1
|
Abstract
This chapter presents an analysis of the organization and distribution of the IS200/IS605 family of insertion sequences (IS). Members of this family are widespread in both bacteria and archaea. They are unusual because they use obligatory single-strand DNA intermediates, which distinguishes them from classical IS. We summarize studies of the experimental model systems IS608 (from Helicobacter pylori) and ISDra2 (from Deinococcus radiodurans) and present biochemical, genetic, and structural data that describe their transposition pathway and the way in which their transposase (an HuH rather than a DDE enzyme) catalyzes this process. The transposition of IS200/IS605 family members can be described as a "Peel-and-Paste" mechanism. We also address the probable domestication of IS200/IS605 family transposases as enzymes involved in multiplication of repeated extragenic palindromes and as potential homing endonucleases in intron-IS chimeras.
Collapse
|
2
|
Ellis MJ, Trussler RS, Haniford DB. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition. Nucleic Acids Res 2015; 43:6511-27. [PMID: 26044710 PMCID: PMC4513863 DOI: 10.1093/nar/gkv584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
3
|
Kullin B, Tannock GW, Loach DM, Kimura K, Abratt VR, Reid SJ. A functional analysis of the formyl-coenzyme A (frc) gene from Lactobacillus reuteri 100-23C. J Appl Microbiol 2014; 116:1657-67. [PMID: 24655128 DOI: 10.1111/jam.12500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 03/13/2014] [Indexed: 11/28/2022]
Abstract
AIM To examine the role of the Lactobacillus reuteri 100-23C frc gene product in oxalate metabolism, host colonization and the acid stress response. METHODS AND RESULTS Genes encoding putative formyl-CoA transferase (frc) and oxalyl-CoA decarboxylase (oxc) enzymes are present in the genome sequences of Lact. reuteri strains. Two strains isolated from humans harboured an IS200 insertion sequence in the frc ORF and a group 2 intron-associated transposase downstream of the frc gene, both of which were lacking in two strains of animal origin, which contained intact frc and oxc genes. An frc(-) insertional mutant of Lact. reuteri 100-23C was compared with the parent strain with respect to oxalate degradation, colonization of an RLF-mouse host model and growth in the presence of acids. Neither parent nor mutant degraded oxalate in vitro or in vivo. However, the parent outcompeted the frc(-) mutant in the mouse intestine during co-colonization and the frc(-) mutant showed a reduced growth rate in the presence of hydrochloric acid. CONCLUSIONS Intact oxc and frc genes do not ensure oxalate degradation under the conditions tested. The frc gene product is important during host colonization and survival of acid stress by Lact. reuteri 100-23C. SIGNIFICANCE AND IMPACT OF THE STUDY Oxalate metabolism by oxalate-degrading intestinal bacterial strains may be important in preventing urolithiasis and might lead to the derivation of probiotic products. To produce safe and efficacious probiotics, however, an understanding of the genetic characteristics of potential oxalate degraders must be obtained, together with knowledge of their functional ramifications.
Collapse
Affiliation(s)
- B Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
4
|
Khan AA, Shrivastava A. Bacterial infections associated with cancer: possible implication in etiology with special reference to lateral gene transfer. Cancer Metastasis Rev 2010; 29:331-337. [PMID: 20401627 DOI: 10.1007/s10555-010-9217-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Chandel DS, Chaudhry R, Dey AB, Malhotra P. Molecular typing reveals a unique clone of Salmonella enterica serotype typhi among Indian strains. J Clin Microbiol 2006; 44:2673-5. [PMID: 16825414 PMCID: PMC1489529 DOI: 10.1128/jcm.02514-05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Wilson JW, Nickerson CA. A new experimental approach for studying bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns. BMC Evol Biol 2006; 6:2. [PMID: 16396675 PMCID: PMC1360685 DOI: 10.1186/1471-2148-6-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 01/05/2006] [Indexed: 11/24/2022] Open
Abstract
Background Genomic islands are regions of bacterial genomes that have been acquired by horizontal transfer and often contain blocks of genes that function together for specific processes. Recently, it has become clear that the impact of genomic islands on the evolution of different bacterial species is significant and represents a major force in establishing bacterial genomic variation. However, the study of genomic island evolution has been mostly performed at the sequence level using computer software or hybridization analysis to compare different bacterial genomic sequences. We describe here a novel experimental approach to study the evolution of species-specific bacterial genomic islands that identifies island genes that have evolved in such a way that they are differentially-expressed depending on the bacterial host background into which they are transferred. Results We demonstrate this approach by using a "test" genomic island that we have cloned from the Salmonella typhimurium genome (island 4305) and transferred to a range of Gram negative bacterial hosts of differing evolutionary relationships to S. typhimurium. Systematic analysis of the expression of the island genes in the different hosts compared to proper controls allowed identification of genes with genera-specific expression patterns. The data from the analysis can be arranged in a matrix to give an expression "array" of the island genes in the different bacterial backgrounds. A conserved 19-bp DNA site was found upstream of at least two of the differentially-expressed island genes. To our knowledge, this is the first systematic analysis of horizontally-transferred genomic island gene expression in a broad range of Gram negative hosts. We also present evidence in this study that the IS200 element found in island 4305 in S. typhimurium strain LT2 was inserted after the island had already been acquired by the S. typhimurium lineage and that this element is likely not involved in the integration or excision of island 4305. Conclusion The "clone-and-transfer" approach of evolutionary study identifies genes whose expression patterns indicate the existence of genera-specific regulatory mechanisms that influence the expression of horizontally-transferred DNA sections. The results provide key information that can be used to facilitate the identification of these regulatory mechanisms.
Collapse
Affiliation(s)
- James W Wilson
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, Room 5728, New Orleans, LA 70112 USA
| | - Cheryl A Nickerson
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, Room 5728, New Orleans, LA 70112 USA
| |
Collapse
|
7
|
Pollmann K, Raff J, Schnorpfeil M, Radeva G, Selenska-Pobell S. Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements. MICROBIOLOGY-SGM 2005; 151:2961-2973. [PMID: 16151207 DOI: 10.1099/mic.0.28201-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The surface layer (S-layer) protein genes of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 and of its relative B. sphaericus NCTC 9602 were analysed. The almost identical N-termini of the two S-layer proteins possess a unique structure, comprising three N-terminal S-layer homologous (SLH) domains. The central parts of the proteins share a high homology and are related to the S-layer proteins of B. sphaericus CCM 2177 and P-1. In contrast, the C-terminal parts of the S-layer proteins of JG-A12 and NCTC 9602 differ significantly between each other. Surprisingly, the C-terminal part of the S-layer protein of JG-A12 shares a high identity with that of the S-layer protein of B. sphaericus CCM 2177. In both JG-A12 and NCTC 9602 the chromosomal S-layer protein genes are followed by a newly identified putative insertion element comprising three ORFs, which encode a putative transposase, a putative integrase/recombinase and a putative protein containing a DNA binding helix-turn-helix motif, and the S-layer-protein-like gene copies sllA (9602) or sllB (JG-A12). Interestingly, both B. sphaericus strains studied were found to contain an additional, plasmid-located and silent S-layer protein gene with the same sequence as sllA and sllB. The primary structures of the corresponding putative proteins are almost identical in both strains. The N-terminal and central parts of these S-layer proteins share a high identity with those of the chromosomally encoded functional S-layer proteins. Their C-terminal parts, however, differ significantly. These results strongly suggest that the S-layer protein genes have evolved via horizontal transfer of genetic information followed by DNA rearrangements mediated by mobile elements.
Collapse
Affiliation(s)
- Katrin Pollmann
- Institute of Radiochemistry, Forschungszentrum Rossendorf, D-01314 Dresden, Germany
| | - Johannes Raff
- Institute of Radiochemistry, Forschungszentrum Rossendorf, D-01314 Dresden, Germany
| | - Michaela Schnorpfeil
- Institute of Radiochemistry, Forschungszentrum Rossendorf, D-01314 Dresden, Germany
| | - Galina Radeva
- Institute of Radiochemistry, Forschungszentrum Rossendorf, D-01314 Dresden, Germany
| | | |
Collapse
|
8
|
Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F. Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell 2005; 20:143-54. [PMID: 16209952 DOI: 10.1016/j.molcel.2005.07.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/22/2005] [Accepted: 07/18/2005] [Indexed: 11/28/2022]
Abstract
Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg2+ and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalent intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.
Collapse
Affiliation(s)
- Donald R Ronning
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J 2005; 24:3325-38. [PMID: 16163392 PMCID: PMC1224677 DOI: 10.1038/sj.emboj.7600787] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/25/2005] [Indexed: 11/09/2022] Open
Abstract
ISHp608 from Helicobacter pylori is active in Escherichia coli and represents a recently recognised group of insertion sequences. Its transposase and organisation suggest that it transposes using a different mechanism to that of other known transposons. The IS was shown to excise as a circular form, which is accompanied by the formation of a resealed donor plasmid backbone. We also demonstrate that TnpA, which is less than half the length of other transposases, is responsible for this and for ISHp608 transposition. Transposition was shown to be site specific: both insertion and transposon excision require a conserved target, 5'TTAC. Deletion analysis suggested that potential secondary structures at the left and right ends are important for transposition. In vitro TnpA bound both ends, showed a strong preference for a specific single-stranded DNA and introduced a single-strand break on the same strand at each end. Although many of the characteristics of ISHp608 appear similar to rolling-circle transposons, there are differences suggesting that, overall, transposition occurs by a different mechanism. The results have permitted the formulation of several related models.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
| | - Donald R Ronning
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), CNRS UMR5100, 118 route de Narbonne, 31062 Toulouse Cedex, France. Tel.: +33 561 335858; Fax: +33 561 335861/-5886; E-mail:
| |
Collapse
|
10
|
Murray SR, de Felipe KS, Obuchowski PL, Pike J, Bermudes D, Low KB. Hot spot for a large deletion in the 18- to 19-centisome region confers a multiple phenotype in Salmonella enterica serovar Typhimurium strain ATCC 14028. J Bacteriol 2005; 186:8516-23. [PMID: 15576802 PMCID: PMC532402 DOI: 10.1128/jb.186.24.8516-8523.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of the Salmonella MsbB enzyme, which catalyzes the incorporation of myristate destined for lipopolysaccharide in the outer membrane, results in a strong phenotype of sensitivity to salt and chelators such as EGTA and greatly diminished endotoxic activity. MsbB- salmonellae mutate extragenically to EGTA-tolerant derivatives at a frequency of 10(-4) per division. One of these derivatives arose from inactivation of somA, which suppresses sensitivity to salt and EGTA. Here we show that a second mode of MsbB- suppression is a RecA-dependent deletion between two IS200 insertion elements present in Salmonella enterica serovar Typhimurium strain ATCC 14028 but not in two other wild-type strains, LT2 and SL1344, which lack one of the IS200 elements. This deletion occurs spontaneously in wild-type and MsbB- strain 14028 salmonellae and accounts for about one-third of all of the spontaneous suppressors of MsbB- in strain 14028. It spans the region corresponding to 17.7 to 19.9 centisomes, which includes somA, on the sequenced map of Salmonella LT2 (136 ORFs in that strain; ATCC 14028 and other strains showed variability in this region). In addition to conferring EGTA resistance correlated with somA, the deletion confers a MacConkey galactose resistance phenotype on MsbB- Salmonella, indicating that at least one additional gene (distinct from somA) within the deletion is responsible for this phenotype. In the wild type, the deletion mutant grows with normal exponential growth rate in Luria broth but is chlorate resistant and does not grow on citrate agar. The deletion strains have lost hydrogen sulfide production, nitrate reductase activity, and gas production from glucose fermentation.
Collapse
Affiliation(s)
- Sean R Murray
- Radiobiology Laboratories, Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8040, USA
| | | | | | | | | | | |
Collapse
|
11
|
Depardieu F, Reynolds PE, Courvalin P. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother 2003; 47:7-18. [PMID: 12499162 PMCID: PMC149003 DOI: 10.1128/aac.47.1.7-18.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VanD type Enterococcus faecium 10/96A is constitutively resistant to vancomycin and to low levels of teicoplanin by nearly exclusive synthesis of peptidoglycan precursors terminating in D-alanyl-D-lactate (L. M. Dalla Costa, P. E. Reynolds, H. A. Souza, D. C. Souza, M. F. Palepou, and N. Woodford, Antimicrob. Agents Chemother. 44:3444-3446, 2000). A G(184)S mutation adjacent to the serine involved in the binding of D-Ala1 in the D-alanine:D-alanine ligase (Ddl) led to production of an impaired Ddl and accounts for the lack of D-alanyl-D-alanine-containing peptidoglycan precursors. The sequence of the vanD gene cluster revealed eight open reading frames. The organization of this operon, assigned to a chromosomal location, was similar to those in other VanD type strains. The distal part encoded the VanH(D) dehydrogenase, the VanD ligase, and the VanX(D) dipeptidase, which were homologous to the corresponding proteins in VanD-type strains. Upstream from the structural genes for these proteins was the vanY(D) gene; a frameshift mutation in this gene resulted in premature termination of the encoded protein and accounted for the lack of penicillin-susceptible D,D-carboxypeptidase activity. Analysis of the translated sequence downstream from the stop codon, but in a different reading frame because of the frameshift mutation, indicated homology with penicillin binding proteins (PBPs) with a high degree of identity with VanY(D) from VanD-type strains. The 5' end of the gene cluster contained the vanR(D)-vanS(D) genes for a putative two-component regulatory system. Insertion of ISEfa4 in the vanS(D) gene led to constitutive expression of vancomycin resistance. This new insertion belonged to the IS605 family and was composed of two open reading frames encoding putative transposases of two unrelated insertion sequence elements, IS200 and IS1341.
Collapse
Affiliation(s)
- Florence Depardieu
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|
12
|
Alokam S, Liu SL, Said K, Sanderson KE. Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar typhi. J Bacteriol 2002; 184:6190-7. [PMID: 12399489 PMCID: PMC151944 DOI: 10.1128/jb.184.22.6190-6197.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.
Collapse
Affiliation(s)
- Suneetha Alokam
- Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
13
|
Viswanathan VK, Kurtz S, Pedersen LL, Abu-Kwaik Y, Krcmarik K, Mody S, Cianciotto NP. The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 2002; 70:1842-52. [PMID: 11895946 PMCID: PMC127876 DOI: 10.1128/iai.70.4.1842-1852.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we obtained a Legionella pneumophila mutant, NU208, that is hypersensitive to iron chelators when grown on standard Legionella media. Here, we demonstrate that NU208 is also impaired for growth in media that simply lack their iron supplement. The mutant was not, however, impaired for the production of legiobactin, the only known L. pneumophila siderophore. Importantly, NU208 was also highly defective for intracellular growth in human U937 cell macrophages and Hartmannella and Acanthamoeba amoebae. The growth defect within macrophages was exacerbated by treatment of the host cells with an iron chelator. Sequence analysis demonstrated that the transposon disruption in NU208 lies within an open reading frame that is highly similar to the cytochrome c maturation gene, ccmC. CcmC is generally recognized for its role in the heme export step of cytochrome biogenesis. Indeed, NU208 lacked cytochrome c. Phenotypic analysis of two additional, independently derived ccmC mutants confirmed that the growth defect in low-iron medium and impaired infectivity were associated with the transposon insertion and not an entirely spontaneous second-site mutation. trans-complementation analysis of NU208 confirmed that L. pneumophila ccmC is required for cytochrome c production, growth under low-iron growth conditions, and at least some forms of intracellular infection. Although ccm genes have recently been implicated in iron assimilation, our data indicate, for the first time, that a ccm gene can be required for bacterial growth in an intracellular niche. Complete sequence analysis of the ccm locus from strain 130b identified the genes ccmA-H. Interestingly, however, we also observed that a 1.8-kb insertion sequence element was positioned between ccmB and ccmC. Southern hybridizations indicated that the open reading frame within this element (ISLp 1) was present in multiple copies in some strains of L. pneumophila but was absent from others. These findings represent the first evidence for a transposable element in Legionella and the first identification of an L. pneumophila strain-specific gene.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Brown JS, Gilliland SM, Holden DW. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 2001; 40:572-85. [PMID: 11359564 DOI: 10.1046/j.1365-2958.2001.02414.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Restricted iron availability is a major obstacle to growth and survival of pathogenic bacteria during infection. In contrast to Gram-negative pathogens, little is known about how Gram-positive pathogens obtain this essential metal. We have identified two Streptococcus pneumoniae genetic loci, pit1 and pit2, encoding homologues of ABC iron transporters that are required for iron uptake by this organism. S. pneumoniae strains containing disrupted copies of either pit1 or pit2 had decreased sensitivity to the iron-dependent antibiotic streptonigrin, and a strain containing disrupted copies of both pit1 and pit2 was unable to use haemoglobin as an iron source and had a reduced rate of iron uptake. The pit2- strain was moderately and the pit1-/pit2- strain strongly attenuated in virulence in mouse models of pulmonary and systemic infection, showing that the pit loci play a critical role during in vivo growth of S. pneumoniae. The pit2 locus is contained within a 27 kb region of chromosomal DNA that has several features of Gram-negative bacterial pathogenicity islands. This probable pathogenicity island (PPI-1) is the first to be described for S. pneumoniae, and its acquisition is likely to have played a significant role in the evolution of this important human pathogen.
Collapse
Affiliation(s)
- J S Brown
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
15
|
Takami H, Han CG, Takaki Y, Ohtsubo E. Identification and distribution of new insertion sequences in the genome of alkaliphilic Bacillus halodurans C-125. J Bacteriol 2001; 183:4345-56. [PMID: 11418576 PMCID: PMC95325 DOI: 10.1128/jb.183.14.4345-4356.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fifteen kinds of new insertion sequences (ISs), IS641 to IS643, IS650 to IS658, IS660, IS662, and IS663, and a group II intron (Bh.Int) were identified in the 4,202,352-bp genome of alkaliphilic Bacillus halodurans C-125. Out of 120 ISs identified in the C-125 genome, 29 were truncated, indicating the occurrence of internal rearrangements of the genome. The ISs other than IS650, IS653, IS660, and IS663 generated a 2- to 9-bp duplication of the target site sequence, and the ISs other than IS650, IS653, and IS657 carry 14- to 64-bp inverted repeats. Sequence analysis revealed that six kinds of ISs (IS642, IS643, IS654, IS655, IS657, and IS658) belong to a separate IS family (IS630, IS21, IS256, IS3, IS200/IS605, and IS30, respectively) as a new member. Also, IS651 and IS652 were characterized as new members of the ISL3 family. Significant similarity was found between the transposase (Tpase) sequences between IS650 and IS653 (78.2%), IS651 and IS652 (56.3%), IS656 and IS662 (71.0%), and IS660 and IS663 (44.5%), but the others showed no similarity to one another. Tpases in 28 members of IS651 in the C-125 genome were found to have become diversified. Most of the IS elements widely distributed throughout the genome were inserted in noncoding regions, although some genes, such as those coding for an ATP-binding cassette transporter/permease, a response regulator, and L-indole 2-dehydrogenase, have been mutated through the insertion of IS elements. It is evident, however, that not all IS elements have transposed and caused rearrangements of the genome in the past 17 years during which strain C-125 was subcultured under neutral and alkaline conditions.
Collapse
Affiliation(s)
- H Takami
- Deep-Sea Research Microorganisms Research Group, Japan Marine Science and Technology Center, Yokosuka 237-0061, Japan.
| | | | | | | |
Collapse
|
16
|
Nesper J, Kapfhammer D, Klose KE, Merkert H, Reidl J. Characterization of vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis. J Bacteriol 2000; 182:5097-104. [PMID: 10960093 PMCID: PMC94657 DOI: 10.1128/jb.182.18.5097-5104.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 06/23/2000] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage K139 was recently characterized as a temperate phage of O1 Vibrio cholerae. In this study we have determined the phage adsorption site on the bacterial cell surface. Phage-binding studies with purified lipopolysaccharide (LPS) of different O1 serotypes and biotypes revealed that the O1 antigen serves as the phage receptor. In addition, phage-resistant O1 El Tor strains were screened by using a virulent isolate of phage K139. Analysis of the LPS of such spontaneous phage-resistant mutants revealed that most of them synthesize incomplete LPS molecules, composed of either defective O1 antigen or core oligosaccharide. By applying phage-binding studies, it was possible to distinguish between receptor mutants and mutations which probably caused abortion of later steps of phage infection. Furthermore, we investigated the genetic nature of O1-negative strains by Southern hybridization with probes specific for the O antigen biosynthesis cluster (rfb region). Two of the investigated O1 antigen-negative mutants revealed insertions of element IS1004 into the rfb gene cluster. Treating one wbeW::IS1004 serum-sensitive mutant with normal human serum, we found that several survivors showed precise excision of IS1004, restoring O antigen biosynthesis and serum resistance. Investigation of clinical isolates by screening for phage resistance and performing LPS analysis of nonlysogenic strains led to the identification of a strain with decreased O1 antigen presentation. This strain had a significant reduction in its ability to colonize the mouse small intestine.
Collapse
Affiliation(s)
- J Nesper
- Zentrum für Infektionsforschung, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Dahl KH, Lundblad EW, Røkenes TP, Olsvik Ø, Sundsfjord A. Genetic linkage of the vanB2 gene cluster to Tn5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 6):1469-1479. [PMID: 10846225 DOI: 10.1099/00221287-146-6-1469] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
VanB-type vancomycin resistance is encoded by the vanB gene cluster, which disseminates by horizontal gene transfer and clonal spread of vancomycin-resistant enterococci (VRE). Genetic linkage of the vanB gene cluster to transposon Tn5382 and the insertion sequences IS16 and IS256-like has previously been shown. In this study linkage of defined vanB gene cluster subtypes to these elements was examined. All the vanB2 subtype strains studied (n=14) revealed co-hybridization of vanB and Tn5382, whereas the strains of vanB1 (n=8) and vanB3 (n=1) subtypes were Tn5382 negative. Conjugative cotransfer of the vanB2 gene cluster and Tn5382 was demonstrated for two strains. DNA sequencing of the vanX(B)-ORFC region in vanB2 strains confirmed that the vanB2 gene cluster is an integral part of Tn5382. No general pattern of linkage was observed with regard to IS16 and IS256-like. Two novel insertion sequences were identified in specific vanB2 subtype strains. (i) A 1611 bp element (ISEnfa110) was detected in the left flank of Tn5382. Its insertion site, lack of terminal inverted and direct repeats, and two conserved motifs in its putative transposase all conform to the conventions of the IS110 family. (ii) A 787 bp element (ISEnfa200) was detected in the vanS(B)-vanY(B) intergenic region. Its ORF encoded a putative protein with 60-70% identity to transposases of the IS200 family. No further copies of ISEnfa110 were found by colony hybridization of 181 enterococcal isolates, whereas ISEnfa200 was found in four additional vanB2 strains from the USA. The five strains had identical ISEnfa200 element insertion sites, and Tn5382 was located downstream from a pbp5 gene conferring high-level ampicillin resistance. These isolates showed related PFGE patterns, suggesting possible clonal spread of a VRE strain harbouring a Tn5382-vanB2-ISEnfa200 element linked to a pbp5 gene conferring ampicillin resistance.
Collapse
Affiliation(s)
- Kristin H Dahl
- Department of Medical Microbiology, University and University Hospital of Tromsø, N-9037 Tromsø, Norway1
| | - Eirik W Lundblad
- Department of Medical Microbiology, University and University Hospital of Tromsø, N-9037 Tromsø, Norway1
| | - Torunn P Røkenes
- Department of Medical Microbiology, University and University Hospital of Tromsø, N-9037 Tromsø, Norway1
| | - Ørjan Olsvik
- Norwegian Institute for Gene Ecology, N-9037 Tromsø, Norway2
- Department of Medical Microbiology, University and University Hospital of Tromsø, N-9037 Tromsø, Norway1
| | - Arnfinn Sundsfjord
- Norwegian Institute for Gene Ecology, N-9037 Tromsø, Norway2
- Department of Medical Microbiology, University and University Hospital of Tromsø, N-9037 Tromsø, Norway1
| |
Collapse
|
18
|
Casadesús J, Naas T, Garzón A, Arini A, Torreblanca J, Arber W. Lack of hotspot targets: a constraint for IS30 transposition in Salmonella. Gene 1999; 238:231-9. [PMID: 10570999 DOI: 10.1016/s0378-1119(99)00256-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IS30 is an insertion element common in E. coli strains but rare or absent in Salmonella. Transfer of the IS30-flanked transposon Tn2700 to Salmonella typhimurium was assayed using standard delivery procedures of bacterial genetics (conjugation and transduction). Tn2700 'hops' were rare and required transposase overproduction, suggesting the existence of host constraints for IS30 activity. Sequencing of three Tn2700 insertions in the genome of S. typhimurium revealed that the transposon had been inserted into sites with a low homology to the IS30 consensus target, suggesting that inefficient Tn2700 transposition to the Salmonella genome might be caused by a lack of hotspot targets. This view was confirmed by the introduction of an IS30 'hot target sequence', whose sole presence permitted Tn2700 transposition without transposase overproduction. Detection of IS30-induced DNA rearrangements in S. typhimurium provided further evidence that the element undergoes similar activities in E. coli and S. typhimurium. Thus, hotspot absence may be the main (if not the only) limitation for IS30 activity in the latter species. If these observations faithfully reproduce the scenario of natural populations, establishment of IS30 in the Salmonella genome may have been prevented by a lack of DNA sequences closely related to the unusually long (24 bp) IS30 consensus target.
Collapse
Affiliation(s)
- J Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Beuzón CR, Marqués S, Casadesús J. Repression of IS200 transposase synthesis by RNA secondary structures. Nucleic Acids Res 1999; 27:3690-5. [PMID: 10471738 PMCID: PMC148624 DOI: 10.1093/nar/27.18.3690] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The IS 200 transposase, a 16 kDa polypeptide encoded by the single open reading frame (ORF) of the insertion element, has been identified using an expression system based on T7 RNA polymerase. In wild-type IS 200, two sets of internal inverted repeats that generate RNA secondary structures provide two independent mechanisms for repression of transposase synthesis. The inverted repeat located near the left end of IS 200 is a transcriptional terminator that terminates read-through transcripts before they reach the IS 200 ORF. The terminator is functional in both directions and may terminate >80% of transcripts. Another control operates at the translational level: transposase synthesis is inhibited by occlusion of the ribosome-binding site (RBS) of the IS 200 ORF. The RBS (5'-AGGGG-3') is occluded by formation of a mRNA stem-loop structure whose 3' end is located only 3 nt upstream of the start codon. This mechanism reduces transposase synthesis approximately 10-fold. Primer extension experiments with AMV reverse transcriptase have provided evidence that this stem-loop RNA structure is actually formed. Tight repression of transposase synthesis, achieved through synergistic mechanisms of negative control, may explain the unusually low transposition frequency of IS 200.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Codon, Initiator/genetics
- DNA Transposable Elements/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Protein Biosynthesis/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Ribosomes/metabolism
- Salmonella/enzymology
- Salmonella/genetics
- Terminator Regions, Genetic/genetics
- Thermodynamics
- Transcription, Genetic/genetics
- Transposases/biosynthesis
- Transposases/chemistry
- Transposases/genetics
Collapse
Affiliation(s)
- C R Beuzón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain
| | | | | |
Collapse
|
20
|
Masui S, Kamoda S, Sasaki T, Ishikawa H. The first detection of the insertion sequence ISW1 in the intracellular reproductive parasite Wolbachia. Plasmid 1999; 42:13-9. [PMID: 10413661 DOI: 10.1006/plas.1999.1407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wolbachia are maternally inherited intracellular rickettsia-like bacteria known to infect a wide range of arthropods. They are associated with a number of different reproductive phenotypes in their hosts, such as cytoplasmic incompatibility, parthenogenesis, and feminization. We report on a novel insertion sequence (IS), ISW1, which was identified in the region downstream of groEL of a Wolbachia strain, wTai. The 573-bp-long ISW1 sequence is the first IS element observed in this organism, displays significant similarity to IS200, and lacks terminal inverted repeats. There were more than 20 copies of ISW1 on the chromosome of wTai. Sequence analysis of nine distinct ISW1 copies and their flanking regions showed that the copies were identical and suggested that ISW1 has no preference for its insertion sites. Possible roles of ISW1 in the adaptation of Wolbachia to intracellular environments and in various reproductive alterations caused by this bacterium are discussed.
Collapse
Affiliation(s)
- S Masui
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
21
|
Torreblanca J, Marqués S, Casadesús J. Synthesis of FinP RNA by plasmids F and pSLT is regulated by DNA adenine methylation. Genetics 1999; 152:31-45. [PMID: 10408954 PMCID: PMC1460579 DOI: 10.1093/genetics/152.1.31] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA adenine methylase mutants of Salmonella typhimurium contain reduced amounts of FinP, an antisense RNA encoded by the virulence plasmid pSLT. Lowered FinP levels are detected in both Dam- FinO+ and Dam- FinO- backgrounds, suggesting that Dam methylation regulates FinP production rather than FinP half-life. Reduced amounts of F-encoded FinP RNA are likewise found in Dam- mutants of Escherichia coli. A consequence of FinP RNA scarcity in the absence of DNA adenine methylation is that Dam- mutants of both S. typhimurium and E. coli show elevated levels of F plasmid transfer. Inhibition of F fertility by the S. typhimurium virulence plasmid is also impaired in a Dam- background.
Collapse
Affiliation(s)
- J Torreblanca
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
22
|
Lindler LE, Plano GV, Burland V, Mayhew GF, Blattner FR. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun 1998; 66:5731-42. [PMID: 9826348 PMCID: PMC108724 DOI: 10.1128/iai.66.12.5731-5742.1998] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, harbors at least three plasmids necessary for full virulence of the organism, two of which are species specific. One of the Y. pestis-specific plasmids, pMT1, is thought to promote deep tissue invasion, resulting in more acute onset of symptoms and death. We determined the entire nucleotide sequence of Y. pestis KIM5 pMT1 and identified potential open reading frames (ORFs) encoded by the 100,990-bp molecule. Based on codon usage for known yersinial genes, homology with known proteins in the databases, and potential ribosome binding sites, we determined that 115 of the potential ORFs which we considered could encode polypeptides in Y. pestis. Five of these ORFs were genes previously identified as being necessary for production of the classic virulence factors, murine toxin (MT), and the fraction 1 (F1) capsule antigen. The regions of pMT1 encoding MT and F1 were surrounded by remnants of multiple transposition events and bacteriophage, respectively, suggesting horizontal gene transfer of these virulence factors. We identified seven new potential virulence factors that might interact with the mammalian host or flea vector. Forty-three of the remaining 115 putative ORFs did not display any significant homology with proteins in the current databases. Furthermore, DNA sequence analysis allowed the determination of the putative replication and partitioning regions of pMT1. We identified a single 2,450-bp region within pMT1 that could function as the origin of replication, including a RepA-like protein similar to RepFIB, RepHI1B, and P1 and P7 replicons. Plasmid partitioning function was located ca. 36 kb from the putative origin of replication and was most similar to the parABS bacteriophage P1 and P7 system. Y. pestis pMT1 encoded potential genes with a high degree of similarity to a wide variety of organisms, plasmids, and bacteriophage. Accordingly, our analysis of the pMT1 DNA sequence emphasized the mosaic nature of this large bacterial virulence plasmid and provided implications as to its evolution.
Collapse
Affiliation(s)
- L E Lindler
- Department of Bacterial Diseases, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100, USA.
| | | | | | | | | |
Collapse
|
23
|
Kersulyte D, Akopyants NS, Clifton SW, Roe BA, Berg DE. Novel sequence organization and insertion specificity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori. Gene 1998; 223:175-86. [PMID: 9858724 DOI: 10.1016/s0378-1119(98)00164-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IS605, an insertion sequence (IS) that is unusual in containing homologs of genes for the single putative transposases of two other unrelated IS elements (IS200 and IS1341), was found in nearly one-third of a set of 238 independent isolates of the gastric pathogen Helicobacter pylori. Hybridization and PCR tests indicated that any strain carrying one of these ORFs also carried the other, which implies that both ORFs are in the same unit of transposition. The IS605 ends and target sites for insertion were identified by sequencing eight preexisting insertions in strain NCTC11638, corresponding empty sites in other strains, and new transpositions in E. coli of an IS605 derivative marked with a selectable chloramphenicol-resistance gene. These tests showed that IS605 is also unusual in: (1) having unique, not inverted repeat, ends; (2) not duplicating (or deleting) target sequences during transposition; and (3) inserting with its left (IS200-homolog) end next to 5'-TTTAA or 5'-TTTAAC. IS605 was implicated in at least two genome rearrangements in strain NCTC11638. A second member of the IS605 family, called IS606 (25% amino acid identity to IS605 in inferred proteins) was found in one-third of 38 H. pylori strains tested, many of which did not carry IS605. The features of these two chimaeric IS elements are discussed in terms of possible transposition mechanisms, IS element evolution, and effects of IS elements on genome organization and evolution in the microbes that they inhabit.
Collapse
Affiliation(s)
- D Kersulyte
- Departments of Molecular Microbiology and Genetics, Campus Box 8230, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|