1
|
Pan J, Singh A, Hanning K, Hicks J, Williamson A. A role for the ATP-dependent DNA ligase lig E of Neisseria gonorrhoeae in biofilm formation. BMC Microbiol 2024; 24:29. [PMID: 38245708 PMCID: PMC10799422 DOI: 10.1186/s12866-024-03193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.
Collapse
Affiliation(s)
- Jolyn Pan
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Avi Singh
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- School of Health, University of Waikato, Hamilton, New Zealand
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
2
|
Williamson A, Leiros HKS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020; 48:8225-8242. [PMID: 32365176 PMCID: PMC7470946 DOI: 10.1093/nar/gkaa307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.
Collapse
Affiliation(s)
- Adele Williamson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | | |
Collapse
|
3
|
Williamson A, Grgic M, Leiros HKS. DNA binding with a minimal scaffold: structure-function analysis of Lig E DNA ligases. Nucleic Acids Res 2019; 46:8616-8629. [PMID: 30007325 PMCID: PMC6144786 DOI: 10.1093/nar/gky622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
DNA ligases join breaks in the phosphodiester backbone of DNA by catalysing the formation of bonds between opposing 5′P and 3′OH ends in an adenylation-dependent manner. Catalysis is accompanied by reorientation of two core domains to provide access to the active site for cofactor utilization and enable substrate binding and product release. The general paradigm is that DNA ligases engage their DNA substrate through complete encirclement of the duplex, completed by inter-domain kissing contacts via loops or additional domains. The recent structure of a minimal Lig E-type DNA ligase, however, implies it must use a different mechanism, as it lacks any domains or loops appending the catalytic core which could complete encirclement. In the present study, we have used a structure-guided mutagenesis approach to investigate the role of conserved regions in the Lig E proteins with respect to DNA binding. We report the structure of a Lig-E type DNA ligase bound to the nicked DNA-adenylate reaction intermediate, confirming that complete encirclement is unnecessary for substrate engagement. Biochemical and biophysical measurements of point mutants to residues implicated in binding highlight the importance of basic residues in the OB domain, and inter-domain contacts to the linker.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Miriam Grgic
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | |
Collapse
|
4
|
Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Appl Environ Microbiol 2018; 84:AEM.02608-17. [PMID: 29330178 DOI: 10.1128/aem.02608-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/23/2017] [Indexed: 01/20/2023] Open
Abstract
Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN, which codes for nattokinase in Bacillus subtilis, was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-SsacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-SsacC Finally, the engineered strain DWc9nΔ7 (Δepr ΔwprA Δmpr ΔaprE Δvpr ΔbprA ΔbacABC), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research.IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in Bacillus licheniformis via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.
Collapse
|
5
|
Korycka-Machala M, Nowosielski M, Kuron A, Rykowski S, Olejniczak A, Hoffmann M, Dziadek J. Naphthalimides Selectively Inhibit the Activity of Bacterial, Replicative DNA Ligases and Display Bactericidal Effects against Tubercle Bacilli. Molecules 2017; 22:E154. [PMID: 28106753 PMCID: PMC6155577 DOI: 10.3390/molecules22010154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all organisms, however bacterial ligases essential for DNA replication use β-nicotinamide adenine dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use adenosine-5'-triphosphate. This fact leads to the conclusion that NAD⁺-dependent DNA ligases in bacteria could be targeted by their co-factor specific inhibitors. The development of novel alternative medical strategies, including new drugs, are a top priority focus areas for tuberculosis research due to an increase in the number of multi-drug resistant as well as totally drug resistant tubercle bacilli strains. Here, through the use of a virtual high-throughput screen and manual inspection of the top 200 records, 23 compounds were selected for in vitro studies. The selected compounds were evaluated in respect to their Mycobacterium tuberculosis NAD⁺ DNA ligase inhibitory effect by a newly developed assay based on Genetic Analyzer 3500 Sequencer. The most effective agents (e.g., pinafide, mitonafide) inhibited the activity of M. tuberculosis NAD⁺-dependent DNA ligase A at concentrations of 50 µM. At the same time, the ATP-dependent (phage) DNA LigT₄ was unaffected by the agents at concentrations up to 2 mM. The selected compounds appeared to also be active against actively growing tubercle bacilli in concentrations as low as 15 µM.
Collapse
Affiliation(s)
| | - Marcin Nowosielski
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
- Quantum Chemistry Group, A. Mickiewicz University, Poznan 60-780, Poland.
| | - Aneta Kuron
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| | | | - Marcin Hoffmann
- Quantum Chemistry Group, A. Mickiewicz University, Poznan 60-780, Poland.
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| |
Collapse
|
6
|
Williamson A, Hjerde E, Kahlke T. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'. Mol Microbiol 2015; 99:274-90. [PMID: 26412580 DOI: 10.1111/mmi.13229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/01/2022]
Abstract
Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Tim Kahlke
- CSIRO Oceans and Atmosphere Flagship, Castray Esplanade, Hobart, TAS, 7000, Australia
| |
Collapse
|
7
|
Williamson A, Rothweiler U, Leiros HKS. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface. ACTA ACUST UNITED AC 2014; 70:3043-56. [PMID: 25372693 PMCID: PMC4220977 DOI: 10.1107/s1399004714021099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022]
Abstract
The enzyme–adenylate structure of a bacterial ATP-dependent DNA ligase (ADL), which does not have any additional DNA-binding domains, is similar to minimal viral ADLs that comprise only the core catalytic domains. The bacterial ADL also lacks the unstructured loops which are involved in DNA binding in the viral ADLs, implying that it must instead use short well structured motifs of the core domains to engage its substrate. DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme–adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ulli Rothweiler
- NorStruct, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | |
Collapse
|
8
|
Williamson A, Pedersen H. Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expr Purif 2014; 97:29-36. [DOI: 10.1016/j.pep.2014.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
9
|
Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J Bacteriol 2012; 194:5245-54. [PMID: 22821979 DOI: 10.1128/jb.00671-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural competence is the ability of bacteria to actively take up extracellular DNA. This DNA can recombine with the host chromosome, transforming the host cell and altering its genotype. In Haemophilus influenzae, natural competence is induced by energy starvation and the depletion of nucleotide pools. This induces a 26-gene competence regulon (Sxy-dependent cyclic AMP receptor protein [CRP-S] regulon) whose expression is controlled by two regulators, CRP and Sxy. The role of most of the CRP-S genes in DNA uptake and transformation is not known. We have therefore created in-frame deletions of each CRP-S gene and studied their competence phenotypes. All but one gene (ssb) could be deleted. Although none of the remaining CRP-S genes were required for growth in rich medium or survival under starvation conditions, DNA uptake and transformation were abolished or reduced in most of the mutants. Seventeen genes were absolutely required for transformation, with 14 of these genes being specifically required for the assembly and function of the type IV pilus DNA uptake machinery. Only five genes were dispensable for both competence and transformation. This is the first competence regulon for which all genes have been mutationally characterized.
Collapse
|
10
|
Gao F, Zhou H, Li W, Zhang X. Detection of ligation products of DNA linkers with 5'-OH ends by denaturing PAGE silver stain. PLoS One 2012; 7:e39251. [PMID: 22761747 PMCID: PMC3384673 DOI: 10.1371/journal.pone.0039251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
To explore if DNA linkers with 5′-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5–1% of linkers A–B and E–F, and 0.13–0.5% of linkers C–D could be joined by T4 DNA ligases. About 0.25–0.77% of linkers A–B and E–F, and 0.06–0.39% of linkers C–D could be joined by E. coli DNA ligases. A 1-base deletion (-G) and a 5-base deletion (-GGAGC) could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025–0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5′-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i) about 0.025–0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3′-OH ends of other linkers; and (ii) the linkers could delete one or more nucleotide(s) at their 5′-ends and thereby generated some 5′-phosphate ends, and then these 5′-phosphate ends could be joined to the 3′-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5′-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK.
Collapse
Affiliation(s)
- Feng Gao
- Department of Anal and Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huafu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Li
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
- * E-mail:
| | - Xuerong Zhang
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Cardona-Felix CS, Pastor-Palacios G, Cardenas H, Azuara-Liceaga E, Brieba LG. Biochemical characterization of the DNA ligase I from Entamoeba histolytica. Mol Biochem Parasitol 2010; 174:26-35. [PMID: 20603158 DOI: 10.1016/j.molbiopara.2010.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
DNA ligases play an essential role in DNA replication and repair. Herein, we report the cloning and biochemical characterization of DNA ligase I from the protozoan parasite Entamoeba histolytica (EhDNAligI). EhDNAligI is an ATP-dependent DNA ligase of 685 amino acids with 35% identity to human DNA ligase I. This report shows that heterologous expressed EhDNAligI is able to perform the three conserved steps of a DNA ligation reaction: adenylation, binding to a 5'-phosphorylated nicked DNA substrate and sealing of the nick. EhDNAligI is strongly inhibited by NaCl and displays optimal activity at pH 7.5. EhDNAligI uses Mn2+ or Mg2+ as metal cofactors and ATP as nucleotide cofactor. EhDNAligI has a nicked DNA binding constant of 6.6microM and follows Michaelis-Menten steady-state kinetics with a K(m) ATP of 64nM and a k(cat) of 2.4min(-1). Accordingly to its properties as a family I DNA ligase, EhDNAligI is able to ligate a RNA strand upstream of a nucleic acid nick, but not in the downstream or the template position. We propose that EhDNAligI is involved in sealing DNA nicks during lagging strand synthesis and may have a role in base excision repair in E. histolytica.
Collapse
Affiliation(s)
- Cesar S Cardona-Felix
- Laboratory for Genomics and Biodiversity, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
12
|
Kim J, Mrksich M. Profiling the selectivity of DNA ligases in an array format with mass spectrometry. Nucleic Acids Res 2009; 38:e2. [PMID: 19854942 PMCID: PMC2800213 DOI: 10.1093/nar/gkp827] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This article describes a method for the global profiling of the substrate specificities of DNA ligases and illustrates examples using the Taq and T4 DNA ligases. The method combines oligonucleotide arrays, which offer the benefits of high throughput and multiplexed assays, with mass spectrometry to permit label-free assays of ligase activity. Arrays were prepared by immobilizing ternary biotin-tagged DNA substrates to a self-assembled monolayer presenting a layer of streptavidin protein. The array represented complexes having all possible matched and mismatched base pairs at the 3′ side of the nick site and also included a number of deletions and insertions at this site. The arrays were treated with ligases and adenosine triphosphate or analogs of the nucleotide triphosphate and then analyzed by matrix-assisted laser desorption-ionization mass spectrometry to determine the yields for both adenylation of the 5′-probe strand and joining of the two probe strands. The resulting activity profiles reveal the basis for specificity of the ligases and also point to strategies that use ATP analogs to improve specificity. This work introduces a method that can be applied to profile a broad range of enzymes that operate on nucleic acid substrates.
Collapse
Affiliation(s)
- Joohoon Kim
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
13
|
Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol 2009; 75:5161-6. [PMID: 19502445 DOI: 10.1128/aem.00074-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A lysine racemase (lyr) gene was isolated from a soil metagenome by functional complementation for the first time by using Escherichia coli BCRC 51734 cells as the host and d-lysine as the selection agent. The lyr gene consisted of a 1,182-bp nucleotide sequence encoding a protein of 393 amino acids with a molecular mass of about 42.7 kDa. The enzyme exhibited higher specific activity toward lysine in the l-lysine-to-d-lysine direction than in the reverse reaction.
Collapse
|
14
|
Abstract
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.
Collapse
Affiliation(s)
- Stewart Shuman
- Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
15
|
Feng H. Mutational analysis of bacterial NAD+-dependent DNA ligase: role of motif IV in ligation catalysis. Acta Biochim Biophys Sin (Shanghai) 2007; 39:608-16. [PMID: 17687496 DOI: 10.1111/j.1745-7270.2007.00313.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif IV in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif IV had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.
Collapse
Affiliation(s)
- Hong Feng
- Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
16
|
Abstract
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.
Collapse
Affiliation(s)
| | - Stewart Shuman
- *To whom correspondence should be addressed. 212 639 7145212 717 3623
| |
Collapse
|
17
|
Benarroch D, Shuman S. Characterization of mimivirus NAD+-dependent DNA ligase. Virology 2006; 353:133-43. [PMID: 16844179 DOI: 10.1016/j.virol.2006.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes a cornucopia of proteins with imputed functions in DNA replication, modification, and repair. Here we produced, purified, and characterized mimivirus DNA ligase (MimiLIG), an NAD+-dependent nick joining enzyme homologous to bacterial LigA and entomopoxvirus DNA ligase. MimiLIG is a 636-aa polypeptide composed of an N-terminal NAD+ specificity module (domain Ia), linked to nucleotidyltransferase, OB-fold, helix-hairpin-helix, and BRCT domains, but it lacks the tetracysteine Zn-binding module found in all bacterial LigA enzymes. MimiLIG requires conserved domain Ia residues Tyr36, Asp46, Tyr49, and Asp50 for its initial reaction with NAD+ to form the ligase-AMP intermediate, but not for the third step of phosphodiester formation at a preadenylylated nick. MimiLIG differs from bacterial LigA enzymes in that its activity is strongly dependent on the C-terminal BRCT domain, deletion of which reduced its specific activity in nick joining by 75-fold without affecting the ligase adenylylation step. The DeltaBRCT mutant of MimiLIG was impaired in sealing at a preadenylylated nick. We propose that eukaryal DNA viruses acquired the NAD+-dependent ligases by horizontal transfer from a bacterium and that MimiLIG predates entomopoxvirus ligase, which lacks both the tetracysteine and BRCT domains. We speculate that the dissemination of NAD+-dependent ligase from bacterium to eukaryotic virus might have occurred within an amoebal host.
Collapse
Affiliation(s)
- Delphine Benarroch
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
18
|
Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM. Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem 2006; 281:13412-13423. [PMID: 16476729 DOI: 10.1074/jbc.m513550200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase D (LigD) is a large polyfunctional enzyme involved in nonhomologous end-joining (NHEJ) in mycobacteria. LigD consists of a C-terminal ATP-dependent ligase domain fused to upstream polymerase and phosphoesterase modules. Here we report the 2.4 angstroms crystal structure of the ligase domain of Mycobacterium LigD, captured as the covalent ligase-AMP intermediate with a divalent metal in the active site. A chloride anion on the protein surface coordinated by the ribose 3'-OH and caged by arginine and lysine side chains is a putative mimetic of the 5'-phosphate at a DNA nick. Structure-guided mutational analysis revealed distinct requirements for the adenylylation and end-sealing reactions catalyzed by LigD. We found that a mutation of Mycobacterium LigD that ablates only ligase activity results in decreased fidelity of NHEJ in vivo and a strong bias of mutagenic events toward deletions instead of insertions at the sealed DNA ends. This phenotype contrasts with the increased fidelity of double-strand break repair in deltaligD cells or in a strain in which only the polymerase function of LigD is defective. We surmise that the signature error-prone quality of bacterial NHEJ in vivo arises from a dynamic balance between the end-remodeling and end-sealing steps.
Collapse
Affiliation(s)
- David Akey
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720
| | - Alexandra Martins
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Jideofor Aniukwu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Michael S Glickman
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021; Division of Infectious Diseases, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
| | - James M Berger
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
19
|
Pitcher RS, Tonkin LM, Green AJ, Doherty AJ. Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis. J Mol Biol 2005; 351:531-44. [PMID: 16023671 DOI: 10.1016/j.jmb.2005.06.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 06/15/2005] [Accepted: 06/15/2005] [Indexed: 11/17/2022]
Abstract
A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.
Collapse
Affiliation(s)
- Robert S Pitcher
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | | | | | | |
Collapse
|
20
|
Srivastava SK, Tripathi RP, Ramachandran R. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J Biol Chem 2005; 280:30273-81. [PMID: 15901723 DOI: 10.1074/jbc.m503780200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.
Collapse
Affiliation(s)
- Sandeep Kumar Srivastava
- Division Molecular and Structural Biology, Central Drug Research Institute, Chattar Manzil, Mahatma Gandhi Marg, Lucknow-226001, India
| | | | | |
Collapse
|
21
|
Gul S, Brown R, May E, Mazzulla M, Smyth MG, Berry C, Morby A, Powell DJ. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay. Biochem J 2005; 383:551-9. [PMID: 15283677 PMCID: PMC1133749 DOI: 10.1042/bj20040054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.
Collapse
Affiliation(s)
- Sheraz Gul
- Assay Development and Compound Profiling, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 4AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Redfield RJ, Cameron ADS, Qian Q, Hinds J, Ali TR, Kroll JS, Langford PR. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 2005; 347:735-47. [PMID: 15769466 DOI: 10.1016/j.jmb.2005.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/23/2004] [Accepted: 01/05/2005] [Indexed: 01/19/2023]
Abstract
Natural competence for DNA uptake is common among bacteria but its evolutionary function is controversial. Resolving the dispute requires a detailed understanding of both how cells decide to take up DNA and how the DNA is processed during and after uptake. We have used whole-genome microarrays to follow changes in gene expression during competence development in wild-type Haemophilus influenzae cells, and to characterize dependence of competence-induced transcription on known regulatory factors. This analysis confirmed the existence of a postulated competence regulon, characterized by a promoter-associated 22 bp competence regulatory element (CRE) closely related to the cAMP receptor protein (CRP) binding consensus. This CRE regulon contains 25 genes in 13 transcription units, only about half of which have been previously associated with competence. The new CRE genes encode a periplasmic ATP-dependent DNA ligase, homologs of SSB, RadC and the Bacillus subtilis DNA uptake protein ComEA, and eight genes of unknown function. Competence-induced transcription of genes in the CRE regulon is strongly dependent on cAMP, consistent with the known role of catabolite regulation in competence. Electrophoretic mobility-shift assays confirmed that CRE sequences are a new class of CRP-binding site. The essential competence gene sxy is induced early in competence development and is required for competence-induced transcription of CRE-regulon genes but not other CRP-regulated genes, suggesting that Sxy may act as an accessory factor directing CRP to CRE sites. Natural selection has united these 25 genes under a common regulatory mechanism. Elucidating this mechanism, and the functions of the genes, will provide a valuable window into the evolutionary function of natural competence.
Collapse
Affiliation(s)
- Rosemary J Redfield
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 2005; 12:304-12. [PMID: 15778718 DOI: 10.1038/nsmb915] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 03/01/2005] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) can be repaired either via homologous recombination (HR) or nonhomologous end-joining (NHEJ). Both pathways are operative in eukaryotes, but bacteria had been thought to rely on HR alone. Here we provide direct evidence that mycobacteria have a robust NHEJ pathway that requires Ku and a specialized polyfunctional ATP-dependent DNA ligase (LigD). NHEJ of blunt-end and complementary 5'-overhang DSBs is highly mutagenic ( approximately 50% error rate). Analysis of the recombination junctions ensuing from individual NHEJ events highlighted the participation of several DNA end-remodeling activities, including template-dependent fill-in of 5' overhangs, nontemplated addition of single nucleotides at blunt ends, and nucleolytic resection. LigD itself has the template-dependent and template-independent polymerase functions in vitro that compose the molecular signatures of NHEJ in vivo. Another ATP-dependent DNA ligase (LigC) provides a backup mechanism for LigD-independent error-prone repair of blunt-end DSBs. We speculate that NHEJ allows mycobacteria to evade genotoxic host defense.
Collapse
Affiliation(s)
- Chunling Gong
- Immunology and Molecular Biology Programs, Sloan-Kettering Institute, and Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu L, Tang Z, Wang K, Tan W, Li J, Guo Q, Meng X, Ma C. Using molecular beacon to monitor activity of E. coli DNA ligase. Analyst 2005; 130:350-7. [PMID: 15724164 DOI: 10.1039/b413959c] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NAD(+)-dependent DNA ligase has been widely used in gene diagnostics for disease-associated mutation detection and has proved to be necessary for screening bactericidal drugs targeted to DNA ligases. However, further research has been restricted since conventional ligase assay technology is limited to gel electrophoresis, which is discontinuous, time-consuming and laborious. An innovative approach is developed for monitoring the activity of E. coli DNA ligase catalyzing nucleic acid ligation in the report. This approach utilizes a molecular beacon hybridized with two single-stranded DNA (ssDNA) segments to be ligated to form a hybrid with a nick, and could therefore be recognized by the enzyme. Ligation of the two ssDNA segments would cause conformation changes of the molecular beacon, leading to significant fluorescence enhancement. Compared to gel electrophoresis, this approach can provide real time information about ligase, is more time efficient, and is easier to use. The effect of quinacrine, a drug for malaria, on the activity of the ligase is detected, thereby certifying the capability of the method for developing novel antibacterial drugs targeted at NAD(+)-dependent ligase. The fidelity of strand joining by the ligase is examined based on this approach. The effects of external factors on activity of the ligase are analyzed, and then an assay of E. coli DNA ligase is performed with a broad linear range of 4.0 x 10(-4) Weiss Unit mL(-1) to 0.4 Weiss Unit mL(-1) and the detection limit of 4.0 x 10(-4) Weiss Unit mL(-1).
Collapse
Affiliation(s)
- Lingfeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Biological Technology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R.China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhu H, Shuman S. A primer-dependent polymerase function of pseudomonas aeruginosa ATP-dependent DNA ligase (LigD). J Biol Chem 2004; 280:418-27. [PMID: 15520014 DOI: 10.1074/jbc.m410110200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa encodes two putative DNA ligases: a classical NAD(+)-dependent DNA ligase (LigA) plus an ATP-dependent DNA ligase (LigD). LigD exemplifies a family of bacterial proteins that consist of a ligase domain fused to flanking domains that resemble nucleases and/or polymerases. Here we purify LigD and show that it possesses an intrinsic polymerase function resident within an autonomous C-terminal polymerase domain, LigD-(533-840), that flanks an autonomous DNA ligase domain, LigD-(188-527). Native LigD and the polymerase domain are both monomeric proteins. The polymerase activity is manifest in three ways: (i) non-templated nucleotide addition to a blunt-ended duplex DNA primer; (ii) non-templated addition to a single-stranded DNA primer; and (iii) templated extension of a 5'-tailed duplex DNA primer-template. The divalent cation cofactor requirement for non-templated and templated polymerase activity is satisfied by manganese or cobalt. rNTPs are preferred over dNTPs as substrates for non-templated blunt-end addition, which typically entails the incorporation of only 1 or 2 nucleotides at the primer terminus. Templated dNMP addition to a 5'-tailed substrate is efficient with respect to dNTP utilization; the primer is elongated to the end of the template strand and is then further extended with a non-templated nucleotide. The polymerase activity is abolished by alanine substitution for two aspartates (Asp-669 and Asp-671) within the putative metal-binding site. We speculate that polymerase activity is relevant to LigD function in nonhomologous end-joining.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
26
|
Lu J, Tong J, Feng H, Huang J, Afonso CL, Rock DL, Barany F, Cao W. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:37-48. [PMID: 15450174 DOI: 10.1016/j.bbapap.2004.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/26/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.
Collapse
Affiliation(s)
- Jing Lu
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
VanWagoner TM, Whitby PW, Morton DJ, Seale TW, Stull TL. Characterization of three new competence-regulated operons in Haemophilus influenzae. J Bacteriol 2004; 186:6409-21. [PMID: 15375121 PMCID: PMC516621 DOI: 10.1128/jb.186.19.6409-6421.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is one of a growing number of bacteria in which the natural ability to uptake exogenous DNA for potential genomic transformation has been recognized. To date, several operons involved in transformation in this organism have been described. These operons are characterized by a conserved 22-bp regulatory element upstream of the first gene and are induced coincident with transfer from rich to nutrient-depleted media. The previously identified operons comprised genes encoding proteins that include members of the type II secretion system and type IV pili, shown to be essential for transformation in other bacteria, and other proteins previously identified as required for transformation in H. influenzae. In the present study, three novel competence operons were identified by comparative genomics and transcriptional analysis. These operons have been further characterized by construction of null mutants and examination of the resulting transformation phenotypes. The putative protein encoded by the HI0366 gene was shown to be essential for DNA uptake, but not binding, and is homologous to a protein shown to be required for pilus biogenesis and twitching motility in Pseudomonas aeruginosa. An insertion in HI0939 abolished both DNA binding and uptake. The predicted product of this gene shares characteristics with PulJ, a pseudopilin involved in pullulanase export in Klebsiella oxytoca.
Collapse
Affiliation(s)
- Timothy M VanWagoner
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
28
|
Rolland JL, Gueguen Y, Persillon CÃ, Masson JM, Dietrich J. Characterization of a thermophilic DNA ligase from the archaeon Thermococcus fumicolans. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09657.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Gong C, Martins A, Bongiorno P, Glickman M, Shuman S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem 2004; 279:20594-606. [PMID: 14985346 DOI: 10.1074/jbc.m401841200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis encodes an NAD(+)-dependent DNA ligase (LigA) plus three distinct ATP-dependent ligase homologs (LigB, LigC, and LigD). Here we purify and characterize the multiple DNA ligase enzymes of mycobacteria and probe genetically whether the ATP-dependent ligases are required for growth of M. tuberculosis. We find significant differences in the reactivity of mycobacterial ligases with a nicked DNA substrate, whereby LigA and LigB display vigorous nick sealing activity in the presence of NAD(+) and ATP, respectively, whereas LigC and LigD, which have ATP-specific adenylyltransferase activity, display weak nick joining activity and generate high levels of the DNA-adenylate intermediate. All four of the mycobacterial ligases are monomeric enzymes. LigA has a low K(m) for NAD(+) (1 microm) and is sensitive to a recently described pyridochromanone inhibitor of NAD(+)-dependent ligases. LigA is able to sustain growth of Saccharomyces cerevisiae in lieu of the essential yeast ligase Cdc9, but LigB, LigC, and LigD are not. LigB is distinguished by its relatively high K(m) for ATP (0.34 mm) and its dependence on a distinctive N-terminal domain for nick joining. None of the three ATP-dependent ligases are essential for mycobacterial growth. M. tuberculosis ligDDelta cells are defective in nonhomologous DNA end joining.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology and Immunology Programs, Sloan-Kettering Institute, and Infectious Disease Division, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
30
|
Brötz-Oesterhelt H, Knezevic I, Bartel S, Lampe T, Warnecke-Eberz U, Ziegelbauer K, Häbich D, Labischinski H. Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones. J Biol Chem 2003; 278:39435-42. [PMID: 12867414 DOI: 10.1074/jbc.m306479200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridochromanones were identified by high throughput screening as potent inhibitors of NAD+-dependent DNA ligase from Escherichia coli. Further characterization revealed that eubacterial DNA ligases from Gram-negative and Gram-positive sources were inhibited at nanomolar concentrations. In contrast, purified human DNA ligase I was not affected (IC50 > 75 microm), demonstrating remarkable specificity for the prokaryotic target. The binding mode is competitive with the eubacteria-specific cofactor NAD+, and no intercalation into DNA was detected. Accordingly, the compounds were bactericidal for the prominent human pathogen Staphylococcus aureus in the low microg/ml range, whereas eukaryotic cells were not affected up to 60 microg/ml. The hypothesis that inhibition of DNA ligase is the antibacterial principle was proven in studies with a temperature-sensitive ligase-deficient E. coli strain. This mutant was highly susceptible for pyridochromanones at elevated temperatures but was rescued by heterologous expression of human DNA ligase I. A physiological consequence of ligase inhibition in bacteria was massive DNA degradation, as visualized by fluorescence microscopy of labeled DNA. In summary, the pyridochromanones demonstrate that diverse eubacterial DNA ligases can be addressed by a single inhibitor without affecting eukaryotic ligases or other DNA-binding enzymes, which proves the value of DNA ligase as a novel target in antibacterial therapy.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- Department of Anti-infectives, Bayer AG, Bayer Health Care, Pharma Research, Aprather Weg 18a, D-42096 Wuppertal, Germany. heike.broetz-oesterhelt.hb@bayer-ag
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakatani M, Ezaki S, Atomi H, Imanaka T. Substrate recognition and fidelity of strand joining by an archaeal DNA ligase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:650-6. [PMID: 11856324 DOI: 10.1046/j.0014-2956.2001.02695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously identified a DNA ligase (LigTk) from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. The enzyme is the only characterized ATP-dependent DNA ligase from a hyperthermophile, and allows the analysis of enzymatic DNA ligation reactions at temperatures above the melting point of the substrates. Here we have focused on the interactions of LigTk with various DNA substrates, and its specificities toward metal cations. LigTk could utilize Mg2+, Mn2+, Sr2+ and Ca2+ as a metal cation, but not Co2+, Zn2+, Ni2+, or Cu2+. The enzyme displayed typical Michaelis-Menten steady-state kinetics with an apparent Km of 1.4 microm for nicked DNA. The kcat value of the enzyme was 0.11*s-1. Using various 3' hydroxyl group donors (L-DNA) and 5' phosphate group donors (R-DNA), we could detect ligation products as short as 16 nucleotides, the products of 7 + 9 nucleotide or 8 + 8 nucleotide combinations at 40 degrees C. An elevation in temperature led to a decrease in reaction efficiency when short oligonucleotides were used, suggesting that the formation of a nicked, double-stranded DNA substrate preceded enzyme-substrate recognition. LigTk was not inhibited by the addition of excess duplex DNA, implying that the enzyme did not bind strongly to the double-stranded ligation product after nick-sealing. In terms of reaction fidelity, LigTk was found to ligate various substrates with mismatched base-pairing at the 5' end of the nick, but did not show activity towards the 3' mismatched substrates. LigTk could not seal substrates with a 1-nucleotide or 2-nucleotide gap. Small amounts of ligation products were detected with DNA substrates containing a single nucleotide insertion, relatively more with the 5' insertions. The results revealed the importance of proper base-pairing at the 3' hydroxyl side of the nick for the ligation reaction by LigTk.
Collapse
Affiliation(s)
- Masaru Nakatani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Escherichia coli DNA ligase (LigA) is the prototype of the NAD(+)-dependent class of DNA ligases found in all bacteria. Here we report the characterization of E.coli LigB, a second NAD(+)-dependent DNA ligase identified by virtue of its sequence similarity to LigA. LigB differs from LigA in that it lacks the BRCA1 C-terminus domain (BRCT) and two of the four Zn-binding cysteines that are present in LigA and all other bacterial NAD(+) ligases. We found that recombinant LigB catalyzed strand joining on a singly-nicked DNA in the presence of a divalent cation and NAD(+), and that LigB reacted with NAD(+) to form a covalent ligase-adenylate intermediate. Alanine substitution for the motif I lysine ((126)KxDG) abolished nick joining and ligase-adenylate formation by LigB, thus confirming that the ligase and adenylyltransferase activities are intrinsic to the LigB protein.
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
33
|
|
34
|
Abstract
We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
35
|
Abstract
DNA ligases join breaks in the phosphodiester backbone of DNA molecules and are used in many essential reactions within the cell. All DNA ligases follow the same reaction mechanism, but they may use either ATP or NAD+ as a cofactor. All Bacteria (eubacteria) contain NAD+-dependent DNA ligases, and the uniqueness of these enzymes to Bacteria makes them an attractive target for novel antibiotics. In addition to their NAD+-dependent enzymes, some Bacteria contain genes for putative ATP-dependent DNA ligases. The requirement for these different isozymes in Bacteria is unknown, but may be related to their utilization in different aspects of DNA metabolism. The putative ATP-dependent DNA ligases found in Bacteria are most closely related to proteins from Archaea and viruses. Phylogenetic analysis suggests that all NAD+-dependent DNA ligases are closely related, but the ATP-dependent enzymes have been acquired by Bacterial genomes on a number of separate occasions.
Collapse
Affiliation(s)
- A Wilkinson
- Molecular Biology Sector, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
36
|
Wu YQ, Hohn B, Ziemienowic A. Characterization of an ATP-dependent type I DNA ligase from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2001; 46:161-170. [PMID: 11442056 DOI: 10.1023/a:1010679901911] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here we report the purification and biochemical characterization of recombinant Arabidopsis thaliana DNA ligase I. We show that this ligase requires ATP as a source for adenylation. The calculated Km [ATP] for ligation is 3 microM. This enzyme is able to ligate nicks in oligo(dT)/poly(dA) and oligo(rA)/poly(dT) substrates, but not in oligo(dT)/poly(rA) substrates. Double-stranded DNAs with cohesive or blunt ends are also good substrates for the ligase. These biochemical features of the purified enzyme show the characteristics typical of a type I DNA ligase. Furthermore, this DNA ligase is able to perform the reverse reaction (relaxation of supercoiled DNA) in an AMP-dependent and PPi-stimulated manner.
Collapse
Affiliation(s)
- Y Q Wu
- Friedrich Miescher-Institiute, Basel, Switzerland
| | | | | |
Collapse
|
37
|
Abstract
DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA. Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.
Collapse
Affiliation(s)
- D J Timson
- Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | | | | |
Collapse
|
38
|
Georlette D, Jónsson ZO, Van Petegem F, Chessa J, Van Beeumen J, Hübscher U, Gerday C. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3502-12. [PMID: 10848966 DOI: 10.1046/j.1432-1327.2000.01377.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cloning, overexpression and characterization of a cold-adapted DNA ligase from the Antarctic sea water bacterium Pseudoalteromonas haloplanktis are described. Protein sequence analysis revealed that the cold-adapted Ph DNA ligase shows a significant level of sequence similarity to other NAD+-dependent DNA ligases and contains several previously described sequence motifs. Also, a decreased level of arginine and proline residues in Ph DNA ligase could be involved in the cold-adaptation strategy. Moreover, 3D modelling of the N-terminal domain of Ph DNA ligase clearly indicates that this domain is destabilized compared with its thermophilic homologue. The recombinant Ph DNA ligase was overexpressed in Escherichia coli and purified to homogeneity. Mass spectroscopy experiments indicated that the purified enzyme is mainly in an adenylated form with a molecular mass of 74 593 Da. Ph DNA ligase shows similar overall catalytic properties to other NAD+-dependent DNA ligases but is a cold-adapted enzyme as its catalytic efficiency (kcat/Km) at low and moderate temperatures is higher than that of its mesophilic counterpart E. coli DNA ligase. A kinetic comparison of three enzymes adapted to different temperatures (P. haloplanktis, E. coli and Thermus scotoductus DNA ligases) indicated that an increased kcat is the most important adaptive parameter for enzymatic activity at low temperatures, whereas a decreased Km for the nicked DNA substrate seems to allow T. scotoductus DNA ligase to work efficiently at high temperatures. Besides being useful for investigation of the adaptation of enzymes to extreme temperatures, P. haloplanktis DNA ligase, which is very efficient at low temperatures, offers a novel tool for biotechnology.
Collapse
Affiliation(s)
- D Georlette
- Laboratory of Biochemistry, Institute of Chemistry, B6a Université de Liège, Sart-Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Tong J, Barany F, Cao W. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus. Nucleic Acids Res 2000; 28:1447-54. [PMID: 10684941 PMCID: PMC111035 DOI: 10.1093/nar/28.6.1447] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An NAD(+)-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg(2+)or Mn(2+)as the metal cofactor. Ca(2+)and Ni(2+)mainly support formation of DNA-adenylate intermediates. The catalytic cycle is characterized by a low k (cat)value of 2 min(-1)with concomitant accumulation of the DNA - adenylate intermediate when Mg(2+)is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A < or = G/C < C/G < A/T on both the 3'- and 5'-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3'-side of the nick junction. The requirement of 3' complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3'- or 5'-side of the nick. Furthermore, most of the unligatable 3' mismatched base pairs prohibit formation of the DNA-adenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5'-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.
Collapse
Affiliation(s)
- J Tong
- Department of Microbiology and Immunology, Hearst Microbiology Research Center and Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Ciarrocchi G, MacPhee DG, Deady LW, Tilley L. Specific inhibition of the eubacterial DNA ligase by arylamino compounds. Antimicrob Agents Chemother 1999; 43:2766-72. [PMID: 10543760 PMCID: PMC89556 DOI: 10.1128/aac.43.11.2766] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All known DNA ligases catalyze the formation of a phosphodiester linkage between adjacent termini in double-stranded DNA via very similar mechanisms. The ligase family can, however, be divided into two classes: eubacterial ligases, which require NAD(+) as a cofactor, and other ligases, from viruses, archaea, and eukaryotes, which use ATP. Drugs that discriminate between DNA ligases from different sources may have antieubacterial activity. We now report that a group of arylamino compounds, including some commonly used antimalarial and anti-inflammatory drugs and a novel series of bisquinoline compounds, are specific inhibitors of eubacterial DNA ligases. Members of this group of inhibitors have different heterocyclic ring systems with a common amino side chain in which the two nitrogens are separated by four carbon atoms. The potency, but not the specificity of action, is influenced by the DNA-binding characteristics of the inhibitor, and the inhibition is noncompetitive with respect to NAD(+). The arylamino compounds appear to target eubacterial DNA ligase in vivo, since a Salmonella Lig(-) strain that has been rescued with the ATP-dependent T4 DNA ligase is less sensitive than the parental Salmonella strain.
Collapse
Affiliation(s)
- G Ciarrocchi
- Istituto di Genetica Biochimica ed Evoluzionistica, CNR, Pavia 27100, Italy.
| | | | | | | |
Collapse
|
41
|
Tong J, Cao W, Barany F. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D. Nucleic Acids Res 1999; 27:788-94. [PMID: 9889274 PMCID: PMC148248 DOI: 10.1093/nar/27.3.788] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate.
Collapse
Affiliation(s)
- J Tong
- Department of Microbiology, Hearst Microbiology Research Center, Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, Box 62, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Abstract
Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of approximately 40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns--a self-splicing intron in a transcription factor-like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded-DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.
Collapse
Affiliation(s)
- J L Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722, USA.
| | | |
Collapse
|
43
|
Eukaryotic DNA Ligases and DNA Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Li Y, Lu Z, Sun L, Ropp S, Kutish GF, Rock DL, Van Etten JL. Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella virus PBCV-1 genome. Virology 1997; 237:360-77. [PMID: 9356347 DOI: 10.1006/viro.1997.8805] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report completes a preliminary analysis of the sequence of the 330,740-bp chlorella virus PBCV-1 genome, the largest virus genome to be sequenced to date. The PBCV-1 genome is 57% the size of the genome from the smallest self-replicating organism, Mycoplasma genitalium. Analysis of 74 kb of newly sequenced DNA, from the right terminus of the PBCV-1 genome, revealed 153 open reading frames (ORFs) of 65 codons or longer. Eighty-five of these ORFs, which are evenly distributed on both strands of the DNA, were considered major ORFs. Fifty-nine of the major ORFs were separated by less than 100 bp. The largest intergenic distance was 729 bp, which occurred between two ORFs located in the 2.2-kb inverted terminal repeat region of the PBCV-1 genome. Twenty-seven of the 85 major ORFs resemble proteins in databases, including the large subunit of ribonucleotide diphosphate reductase, ATP-dependent DNA ligase, type II DNA topoisomerase, a helicase, histidine decarboxylase, dCMP deaminase, dUTP pyrophosphatase, proliferating cell nuclear antigen, a transposase, fungal translation elongation factor 3 (EF-3), UDP glucose dehydrogenase, a protein kinase, and an adenine DNA methyltransferase and its corresponding DNA site-specific endonuclease. Seventeen of the 153 ORFs resembled other PBCV-1 ORFs, suggesting that they represent either gene duplications or gene families.
Collapse
Affiliation(s)
- Y Li
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA
| | | | | | | | | | | | | |
Collapse
|