this study, the basic and essential data for creating an RNase III mutant Asaia sp. strain, which is the first step of developing an efficient RNAi-based paratransgenesis tool, were acquired. Asaia sp. have been found in different medically-important vectors and these data are potentially very helpful for researchers studying paratransgenesis and vector-borne diseases and are interested in applying the RNAi technology in the field.
Collapse
Affiliation(s)
- Majid Asgari
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mahdokht Ilbeigikhamsehnejad
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Abstract
The exact knowledge on the ribosomal RNA (rRNA) structure is an important prerequisite for work with rRNA sequences in bioinformatic analyses and in experimental research. Most available rRNA sequences of bacteria are based on gene sequences and on similarity analyses using Escherichia coli rRNA as a standard. Therefore, it is often overlooked that many bacteria harbour mature rRNA 'in pieces'. In some cases, the processing steps during the fragmentation lead to the removal of rRNA segments that are usually found in the ribosome. In this review, the current knowledge on the mechanisms of rRNA fragmentation and on the occurrence of fragmented rRNA in bacteria is summarized, and the physiological implications of this phenomenon are discussed.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
9
|
Amblar M, Viegas SC, López P, Arraiano CM. Homologous and heterologous expression of RNase III from Lactococcus lactis. Biochem Biophys Res Commun 2004; 323:884-90. [PMID: 15381083 DOI: 10.1016/j.bbrc.2004.08.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Indexed: 11/29/2022]
Abstract
The endoribonuclease III (RNase III), encoded by the rnc gene, is an important enzyme for RNA metabolism. In this report a chromosomal fragment containing the rnc gene from Lactococcus lactis was cloned and its expression was analyzed. Complementation assays performed in Escherichia coli demonstrate that the lactococcal RNase III (Lac-RNase III) is able to process rRNAs and to regulate the levels of polynucleotide phosphorylase (PNPase). These results demonstrate that the lactococcal enzyme is able to substitute the Ec-RNase III not only in the rRNA processing, but also in the processing of mRNAs. The amount of lactococcal rnc transcript in an E. coli Deltarnc strain was 3.3-fold higher than in the wild type strain, suggesting that the E. coli RNase III triggers the degradation of the heterologous rnc mRNA. Lac-RNase III is able to cleave an in vitro synthesized mRNA substrate specific for the Bacillus subtilis homolog. Using this substrate, we standardized an enzymatic assay which allows the specific detection of the endonucleolytic activity of Lac-RNase III in L. lactis and E. coli crude extracts.
Collapse
Affiliation(s)
- M Amblar
- Instituto de Tecnologia Química e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
10
|
Jäger S, Hebermehl M, Schiltz E, Klug G. Composition and Activity of the Rhodobacter capsulatus Degradosome Vary under Different Oxygen Concentrations. J Mol Microbiol Biotechnol 2004; 7:148-54. [PMID: 15263819 DOI: 10.1159/000078658] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The influence of changes in temperature or oxygen tension during growth of Rhodobacter capsulatus on the composition and activity of the degradosome, an RNA-processing protein complex, was investigated. Only minor differences in the amount of specific proteins of the complex were observed after a decrease or increase of the temperature, but dramatic variations were detectable during growth at different oxygen concentrations. In particular, the amount of the transcription factor Rho, which was previously shown to be associated with the R. capsulatus degradosome, was strongly increased under aerobic conditions. Remarkably, oxygen tension oppositely affected the levels of the two helicases associated with the degradosome. RNase E and the degradosome from aerobically grown cultures degraded a transcript which represents part of the puf operon encoding proteins of the photosynthetic apparatus faster than did the degradosome from semiaerobically grown cultures.
Collapse
Affiliation(s)
- Stephanie Jäger
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Giessen, Deutschland
| | | | | | | |
Collapse
|
11
|
Lammertyn E, Van Mellaert L, Meyen E, Lebeau I, De Buck E, Anné J, Geukens N. Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. MICROBIOLOGY-SGM 2004; 150:1475-1483. [PMID: 15133109 DOI: 10.1099/mic.0.26973-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is a facultative intracellular Gram-negative rod-shaped bacterium that has become an important cause of both community-acquired and nosocomial pneumonia. Numerous studies concerning the unravelling of the virulence mechanism of this important pathogen have been initiated. As evidence is now accumulating for the involvement of protein secretion systems in bacterial virulence in general, the type I signal peptidase (LepB) of L. pneumophila was of particular interest. This endopeptidase plays an essential role in the processing of preproteins carrying a typical amino-terminal signal peptide, upon translocation across the cytoplasmic membrane. This paper reports the cloning and the transcriptional analysis of the L. pneumophila lepB gene encoding the type I signal peptidase (SPase). Reverse transcription PCR experiments showed clear lepB expression when L. pneumophila was grown both in culture medium, and also intracellularly in Acanthamoeba castellanii, a natural eukaryotic host of L. pneumophila. In addition, LepB was shown to be encoded by a polycistronic mRNA transcript together with two other proteins, i.e. a LepA homologue and a ribonuclease III homologue. SPase activity of the LepB protein was demonstrated by in vivo complementation analysis in a temperature-sensitive Escherichia coli lepB mutant. Protein sequence and predicted membrane topology were compared to those of leader peptidases of other Gram-negative human pathogens. Most strikingly, a strictly conserved methionine residue in the substrate binding pocket was replaced by a leucine residue, which might influence substrate recognition. Finally it was shown by in vivo experiments that L. pneumophila LepB is a target for (5S,6S)-6-[(R)-acetoxyethyl]-penem-3-carboxylate, a specific inhibitor of type I SPases.
Collapse
Affiliation(s)
- Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Eef Meyen
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Ilya Lebeau
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
12
|
Jäger S, Evguenieva-Hackenberg E, Klug G. Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus. MICROBIOLOGY-SGM 2004; 150:687-695. [PMID: 14993318 DOI: 10.1099/mic.0.26666-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of genes for cold-shock proteins is proposed to be regulated primarily at the post-transcriptional level by increase of mRNA stability after transition to low temperatures. Destabilization of the Escherichia coli cold-induced cspA transcript at 37 degrees C as well as stabilization upon cold shock is known to depend on the unusually long (159 nt) 5'-untranslated region. Determination of the cspA mRNA 5'-end from Rhodobacter capsulatus revealed a shorter distance between the start of transcription and the start codon for translation. The cspA mRNA of R. capsulatus was shown to be stabilized at low temperatures to a greater extent than other investigated transcripts. To address the mechanism of decay of the cspA transcript, it was incubated with purified degradosome of R. capsulatus. Endoribonucleolytic in vitro cleavage in the 5'-untranslated region as reported for the cspA transcript of E. coli in vivo was not observed. Instead, the data indicated that the cspA mRNA decay in R. capsulatus is mediated by endoribonucleolytic cleavages within the cspA coding region.
Collapse
Affiliation(s)
- Stephanie Jäger
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| |
Collapse
|
13
|
Jäger S, Jäger A, Klug G. CIRCE is not involved in heat-dependent transcription of groESL but in stabilization of the mRNA 5'-end in Rhodobacter capsulatus. Nucleic Acids Res 2004; 32:386-96. [PMID: 14729923 PMCID: PMC373284 DOI: 10.1093/nar/gkh174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The CIRCE element, an inverted DNA repeat, is known to be involved in the temperature-dependent regulation of genes for heat shock proteins in a variety of organisms. The CIRCE element was identified as the target for the HrcA protein, which represses transcription of heat shock genes under normal growth temperature. Our data reveal that the CIRCE element is not involved in the temperature-dependent transcription of the groESL genes in Rhodobacter capsulatus. Apparently, R.capsulatus does not harbour an HrcA protein. The mechanisms of heat shock regulation of the groESL genes in R.capsulatus therefore diverge significantly from the regulatory pathway identified in other organisms. A structural analysis of the CIRCE RNA element revealed a stem of 11 nt pairs and a loop of only 5 nt. This folding differs from a structure with a 9 nt loop suggested previously on the basis of computer analysis. The RNA structure leads to a slight stabilization of the groESL mRNA that is more pronounced at normal growth temperature than under heat shock conditions.
Collapse
Affiliation(s)
- Stephanie Jäger
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | | | | |
Collapse
|
14
|
Evguenieva-Hackenberg E, Schiltz E, Klug G. Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 2002; 277:46145-50. [PMID: 12359717 DOI: 10.1074/jbc.m208717200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific interactions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with RNA have been reported both in vitro and in vivo. We show that eukaryotic and bacterial GAPDH and two proteins from the hyperthermophilic archaeon Sulfolobus solfataricus, which are annotated as dehydrogenases, cleave RNA producing similar degradation patterns. RNA cleavage is most efficient at 60 degrees C, at MgCl(2) concentrations up to 5 mm, and takes place between pyrimidine and adenosine. The RNase active center of the putative aspartate semialdehyde dehydrogenase from S. solfataricus is located within the N-terminal 73 amino acids, which comprise the first mononucleotide-binding site of the predicted Rossmann fold. Thus, RNA cleavage has to be taken into account in the ongoing discussion of the possible biological function of RNA binding by dehydrogenases.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | |
Collapse
|
15
|
Klein F, Samorski R, Klug G, Evguenieva-Hackenberg E. Atypical processing in domain III of 23S rRNA of Rhizobium leguminosarum ATCC 10004(T) at a position homologous to an rRNA fragmentation site in protozoa. J Bacteriol 2002; 184:3176-85. [PMID: 12029033 PMCID: PMC135100 DOI: 10.1128/jb.184.12.3176-3185.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For still unknown reasons, the 23S rRNA of many alpha-Proteobacteria shows a unique fragmentation pattern compared to other bacteria. The 23S rRNA processing involves RNase III and additional, yet unidentified enzymes. The alpha-proteobacterium Rhizobium leguminosarum ATCC 10004(T) possesses two fragmentation sites in its 23S rRNA. The first one harbors an intervening sequence in helix 9 which is cleaved by RNase III. We demonstrate that the mature 5' end of the resulting 2.6-kb rRNA fragment is generated by additional removal of helix 10. A fraction of the 2.6-kb rRNA is further processed in domain III, giving rise to two 1.3-kb rRNA fragments. We mapped the domain III fragmentation site and found it to be at a position which has only been reported for trypanosomatid protozoa. This fragmentation site is also unique in that it lacks an intervening sequence. We found that the simultaneous occurrence of 2.6-kb and 1.3-kb rRNA fragments is not due to interoperonal sequence differences but rather reflects slow processing. The different characteristics of the two fragmentation sites in the 23S rRNA suggest that they are processed by different mechanisms. Interestingly, the amount of 2.6-kb rRNA varies during culture growth. We observed a transient increase in the relative amount of 2.6-kb rRNA fragments during the first hours after inoculation, which points to changes in the ratio of rRNA synthesis rate to domain III processing rate during the growth of a culture.
Collapse
MESH Headings
- Animals
- Base Sequence
- Crithidia
- Endoribonucleases/metabolism
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Rhizobium leguminosarum/genetics
- Rhizobium leguminosarum/growth & development
- Rhizobium leguminosarum/metabolism
- Ribonuclease III
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
Collapse
Affiliation(s)
- Franziska Klein
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
16
|
Conrad C, Schmitt JG, Evguenieva-Hackenberg E, Klug G. One functional subunit is sufficient for catalytic activity and substrate specificity of Escherichia coli endoribonuclease III artificial heterodimers. FEBS Lett 2002; 518:93-6. [PMID: 11997024 DOI: 10.1016/s0014-5793(02)02653-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To study the intersubunit communication required for the activity of the normally homodimeric enzyme endoribonuclease III of Escherichia coli we have constructed and analysed an artificial heterodimer. This heterodimer is composed of one wild-type and one catalytically inactive subunit. The inactive subunit has one amino acid exchanged (E117K, rnc70 mutant) which abolishes cleavage activity but still allows substrate binding of a rnc70-homodimer. Our results show that one functional active site is sufficient for cleavage activity of the heterodimer.
Collapse
Affiliation(s)
- Christian Conrad
- Institut für Mikro- und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany
| | | | | | | |
Collapse
|
17
|
Abstract
RNases play an important role in the processing of precursor RNAs, creating the mature, functional RNAs. The ribonuclease III family currently is one of the most interesting families of endoribonucleases. Surprisingly, RNase III is involved in the maturation of almost every class of prokaryotic and eukaryotic RNA. We present an overview of the various substrates and their processing. RNase III contains one of the most prominent protein domains used in RNA-protein recognition, the double-stranded RNA binding domain (dsRBD). Progress in the understanding of this domain is summarized. Furthermore, RNase III only recently emerged as a key player in the new exciting biological field of RNA silencing, or RNA interference. The eukaryotic RNase III homologues which are likely involved in this process are compared with the other members of the RNase III family.
Collapse
Affiliation(s)
- Christian Conrad
- Institut für Mikro- und Molekularbiologie, Justus Liebig Universität Giessen, Heinrich Buff Ring 26-32, 35392 Giessen, Germany.
| | | |
Collapse
|
18
|
Conrad C, Evguenieva-Hackenberg E, Klug G. Both N-terminal catalytic and C-terminal RNA binding domain contribute to substrate specificity and cleavage site selection of RNase III. FEBS Lett 2001; 509:53-8. [PMID: 11734205 DOI: 10.1016/s0014-5793(01)03142-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The double-stranded RNA-specific endoribonuclease III (RNase III) of bacteria consists of an N-terminal nuclease domain and a double-stranded RNA binding domain (dsRBD) at the C-terminus. Analysis of two hybrid proteins consisting of the N-terminal half of Escherichia coli RNase III fused to the dsRBD of the Rhodobacter capsulatus enzyme and vice versa reveals that both domains in combination with the particular substrate determine substrate specificity and cleavage site selection. Extension of the spacer between the two domains of the E. coli enzyme from nine to 20 amino acids did not affect cleavage site selection.
Collapse
Affiliation(s)
- C Conrad
- Institut für Mikro- und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | | |
Collapse
|
19
|
Jäger S, Fuhrmann O, Heck C, Hebermehl M, Schiltz E, Rauhut R, Klug G. An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res 2001; 29:4581-8. [PMID: 11713307 PMCID: PMC92556 DOI: 10.1093/nar/29.22.4581] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An RNA degrading, high molecular weight complex was purified from Rhodobacter capsulatus. N-terminal sequencing, glycerol-gradient centrifugation, and immunoaffinity purification as well as functional assays were used to determine the physical and biochemical characteristics of the complex. The complex comprises RNase E and two DEAD-box RNA helicases of 74 and 65 kDa, respectively. Most surprisingly, the transcription termination factor Rho is a major, firmly associated component of the degradosome.
Collapse
Affiliation(s)
- S Jäger
- Institut für Mikro- und Molekularbiologie, Justus Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Evguenieva-Hackenberg E, Klug G. RNase III processing of intervening sequences found in helix 9 of 23S rRNA in the alpha subclass of Proteobacteria. J Bacteriol 2000; 182:4719-29. [PMID: 10940010 PMCID: PMC111346 DOI: 10.1128/jb.182.17.4719-4729.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We provide experimental evidence for RNase III-dependent processing in helix 9 of the 23S rRNA as a general feature of many species in the alpha subclass of Proteobacteria (alpha-Proteobacteria). We investigated 12 Rhodobacter, Rhizobium, Sinorhizobium, Rhodopseudomonas, and Bartonella strains. The processed region is characterized by the presence of intervening sequences (IVSs). The 23S rDNA sequences between positions 109 and 205 (Escherichia coli numbering) were determined, and potential secondary structures are proposed. Comparison of the IVSs indicates very different evolutionary rates in some phylogenetic branches, lateral genetic transfer, and evolution by insertion and/or deletion. We show that the IVS processing in Rhodobacter capsulatus in vivo is RNase III-dependent and that RNase III cleaves additional sites in vitro. While all IVS-containing transcripts tested are processed in vitro by RNase III from R. capsulatus, E. coli RNase III recognizes only some of them as substrates and in these substrates frequently cleaves at different scissile bonds. These results demonstrate the different substrate specificities of the two enzymes. Although RNase III plays an important role in the rRNA, mRNA, and bacteriophage RNA maturation, its substrate specificity is still not well understood. Comparison of the IVSs of helix 9 does not hint at sequence motives involved in recognition but reveals that the "antideterminant" model, which represents the most recent attempt to explain the E. coli RNase III specificity in vitro, cannot be applied to substrates derived from alpha-Proteobacteria.
Collapse
Affiliation(s)
- E Evguenieva-Hackenberg
- Institut für Mikro- und Molekularbiologie der Justus-Liebig-Universität Giessen, 35392 Giessen, Germany.
| | | |
Collapse
|
21
|
Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 2000; 33:193-227. [PMID: 10690408 DOI: 10.1146/annurev.genet.33.1.193] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stability of mRNA in prokaryotes depends on multiple factors and it has not yet been possible to describe the process of mRNA degradation in terms of a unique pathway. However, important advances have been made in the past 10 years with the characterization of the cis-acting RNA elements and the trans-acting cellular proteins that control mRNA decay. The trans-acting proteins are mainly four nucleases, two endo- (RNase E and RNase III) and two exonucleases (PNPase and RNase II), and poly(A) polymerase. RNase E and PNPase are found in a multienzyme complex called the degradosome. In addition to the host nucleases, phage T4 encodes a specific endonuclease called RegB. The cis-acting elements that protect mRNA from degradation are stable stem-loops at the 5' end of the transcript and terminators or REP sequences at their 3' end. The rate-limiting step in mRNA decay is usually an initial endonucleolytic cleavage that often occurs at the 5' extremity. This initial step is followed by directional 3' to 5' degradation by the two exonucleases. Several examples, reviewed here, indicate that mRNA degradation is an important step at which gene expression can be controlled. This regulation can be either global, as in the case of growth rate-dependent control, or specific, in response to changes in the environmental conditions.
Collapse
|
22
|
Abstract
The maturation and degradation of RNA molecules are essential features of the mechanism of gene expression, and provide the two main points for post-transcriptional regulation. Cells employ a functionally diverse array of nucleases to carry out RNA maturation and turnover. Viruses also employ cellular ribonucleases, or even use their own in their reproductive cycles. Studies on bacterial ribonucleases, and in particular those from Escherichia coli, are providing insight into ribonuclease structure, mechanism, and regulation. Ongoing biochemical and genetic analyses are revealing that many ribonucleases are phylogenetically conserved, and exhibit overlapping functional roles and perhaps common catalytic mechanisms. This article reviews the salient features of bacterial ribonucleases, with a focus on those of E. coli, and in particular, ribonuclease III. RNase III participates in a number of RNA maturation and RNA decay pathways, and is regulated by phosphorylation in the T7 phage-infected cell. Plasmid and phage RNAs, in addition to cellular transcripts, are RNase III targets. RNase III orthologues occur in eukaryotic cells, and play key functional roles. As such, RNase III provides an important model with which to understand mechanisms of RNA maturation, RNA decay, and gene regulation.
Collapse
Affiliation(s)
- A W Nicholson
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
23
|
Winzer T, Bairl A, Linder M, Linder D, Werner D, Müller P. A novel 53-kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:218-26. [PMID: 10065559 DOI: 10.1094/mpmi.1999.12.3.218] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A nodule-specific 53-kDa protein (GmNOD53b) of the symbiosome membrane from soybean was isolated and its LysC digestion products were microsequenced. cDNA clones of this novel nodulin, obtained from cDNA library screening with an RT-PCR (reverse-transcriptase polymerase chain reaction)-generated hybridization probe exhibited no homology to proteins identified so far. The expression of GmNOD53b coincides with the onset of nitrogen fixation. Therefore, it is a late nodulin. Among other changes, the GmNOD53b is significantly reduced in nodules infected with the Bradyrhizobium japonicum mutant 184 on the protein level as well as on the level of mRNA expression, compared with the wild-type infected nodules. The reduction of GmNOD53b mRNA is related to an inactivation of the sipF gene in B. japonicum 184, coding for a functionally active signal peptidase.
Collapse
Affiliation(s)
- T Winzer
- Fachbereich Biologie, Molekulare Zellbiologie und Angewandte Botanik, Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Mattatall NR, Sanderson KE. RNase III deficient Salmonella typhimurium LT2 contains intervening sequences (IVSs) in its 23S rRNA. FEMS Microbiol Lett 1998; 159:179-85. [PMID: 9503611 DOI: 10.1111/j.1574-6968.1998.tb12858.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Salmonella typhimurium LT2 contains intervening sequences (IVSs) of 90-110 nt within all its 23S rRNA that are cleaved out by RNase III, resulting in rRNA fragmentation. In order to determine the functionality of 23S rRNA that contains unexcised IVSs, we constructed an S. typhimurium RNase III (rnc) deficient strain by transducing a mini-Tn10 (rnc-14::Tn10) from Escherichia coli K-12. The resulting strain of S. typhimurium was viable, contained IVSs within all of its 23S rRNA, and showed a growth reduction similar to that observed for the RNase III deficient strain of E. coli. These results indicate that ribosomes containing 23S rRNA in which IVSs are not excised are functional in translation, and make it unlikely that RNase III excision of IVSs from strain LT2 23S rRNA is dictated by a selective pressure to uphold the functional integrity of ribosomes.
Collapse
Affiliation(s)
- N R Mattatall
- Salmonella Genetic Stock Centre, University of Calgary, Alta, Canada
| | | |
Collapse
|
25
|
Jock CA, Pulakat L, Lee S, Gavini N. Nucleotide sequence and genetic complementation analysis of lep from Azotobacter vinelandii. Biochem Biophys Res Commun 1997; 239:393-400. [PMID: 9344840 DOI: 10.1006/bbrc.1997.7452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The lep of Azotobacter vinelandii is an 852-base-pair open reading frame (ORF) which encodes a protein of 284 amino acid residues. The translated protein shares 75% homology with leader peptidase I isolated from Pseudomonas fluorescens and 37% homology with leader peptidase I isolated from Escherichia coli. Five highly conserved regions found in the family of leader peptidase I proteins are conserved in A. vinelandii Lep. The putative membrane topology of the protein seems similar to that of E. coli leader peptidase I based on the hydrophobicity analysis of the predicted amino acid sequence. Southern blotting analysis of the A. vinelandii chromosome by probing with lep specific DNA revealed that lep is present as a single copy per the chromosome. A multicopy plasmid carrying A. vinelandii lep could complement a temperature sensitive lep mutant of E. coli strain IT41, suggesting that we have identified the functional copy of lep present on A. vinelandii genome.
Collapse
Affiliation(s)
- C A Jock
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
27
|
Rotondo G, Frendewey D. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res 1996; 24:2377-86. [PMID: 8710510 PMCID: PMC145943 DOI: 10.1093/nar/24.12.2377] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pac1+ gene of the fission yeast Schizosaccharomyces pombe is essential for viability and its overexpression induces sterility and suppresses mutations in the pat1+ and snm1+ genes. The pac1+ gene encodes a protein that is structurally similar to RNase III from Escherichia coli, but its normal function is unknown. We report here the purification and characterization of the Pac1 protein after overexpression in E. coli. The purified protein is a highly active, double-strand-specific endoribonuclease that converts long double-stranded RNAs into short oligonucleotides and also cleaves a small hairpin RNA substrate. The Pac1 RNase is inhibited by a variety of double- and single-stranded polynucleotides, but polycytidylic acid greatly enhances activity and also promotes cleavage specificity. The Pac1 RNase produces 5'-phosphate termini and requires Mg2+; Mn2+ supports activity but causes a loss of cleavage specificity. Optimal activity was obtained at pH 8.5, at low ionic strength, in the presence of a reducing agent. The enzyme is relatively insensitive to N-ethylmaleimide but is strongly inhibited by ethidium bromide and vanadyl ribonucleoside complexes. The properties of the Pac1 RNase support the hypothesis that it is a eukaryotic homolog of RNase III.
Collapse
Affiliation(s)
- G Rotondo
- Department of Microbiology, New York University School of Medicine, NY 10016, USA
| | | |
Collapse
|