1
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Amer AAA, Gurung JM, Costa TRD, Ruuth K, Zavialov AV, Forsberg Å, Francis MS. YopN and TyeA Hydrophobic Contacts Required for Regulating Ysc-Yop Type III Secretion Activity by Yersinia pseudotuberculosis. Front Cell Infect Microbiol 2016; 6:66. [PMID: 27446813 PMCID: PMC4914553 DOI: 10.3389/fcimb.2016.00066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022] Open
Abstract
Yersinia bacteria target Yop effector toxins to the interior of host immune cells by the Ysc-Yop type III secretion system. A YopN-TyeA heterodimer is central to controlling Ysc-Yop targeting activity. A + 1 frameshift event in the 3-prime end of yopN can also produce a singular secreted YopN-TyeA polypeptide that retains some regulatory function even though the C-terminal coding sequence of this YopN differs greatly from wild type. Thus, this YopN C-terminal segment was analyzed for its role in type III secretion control. Bacteria producing YopN truncated after residue 278, or with altered sequence between residues 279 and 287, had lost type III secretion control and function. In contrast, YopN variants with manipulated sequence beyond residue 287 maintained full control and function. Scrutiny of the YopN-TyeA complex structure revealed that residue W279 functioned as a likely hydrophobic contact site with TyeA. Indeed, a YopNW279G mutant lost all ability to bind TyeA. The TyeA residue F8 was also critical for reciprocal YopN binding. Thus, we conclude that specific hydrophobic contacts between opposing YopN and TyeA termini establishes a complex needed for regulating Ysc-Yop activity.
Collapse
Affiliation(s)
- Ayad A A Amer
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Jyoti M Gurung
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Kristina Ruuth
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Anton V Zavialov
- Department of Molecular Biology, Uppsala BioCenter, Swedish University of Agricultural SciencesUppsala, Sweden; Joint Biotechnology Laboratory, Department of Chemistry, University of TurkuTurku, Finland
| | - Åke Forsberg
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Laboratory for Molecular Infection Medicine Sweden, Umeå UniversityUmeå, Sweden
| | - Matthew S Francis
- Department of Molecular Biology, Umeå UniversityUmeå, Sweden; Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
3
|
Abstract
The bacterial ribosome is a complex macromolecular machine that deciphers the genetic code with remarkable fidelity. During the elongation phase of protein synthesis, the ribosome selects aminoacyl-tRNAs as dictated by the canonical base pairing between the anticodon of the tRNA and the codon of the messenger RNA. The ribosome's participation in tRNA selection is active rather than passive, using conformational changes of conserved bases of 16S rRNA to directly monitor the geometry of codon-anticodon base pairing. The tRNA selection process is divided into an initial selection step and a subsequent proofreading step, with the utilization of two sequential steps increasing the discriminating power of the ribosome far beyond that which could be achieved based on the thermodynamics of codon-anticodon base pairing stability. The accuracy of decoding is impaired by a number of antibiotics and can be either increased or decreased by various mutations in either subunit of the ribosome, in elongation factor Tu, and in tRNA. In this chapter we will review our current understanding of various forces that determine the accuracy of decoding by the bacterial ribosome.
Collapse
|
4
|
Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element. Proc Natl Acad Sci U S A 2015; 112:4104-9. [PMID: 25787256 DOI: 10.1073/pnas.1501574112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.
Collapse
|
5
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
6
|
Sagar V, Murray KE. The mammalian orthoreovirus bicistronic M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require interaction of 5'-3' untranslated regions. Virus Res 2014; 183:30-40. [PMID: 24486484 DOI: 10.1016/j.virusres.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Mammalian orthoreovirus mRNAs possess short 5' UTR, lack 3' poly(A) tails, and may lack 5' cap structures at late times post-infection. As such, the mechanisms by which these viral mRNAs recruit ribosomes remain completely unknown. Toward addressing this question, we used bicistronic MRV M3 mRNA to analyze the role of 5' and 3' UTRs during MRV protein synthesis. The 5' UTR was found to be dispensable for translation initiation; however, reducing its length promoted increased downstream initiation. Modifying start site Kozak context altered the ratio of upstream to downstream initiation, whereas mutations in the 3' UTR did not. Moreover, an M3 mRNA lacking a 3' UTR was able to rescue MRV infection to WT levels in an siRNA trans-complementation assay. Together, these data allow us to propose a model in which the MRV M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require the viral mRNA 3' UTR or 5'-3' UTRs interaction.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States.
| | - Kenneth E Murray
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
7
|
Zur H, Tuller T. Transcript features alone enable accurate prediction and understanding of gene expression in S. cerevisiae. BMC Bioinformatics 2013; 14 Suppl 15:S1. [PMID: 24564391 PMCID: PMC3852043 DOI: 10.1186/1471-2105-14-s15-s1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Gene expression is a central process in all living organisms. Central questions in the field are related to the way the expression levels of genes are encoded in the transcripts and affect their evolution, and the potential to predict expression levels solely by transcript features. In this study we analyze S. cerevisiae, a model organism with the most abundant relevant cellular and genomic measurements, to evaluate the accuracy in which expression levels can be predicted by different parts of the transcript. To this end, we perform various types of regression analyses based on a total of 5323 features of the transcript. The main advantage of the proposed predictors over previous ones is related to the accurate and comprehensive definitions of the relevant transcript features, which are based on biophysical knowledge of the gene transcription and translation processes, their modeling and evolution. Results Cross validation analyses of our predictors demonstrate that they achieve a correlation of 0.68/0.68/0.70/0.61/0.81 with mRNA levels, ribosomal density, protein levels, proteins per mRNA molecule (PPR), and ribosomal load (RL) respectively (all p-values <10-140). When we consider predictors that are based exclusively on the features related to different parts of the transcript (5'UTR, ORF, 3'UTR), the correlations with protein levels were 0.27/0.71/0.25 (all p-values <10-5), suggesting that the information in the UTRs is redundant, and features of the ORF alone yield similar predictions to the ones obtained based on the entire transcript. Conclusions The reported results demonstrate that in the analyzed model organism the expression levels of a gene are encoded in the transcript. Specifically, the prediction of a large fraction of the variance of the different gene expression steps based on transcript features alone is feasible in S. cerevisiae. We report dozens of novel transcript features related to expression levels predictions, demonstrating how such analyses can aid in understanding the gene expression process and its evolution, and how such predictors can be designed for other organisms in the future.
Collapse
|
8
|
Amer AAA, Costa TRD, Farag SI, Avican U, Forsberg Å, Francis MS. Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis. PLoS One 2013; 8:e77767. [PMID: 24098594 PMCID: PMC3789692 DOI: 10.1371/journal.pone.0077767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022] Open
Abstract
Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.
Collapse
Affiliation(s)
- Ayad A. A. Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Tiago R. D. Costa
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ummehan Avican
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
9
|
Vasieva O. Role of Shwachman-Bodian-Diamond syndrome protein in translation machinery and cell chemotaxis: a comparative genomics approach. Adv Appl Bioinform Chem 2011; 4:43-50. [PMID: 22046100 PMCID: PMC3202468 DOI: 10.2147/aabc.s23510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Indexed: 11/23/2022] Open
Abstract
Shwachman-Bodian-Diamond syndrome (SBDS) is linked to a mutation in a single gene. The SBDS proinvolved in RNA metabolism and ribosome-associated functions, but SBDS mutation is primarily linked to a defect in polymorphonuclear leukocytes unable to orient correctly in a spatial gradient of chemoattractants. Results of data mining and comparative genomic approaches undertaken in this study suggest that SBDS protein is also linked to tRNA metabolism and translation initiation. Analysis of crosstalk between translation machinery and cytoskeletal dynamics provides new insights into the cellular chemotactic defects caused by SBDS protein malfunction. The proposed functional interactions provide a new approach to exploit potential targets in the treatment and monitoring of this disease.
Collapse
Affiliation(s)
- Olga Vasieva
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fellowship for the Interpretation of Genomes, Burr Ridge, IL, USA
| |
Collapse
|
10
|
Devaraj A, Fredrick K. Short spacing between the Shine-Dalgarno sequence and P codon destabilizes codon-anticodon pairing in the P site to promote +1 programmed frameshifting. Mol Microbiol 2010; 78:1500-9. [PMID: 21143320 DOI: 10.1111/j.1365-2958.2010.07421.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmed frameshifting in the RF2 gene (prfB) involves an intragenic Shine-Dalgarno (SD) sequence. To investigate the role of SD-ASD pairing in the mechanism of frameshifting, we have analysed the effect of spacing between the SD sequence and P codon on P-site tRNA binding and RF2-dependent termination. When the spacing between an extended SD sequence and the P codon is decreased from 4 to 1 nucleotide (nt), the dissociation rate (k(off) ) for P-site tRNA increases by > 100-fold. Toeprinting analysis shows that pre-translocation complexes cannot be formed when the spacer sequence is ≤ 2 nt. Instead, the tRNA added secondarily to fill the A site and its corresponding codon move spontaneously into the P site, resulting in a complex with a 3 nt longer spacer between the SD-ASD helix and the P codon. While close proximity of the SD clearly destabilizes P-site tRNA, RF2-dependent termination and EF-Tu-dependent decoding are largely unaffected in analogous complexes. These data support a model in which formation of the SD-ASD helix in ribosomes stalled at the in-frame UGA codon of prfB generates tension on the mRNA that destabilizes codon-anticodon pairing in the P site and promotes slippage of the mRNA in the 5' direction.
Collapse
Affiliation(s)
- Aishwarya Devaraj
- Ohio State Biochemistry Program Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
11
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
12
|
Vila-Sanjurjo A. Modification of the Ribosome and the Translational Machinery during Reduced Growth Due to Environmental Stress. EcoSal Plus 2008; 3. [PMID: 26443727 DOI: 10.1128/ecosalplus.2.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Indexed: 06/05/2023]
Abstract
Escherichia coli strains normally used under laboratory conditions have been selected for maximum growth rates and require maximum translation efficiency. Recent studies have shed light on the structural and functional changes undergone by the translational machinery in E. coli during heat and cold shock and upon entry into stationary phase. In these situations both the composition and the partitioning of this machinery into the different pools of cellular ribosomes are modified. As a result, the translational capacity of the cell is dramatically altered. This review provides a comprehensive account of these modifications, regardless of whether or not their underlying mechanisms and their effects on cellular physiology are known. Not only is the composition of the ribosome modified upon entry into stationary phase, but the modification of other components of the translational machinery, such as elongation factor Tu (EFTu) and tRNAs, has also been observed. Hibernation-promoting factor (HPF), paralog protein Y (PY), and ribosome modulation factor (RMF) may also be related to the general protection against environmental stress observed in stationary-phase E. coli cells, a role that would not be revealed necessarily by the viability assays. Even for the best-characterized ribosome-associated factors induced under stress (RMF, PY, and initiation factors), we are far from a complete understanding of their modes of action.
Collapse
|
13
|
Moura GR, Lousado JP, Pinheiro M, Carreto L, Silva RM, Oliveira JL, Santos MAS. Codon-triplet context unveils unique features of the Candida albicans protein coding genome. BMC Genomics 2007; 8:444. [PMID: 18047667 PMCID: PMC2244636 DOI: 10.1186/1471-2164-8-444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 11/29/2007] [Indexed: 11/29/2022] Open
Abstract
Background The evolutionary forces that determine the arrangement of synonymous codons within open reading frames and fine tune mRNA translation efficiency are not yet understood. In order to tackle this question we have carried out a large scale study of codon-triplet contexts in 11 fungal species to unravel associations or relationships between codons present at the ribosome A-, P- and E-sites during each decoding cycle. Results Our analysis unveiled high bias within the context of codon-triplets, in particular strong preference for triplets of identical codons. We have also identified a surprisingly large number of codon-triplet combinations that vanished from fungal ORFeomes. Candida albicans exacerbated these features, showed an unbalanced tRNA population for decoding its pool of codons and used near-cognate decoding for a large set of codons, suggesting that unique evolutionary forces shaped the evolution of its ORFeome. Conclusion We have developed bioinformatics tools for large-scale analysis of codon-triplet contexts. These algorithms identified codon-triplets context biases, allowed for large scale comparative codon-triplet analysis, and identified rules governing codon-triplet context. They could also detect alterations to the standard genetic code.
Collapse
Affiliation(s)
- Gabriela R Moura
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
14
|
Leipuviene R, Björk GR. A reduced level of charged tRNAArgmnm5UCU triggers the wild-type peptidyl-tRNA to frameshift. RNA (NEW YORK, N.Y.) 2005; 11:796-807. [PMID: 15840821 PMCID: PMC1370764 DOI: 10.1261/rna.7256705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/25/2005] [Indexed: 05/24/2023]
Abstract
Frameshift mutations can be suppressed by a variety of differently acting external suppressors. The +1 frameshift mutation hisC3072, which has an extra G in a run of Gs, is corrected by the external suppressor mutation sufF44. We have shown that sufF44 and five additional allelic suppressor mutations are located in the gene argU coding for the minor tRNAArgmnm5UCU and alter the secondary and/or tertiary structure of this tRNA. The C61U, G53A, and C32U mutations influence the stability, whereas the C56U, C61U, G53A, and G39A mutations decrease the arginylation of tRNAArgmnm5UCU. The T-10C mutant has a base substitution in the -10 consensus sequence of the argU promoter that reduces threefold the synthesis of tRNAArgmnm5UCU . The lower amount of tRNAArgmnm5UCU or impaired arginylation, either independently or in conjunction, results in inefficient reading of the cognate AGA codon that, in turn, induces frameshifts. According to the sequence of the peptide produced from the suppressed -GGG-GAA-AGA- frameshift site, the frameshifting tRNA in the argU mutants is tRNAGlumnm5s2UUC, which decodes the GAA codon located upstream of the AGA arginine codon, and not the mutated tRNAArgmnm5UCU. We propose that an inefficient decoding of the AGA codon by a defective tRNAArgmnm5UCU stalls the ribosome at the A-site codon allowing the wild-type form of peptidyl-tRNAGlumnm5s2UUC to slip forward 1 nucleotide and thereby re-establish the ribosome in the 0-frame. Similar frame-shifting events could be the main cause of various phenotypes associated with environmental or genetically induced changes in the levels of aminoacylated tRNA.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Codon/genetics
- Frameshift Mutation/genetics
- Frameshifting, Ribosomal/genetics
- Genes, Bacterial/genetics
- Models, Genetic
- Molecular Sequence Data
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Glu/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Salmonella enterica/genetics
- Suppression, Genetic/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Ramune Leipuviene
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
15
|
Stahl G, Salem SNB, Chen L, Zhao B, Farabaugh PJ. Translational accuracy during exponential, postdiauxic, and stationary growth phases in Saccharomyces cerevisiae. EUKARYOTIC CELL 2004; 3:331-8. [PMID: 15075263 PMCID: PMC387642 DOI: 10.1128/ec.3.2.331-338.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When the yeast Saccharomyces cerevisiae shifts from rapid growth on glucose to slow growth on ethanol, it undergoes profound changes in cellular metabolism, including the destruction of most of the translational machinery. We have examined the effect of this metabolic change, termed the diauxic shift, on the frequency of translational errors. Recoding sites are mRNA sequences that increase the frequency of translational errors, providing a convenient reporter of translational accuracy. We found that the diauxic shift causes no overall change in translational accuracy but does cause a strong reduction in the frequency of one type of programmed error: Ty +1 frameshifting. Genetic data suggest that this effect may be due to changes in the relative amounts of tRNA participating in translation elongation. We discuss possible implications for expression strategies that use recoding.
Collapse
Affiliation(s)
- Guillaume Stahl
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | | | | | |
Collapse
|
16
|
Shu P, Dai H, Mandecki W, Goldman E. CCC CGA is a weak translational recoding site in Escherichia coli. Gene 2004; 343:127-32. [PMID: 15563838 DOI: 10.1016/j.gene.2004.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 07/22/2004] [Accepted: 08/12/2004] [Indexed: 11/28/2022]
Abstract
Previously published experiments had indicated unexpected expression of a control vector in which a beta-galactosidase reporter was in the +1 reading frame relative to the translation start. This control vector contained the codon pair CCC CGA in the zero reading frame, raising the possibility that ribosomes rephased on this sequence, with peptidyl-tRNA(Pro) pairing with CCC in the +1 frame. This putative rephasing might also be exacerbated by the rare CGA Arg codon in the second position due to increased vacancy of the ribosomal A-site. To test this hypothesis, a series of site-directed mutants was constructed, including mutations in both the first and second codons of this codon pair. The results show that interrupting the continuous run of C residues with synonymous codon changes essentially abolishes the frameshift. Further, changing the rare Arg codon to a common Arg codon also reduces the frequency of the frameshift. These results provide strong support for the hypothesis that CCC CGA in the zero frame is indeed a weak translational frameshift site in Escherichia coli, with a 1-2% efficiency. Because the vector sequence also contains another CCC triplet in the +1 reading frame starting within the next codon after the CGA, our data also support possible contribution to expression of a +7 nucleotide ribosome hop into the same +1 reading frame. We also confirm here a previous report that CCC UGA is a translational frameshift site, in these experiments, with about 5% efficiency.
Collapse
Affiliation(s)
- Ping Shu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, P.O. B. 1709, Newark, NJ 07101-1709, USA
| | | | | | | |
Collapse
|
17
|
Ferracci F, Day JB, Ezelle HJ, Plano GV. Expression of a functional secreted YopN-TyeA hybrid protein in Yersinia pestis is the result of a +1 translational frameshift event. J Bacteriol 2004; 186:5160-6. [PMID: 15262954 PMCID: PMC451632 DOI: 10.1128/jb.186.15.5160-5166.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YopN is a secreted protein that prior to secretion directly interacts with the cytosolic SycN/YscB chaperone complex and TyeA. This study identifies a secreted YopN-TyeA hybrid protein that is expressed by Yersinia pestis, but not by Yersinia enterocolitica. DNA sequence analysis and site-directed mutagenesis studies demonstrate that the hybrid protein is the result of a +1 translational frameshift event.
Collapse
Affiliation(s)
- Franco Ferracci
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
18
|
Agris PF. Decoding the genome: a modified view. Nucleic Acids Res 2004; 32:223-38. [PMID: 14715921 PMCID: PMC384350 DOI: 10.1093/nar/gkh185] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 12/02/2003] [Accepted: 12/02/2003] [Indexed: 11/12/2022] Open
Abstract
Transfer RNA's role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA's ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA's anticodon and those 3'-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U*U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon-codon interactions and expanding others.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA.
| |
Collapse
|
19
|
Atkins JF, Baranov PV, Fayet O, Herr AJ, Howard MT, Ivanov IP, Matsufuji S, Miller WA, Moore B, Prère MF, Wills NM, Zhou J, Gesteland RF. Overriding standard decoding: implications of recoding for ribosome function and enrichment of gene expression. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:217-32. [PMID: 12762024 DOI: 10.1101/sqb.2001.66.217] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J F Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
During the expression of a certain genes standard decoding is over-ridden in a site or mRNA specific manner. This recoding occurs in response to special signals in mRNA and probably occurs in all organisms. This review deals with the function and distribution of recoding with a focus on the ribosomal frameshifting used for gene expression in bacteria.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, 15N 2030E Room 7410, Salt Lake City, UT 84112-5330, USA
| | | | | |
Collapse
|
21
|
Roos S, Jonsson H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. MICROBIOLOGY (READING, ENGLAND) 2002; 148:433-442. [PMID: 11832507 DOI: 10.1099/00221287-148-2-433] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene from Lactobacillus reuteri 1063 encoding a cell-surface protein, designated Mub, that adheres to mucus components in vitro has been cloned and sequenced. The deduced amino acid sequence of Mub (358 kDa) shows the presence of 14 approximately 200 aa repeats and features typical for other cell-surface proteins of Gram-positive bacteria. Fusion proteins consisting of different repeats of Mub and the maltose-binding protein (MBP) were produced. These proteins adhered to pig mucus components, with molecular masses ranging from <0.1 to >2 MDa, to pig gastric mucin and to hen intestinal mucus. The binding of Mub to mucus components occurred in the pH range 3-7.4, with maximum binding at pH 4-5 and could be partly inhibited by the glycoprotein fetuin. Affinity-purified antibodies against recombinant Mub were used in immunofluorescence microscopy to demonstrate the presence of Mub on the cell surface of strain 1063. By using the antibodies in a Western blot analysis, Mub could also be detected in the growth medium. The results implicate Mub as a cell-surface protein that is involved in Lactobacillus interactions with mucin and in colonization of the digestive tract.
Collapse
Affiliation(s)
- Stefan Roos
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, S-750 07 Uppsala, Sweden1
| | - Hans Jonsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, S-750 07 Uppsala, Sweden1
| |
Collapse
|
22
|
Urbonavičius J, Qian Q, Durand JM, Hagervall TG, Björk GR. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 2001; 20:4863-73. [PMID: 11532950 PMCID: PMC125605 DOI: 10.1093/emboj/20.17.4863] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs from all organisms contain many modified nucleosides. Their vastly different chemical structures, their presence in different tRNAs, their occurrence in different locations in tRNA and their influence on different reactions in which tRNA participates suggest that each modified nucleoside may have its own specific function. However, since the frequency of frameshifting in several different mutants [mnmA, mnmE, tgt, truA (hisT), trmD, miaA, miaB and miaE] defective in tRNA modification was higher compared with the corresponding wild-type controls, these modifications have a common function: they all improve reading frame maintenance. Frameshifting occurs by peptidyl-tRNA slippage, which is influenced by the hypomodified tRNA in two ways: (i) a hypomodified tRNA in the ternary complex may decrease the rate by which the complex is recruited to the A-site and thereby increasing peptidyl-tRNA slippage; or (ii) a hypomodified peptidyl-tRNA may be more prone to slip than its fully modified counterpart. We propose that the improvement of reading frame maintenance has been and is the major selective factor for the emergence of new modified nucleosides.
Collapse
MESH Headings
- Base Sequence
- Codon/genetics
- Escherichia coli/genetics
- Frameshift Mutation
- Genotype
- Models, Genetic
- Oligodeoxyribonucleotides/chemistry
- Phenotype
- RNA, Bacterial/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Val/genetics
- Reading Frames
- Reference Values
- Salmonella typhimurium/genetics
- beta-Galactosidase/genetics
- beta-Lactamases/genetics
Collapse
Affiliation(s)
| | | | | | | | - Glenn R. Björk
- Department of Microbiology, Umeå University, S-90 187 Umeå, Sweden
Corresponding author e-mail:
| |
Collapse
|
23
|
Björk GR, Jacobsson K, Nilsson K, Johansson MJ, Byström AS, Persson OP. A primordial tRNA modification required for the evolution of life? EMBO J 2001; 20:231-9. [PMID: 11226173 PMCID: PMC140193 DOI: 10.1093/emboj/20.1.231] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of reading frame maintenance must have been an early event, and presumably preceded the emergence of the three domains Archaea, Bacteria and Eukarya. Features evolved early in reading frame maintenance may still exist in present-day organisms. We show that one such feature may be the modified nucleoside 1-methylguanosine (m(1)G37), which prevents frameshifting and is present adjacent to and 3' of the anticodon (position 37) in the same subset of tRNAs from all organisms, including that with the smallest sequenced genome (Mycoplasma genitalium), and organelles. We have identified the genes encoding the enzyme tRNA(m(1)G37)methyltransferase from all three domains. We also show that they are orthologues, and suggest that they originated from a primordial gene. Lack of m(1)G37 severely impairs the growth of a bacterium and a eukaryote to a similar degree. Yeast tRNA(m(1)G37)methyltransferase also synthesizes 1-methylinosine and participates in the formation of the Y-base (yW). Our results suggest that m(1)G37 existed in tRNA before the divergence of the three domains, and that a tRNA(m(1)G37)methyltrans ferase is part of the minimal set of gene products required for life.
Collapse
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Hooper SD, Berg OG. Gradients in nucleotide and codon usage along Escherichia coli genes. Nucleic Acids Res 2000; 28:3517-23. [PMID: 10982871 PMCID: PMC110745 DOI: 10.1093/nar/28.18.3517] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usage of codons and nucleotide combinations varies along genes and systematic variation causes gradients in usage. We have studied such gradients of nucleotides and nucleotide combinations and their immediate context in Escherichia coli. To distinguish mutational and selectional effects, the genes were subdivided into three groups with different codon usage bias and the gradients of nucleotide usage were studied in each group. Some combinations that can be associated with a propensity for processivity errors show strong negative gradients that become weaker in genes with low codon bias, consistent with a selection on translational efficiency. One of the strongest gradients is for third position G, which shows a pervasive positive gradient in usage in most contexts of surrounding bases.
Collapse
Affiliation(s)
- S D Hooper
- Department of Molecular Evolution, EBC, Uppsala University, Norbyvägen 18C, SE-75236, Uppsala, Sweden
| | | |
Collapse
|
25
|
Ivanov IP, Gesteland RF, Atkins JF. Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res 2000; 28:3185-96. [PMID: 10954585 PMCID: PMC110703 DOI: 10.1093/nar/28.17.3185] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2000] [Revised: 06/30/2000] [Accepted: 07/07/2000] [Indexed: 12/11/2022] Open
Abstract
The efficiency of programmed ribosomal frameshifting in decoding antizyme mRNA is the sensor for an autoregulatory circuit that controls cellular polyamine levels in organisms ranging from the yeast Schizosaccharomyces pombe to Drosophila to mammals. Comparison of the frameshift sites and flanking stimulatory signals in many organisms now permits a reconstruction of the likely evolutionary path of the remarkably conserved mRNA sequences involved in the frameshifting.
Collapse
Affiliation(s)
- I P Ivanov
- Department of Human Genetics, University of Utah, 15N 2030E, Room 7410, Salt Lake City, UT 84112-5330, USA
| | | | | |
Collapse
|
26
|
Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol Cell 1999; 4:1005-15. [PMID: 10635325 DOI: 10.1016/s1097-2765(00)80229-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Translational frameshifting is a ubiquitous, if rare, form of alternative decoding in which ribosomes spontaneously shift reading frames during translation elongation. In studying +1 frameshifting in Ty retrotransposons of the yeast S. cerevisiae, we previously showed that unusual P site tRNAs induce frameshifting. The frameshift-inducing tRNAs we show here are near-cognates for the P site codon. Their abnormal decoding induces frameshifting in either of two ways: weak codon-anticodon pairing allows the tRNA to disengage from the mRNA and slip +1, or an unusual codon-anticodon structure interferes with cognate in-frame decoding allowing out-of-frame decoding in the A site. We draw parallels between this mechanism and a proposed mechanism of frameshift suppression by mutant tRNAs.
Collapse
Affiliation(s)
- A Sundararajan
- Department of Biological Sciences, University of Maryland, Baltimore County 21250, USA
| | | | | | | | | |
Collapse
|
27
|
Médigue C, Rose M, Viari A, Danchin A. Detecting and analyzing DNA sequencing errors: toward a higher quality of the Bacillus subtilis genome sequence. Genome Res 1999; 9:1116-27. [PMID: 10568751 PMCID: PMC310837 DOI: 10.1101/gr.9.11.1116] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During the determination of a DNA sequence, the introduction of artifactual frameshifts and/or in-frame stop codons in putative genes can lead to misprediction of gene products. Detection of such errors with a method based on protein similarity matching is only possible when related sequences are available in databases. Here, we present a method to detect frameshift errors in DNA sequences that is based on the intrinsic properties of the coding sequences. It combines the results of two analyses, the search for translational initiation/termination sites and the prediction of coding regions. This method was used to screen the complete Bacillus subtilis genome sequence and the regions flanking putative errors were resequenced for verification. This procedure allowed us to correct the sequence and to analyze in detail the nature of the errors. Interestingly, in several cases in-frame termination codons or frameshifts were not sequencing errors but confirmed to be present in the chromosome, indicating that the genes are either nonfunctional (pseudogenes) or subject to regulatory processes such as programmed translational frameshifts. The method can be used for checking the quality of the sequences produced by any prokaryotic genome sequencing project.
Collapse
Affiliation(s)
- C Médigue
- Institut Pasteur REG, F-75724 Paris Cedex 15, France. claudine.medigue @snv.jussieu.fr
| | | | | | | |
Collapse
|
28
|
Björk GR, Durand JM, Hagervall TG, Leipuviene R, Lundgren HK, Nilsson K, Chen P, Qian Q, Urbonavicius J. Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS Lett 1999; 452:47-51. [PMID: 10376676 DOI: 10.1016/s0014-5793(99)00528-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transfer RNA modification improves the rate of aa-tRNA selection at the A-site and the fitness in the P-site and thereby prevents frameshifting according to a new model how frameshifting occurs [Qian et al. (1998) Mol. Cell 1, 471-482]. Evidence that the presence of various modified nucleosides in tRNA also influences central metabolism, thiamine metabolism, and bacterial virulence is reviewed.
Collapse
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
An interplay among experimental studies of protein synthesis, evolutionary theory, and comparisons of DNA sequence data has shed light on the roles of natural selection and genetic drift in 'silent' DNA evolution.
Collapse
Affiliation(s)
- H Akashi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045-2106, USA.
| | | |
Collapse
|
30
|
Persson BC, Atkins JF. Does disparate occurrence of autoregulatory programmed frameshifting in decoding the release factor 2 gene reflect an ancient origin with loss in independent lineages? J Bacteriol 1998; 180:3462-6. [PMID: 9642202 PMCID: PMC107304 DOI: 10.1128/jb.180.13.3462-3466.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli an autoregulatory mechanism of programmed ribosomal frameshifting governs the level of polypeptide chain release factor 2. From an analysis of 20 sequences of genes encoding release factor 2, we infer that this frameshift mechanism was present in a common ancestor of a large group of bacteria and has subsequently been lost in three independent lineages.
Collapse
Affiliation(s)
- B C Persson
- Howard Hughes Medical Institute, University of Utah, Salt Lake City 84112-5330, USA
| | | |
Collapse
|
31
|
Qian Q, Curran JF, Björk GR. The methyl group of the N6-methyl-N6-threonylcarbamoyladenosine in tRNA of Escherichia coli modestly improves the efficiency of the tRNA. J Bacteriol 1998; 180:1808-13. [PMID: 9537379 PMCID: PMC107094 DOI: 10.1128/jb.180.7.1808-1813.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
tRNA species that read codons starting with adenosine (A) contain N6-threonylcarbamoyladenosine (t6A) derivatives adjacent to and 3' of the anticodons from all organisms. In Escherichia coli there are 12 such tRNA species of which two (tRNA(Thr1)GGU and tRNA(Thr3)GGU) have the t6A derivative N6-methyl-N6-threonylcarbamoyladenosine (m6t6A37). We have isolated a mutant of E. coli that lacks the m6t6A37 in these two tRNA(Thr)GGU species. These tRNA species in the mutant are likely to have t6A37 instead of m6t6A37. We show that the methyl group of m6t6A37 originates from S-adenosyl-L-methionine and that the gene (tsaA) which most likely encodes tRNA(m6t6A37)methyltransferase is located at min 4.6 on the E. coli chromosomal map. The growth rate of the cell, the polypeptide chain elongation rate, and the selection of Thr-tRNA(Thr)GGU to the ribosomal A site programmed with either of the cognate codons ACC and ACU were the same for the tsaA1 mutant as for the congenic wild-type strain. The expression of the threonine operon is regulated by an attenuator which contains in its leader mRNA seven ACC codons that are read by these two m6t6A37-containing tRNA(Thr)GGU species. We show that the tsaA1 mutation resulted in a twofold derepression of this operon, suggesting that the lack of the methyl group of m6t6A37 in tRNA(Thr)GGU slightly reduces the efficiency of this tRNA to read cognate codon ACC.
Collapse
Affiliation(s)
- Q Qian
- Department of Microbiology, Umeå University, Sweden
| | | | | |
Collapse
|
32
|
Wenthzel AM, Stancek M, Isaksson LA. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett 1998; 421:237-42. [PMID: 9468314 DOI: 10.1016/s0014-5793(97)01570-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonsense codon readthrough and changed translational reading frame were measured in different growth phases in E. coli. The strains used carry plasmid constructs with a translation assay reporter gene. This reporter gene contains an internal stop codon or a run of U-residues. Termination or frameshifting give rise to stable proteins that can be physically quantified on gels along with the complete protein products. Readthrough of the stop codon UGA by a nearcognate tRNA is several fold higher in active growth than in late exponential phase. In early exponential phase, about 7% of -1 frameshift at a U9 slippery sequence is detectable; upon entry to stationary phase this frameshifting increases to about 40% followed by a decrease in stationary phase. A similar increase is observed in the case of +1 reading frameshift at the U9 sequence, which increases from 13% in early exponential growth phase up to 38% at the beginning of stationary phase followed by a decrease. Thus, the levels of both stop codon readthrough and frameshifting are growth phase dependent, though not in an identical fashion.
Collapse
Affiliation(s)
- A M Wenthzel
- Department of Microbiology, Stockholm University, Sweden
| | | | | |
Collapse
|