1
|
Fragoso-Medina J, Rodriguez G, Zarain-Herzberg A. The CCAAT box in the proximal SERCA2 gene promoter regulates basal and stress-induced transcription in cardiomyocytes. Mol Cell Biochem 2017; 442:19-28. [DOI: 10.1007/s11010-017-3189-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
2
|
Güth R, Pinch M, Unguez GA. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2014; 216:2469-77. [PMID: 23761472 DOI: 10.1242/jeb.082404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
3
|
Roy B, Rajput S, Raghav S, Kumar P, Verma A, Kumar S, De S, Goswami SL, Datta TK. A reporter promoter assay confirmed the role of a distal promoter NOBOX binding element in enhancing expression of GDF9 gene in buffalo oocytes. Anim Reprod Sci 2012; 135:18-24. [PMID: 23078866 DOI: 10.1016/j.anireprosci.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
Growth differentiation factor 9 is primarily expressed in oocytes and plays a vital role in oocyte cumulus crosstalk. Earlier studies with buffalo oocytes revealed differential expression of this gene under different media stimulation conditions which, in turn, are correlated with the blastocyst yield. In this study, different germ cell specific cis elements including a NOBOX binding elements (NBE) and several E-boxes were identified at the 5' upstream region of buffalo GDF9 gene and their potential role in GDF9 expression was investigated. Transfecting oocytes with GDF9 promoter deletion constructs harbouring the NBE reporter gene revealed a 33% increase in GFP as well as the luciferase signal signifying its role in stimulating the minimal promoter activity of GDF9 in buffalo oocytes. Site directed mutation of core binding nucleotides at NBE at 1.8 kb upstream to TSS further confirmed its role for enhancing the basal transcriptional activity of GDF9 promoter in buffalo oocytes. Current work will provide important leads for understanding the role of GDF9 in oocytes competence and designing a more physiological IVF protocol in case of buffalo.
Collapse
Affiliation(s)
- Bhaskar Roy
- Animal Genomics Lab, ABTC, NDRI, Karnal, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Characterization of oocyte-expressed GDF9 gene in buffalo and mapping of its TSS and putative regulatory elements. ZYGOTE 2012; 21:115-24. [PMID: 22230197 DOI: 10.1017/s0967199411000712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Summary In spite of emerging evidence about the vital role of GDF9 in determination of oocyte competence, there is insufficient information about its regulation of oocyte-specific expression, particularly in livestock animals. Because of the distinct prominence of buffalo as a dairy animal, the present study was undertaken to isolate and characterize GDF9 cDNA using orthologous primers based on the bovine GDF9 sequence. GDF9 transcripts were found to be expressed in oocytes irrespective of their follicular origin, and shared a single transcription start site (TSS) at -57 base pairs (bp) upstream of ATG. Assignment of the TSS is consistent with the presence of a TATA element at -23 of the TSS mapped in this study. Localization of a buffalo-specific minimal promoter within 320 bp upstream of ATG was consolidated by identification of an E-box element at -113bp. Presence of putative transcription factor binding sites and other cis regulatory elements were analyzed at ~5 kb upstream of TSS. Various germ cell-specific cis-acting regulatory elements (BNCF, BRNF, NR2F, SORY, Foxh1, OCT1, LHXF etc.) have been identified in the 5' flanking region of the buffalo GDF9 gene, including NOBOX DNA binding elements and consensuses E-boxes (CANNTG). Presence of two conserved E-boxes found on buffalo sequence at -520 and -718 positions deserves attention in view of its sequence deviation from other species. Two NOBOX binding elements (NBE) were detected at the -3471 and -203 positions. The fall of the NBE within the putative minimal promoter territory of buffalo GDF9 and its unique non-core binding sequence could have a possible role in the control of the core promoter activity.
Collapse
|
5
|
Sarkar A, Zhang M, Liu SH, Sarkar S, Brunicardi FC, Berger DH, Belaguli NS. Serum response factor expression is enriched in pancreatic β cells and regulates insulin gene expression. FASEB J 2011; 25:2592-603. [PMID: 21525490 DOI: 10.1096/fj.10-173757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Serum response factor (SRF) is an essential regulator of myogenic and neurogenic genes and the ubiquitously expressed immediate-early genes. The purpose of this study is to determine SRF expression pattern in murine pancreas and examine the role of SRF in pancreatic gene expression. Immunohistochemical analysis of wild-type pancreas and LacZ staining of pancreas from SRF LacZ knock-in animals showed that SRF expression is restricted to β cells. SRF bound to the rat insulin promoter II (RIP II) serum response element, an element conserved in both rat I and murine I and II insulin promoters. SRF activated RIP II, and SRF binding to RIP II and the exon 5-encoded 64-aa subdomain of SRF was required for this activation. Transient or stable knockdown of SRF leads to down-regulation of insulin gene expression, suggesting that SRF is required for insulin gene expression. Further, SRF physically interacted with the pancreas and duodenum homeobox-1 (Pdx-1) and synergistically activated RIP II. Elevated glucose concentration down-regulated SRF binding to RIP II SRE, and this down-regulation was associated with decreased RIP II activity and increased SRF phosphorylation on serine 103. Together, our results demonstrate that SRF is a glucose concentration-sensitive regulator of insulin gene expression.
Collapse
Affiliation(s)
- Aloke Sarkar
- Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Long X, Tharp DL, Georger MA, Slivano OJ, Lee MY, Wamhoff BR, Bowles DK, Miano JM. The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin. J Biol Chem 2009; 284:33671-82. [PMID: 19801679 DOI: 10.1074/jbc.m109.050419] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Large conductance calcium-activated potassium (MaxiK) channels play a pivotal role in maintaining normal arterial tone by regulating the excitation-contraction coupling process. MaxiK channels comprise alpha and beta subunits encoded by Kcnma and the cell-restricted Kcnmb genes, respectively. Although the functionality of MaxiK channel subunits has been well studied, the molecular regulation of their transcription and modulation in smooth muscle cells (SMCs) is incomplete. Using several model systems, we demonstrate down-regulation of Kcnmb1 mRNA upon SMC phenotypic modulation in vitro and in vivo. As part of a broad effort to define all functional CArG elements in the genome (i.e. the CArGome), we discovered two conserved CArG boxes located in the proximal promoter and first intron of the human KCNMB1 gene. Gel shift and chromatin immunoprecipitation assays confirmed serum response factor (SRF) binding to both CArG elements. A luciferase assay showed myocardin (MYOCD)-mediated transactivation of the KCNMB1 promoter in a CArG element-dependent manner. In vivo analysis of the human KCNMB1 promoter disclosed activity in embryonic heart and aortic SMCs; mutation of both conserved CArG elements completely abolished in vivo promoter activity. Forced expression of MYOCD increased Kcnmb1 expression in a variety of rodent and human non-SMC lines with no effect on expression of the Kcnma1 subunit. Conversely, knockdown of Srf resulted in decreases of endogenous Kcnmb1. Functional studies demonstrated MYOCD-induced, iberiotoxin-sensitive potassium currents in porcine coronary SMCs. These results reveal the first ion channel subunit as a direct target of SRF-MYOCD transactivation, providing further insight into the role of MYOCD as a master regulator of the SMC contractile phenotype.
Collapse
Affiliation(s)
- Xiaochun Long
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Miralles F, Hebrard S, Lamotte L, Durel B, Gilgenkrantz H, Li Z, Daegelen D, Tuil D, Joshi RL. Conditional inactivation of the murine serum response factor in the pancreas leads to severe pancreatitis. J Transl Med 2006; 86:1020-36. [PMID: 16894357 DOI: 10.1038/labinvest.3700457] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Serum Response Factor (SRF) is widely expressed transcription factor acting at the confluence of multiple signaling pathways and has been implicated in the control of differentiation, growth, and cell death. In the present study, we found that SRF is expressed in the developing and adult pancreas. To explore the possible role of SRF in this organ, we have generated mutant mice with conditional disruption of the Srf gene. Such mutants presented normal development of both the exocrine and endocrine pancreas indicating that SRF is dispensable for pancreas ontogenesis. However, after weaning, these mice developed profound morphological alterations of the exocrine pancreas, which were reminiscent of severe pancreatitis. In these mice, massive acinar injury, Nuclear Factor Kappa B activation and proinflammatory cytokines release led to complete destruction of the exocrine pancreas and its replacement by adipose tissue. Despite these changes, the organization and function of the endocrine islets of Langerhans remained well-preserved. This new animal model of spontaneous pancreatitis could prove a valuable tool to gain further insight into the physiopathology of this disease.
Collapse
Affiliation(s)
- Francisco Miralles
- Departement de Génétique et Développement, Institut Cochin, INSERM U567, CNRS UMR8104, Université René Descartes Paris V, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zarain-Herzberg A. Regulation of the sarcoplasmic reticulum Ca2+-ATPase expression in the hypertrophic and failing heartThis paper is part of a series in the Journal's “Made in Canada” section. The paper has undergone peer review. Can J Physiol Pharmacol 2006; 84:509-21. [PMID: 16902596 DOI: 10.1139/y06-023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sarcoplasmic reticulum (SR) plays a central role in the contraction and relaxation coupling in the myocardium. The SR Ca2+-ATPase (SERCA2) transports Ca2+ inside the SR lumen during relaxation of the cardiac myocyte. It is well known that diminished contractility of the hypertrophic cardiac myocyte is the main factor of ventricular dysfunction in the failing heart. A key feature of the failing heart is a decreased content and activity of SERCA2, which is the cause of some of the physiological defects observed in the hypertrophic cardiomyocyte performance that are important during transition of compensated hypertrophy to heart failure. In this review different possible mechanisms responsible for decreased transcriptional regulation of the SERCA2 gene are examined, which appear to be the primary cause for decreased SERCA2 expression in heart failure. The experimental evidence suggests that several signalling pathways are involved in the downregulation of SERCA2 expression in the hypertrophic and failing cardiomyocyte. Therapeutic upregulation of SERCA2 expression using replication deficient adenoviral expression vectors, pharmacological interventions using thyroid hormone analogues, β-adrenergic receptor antagonists, and novel metabolically active compounds are currently under investigation for the treatment of uncompensated cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Angel Zarain-Herzberg
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, México D.F, 04510.
| |
Collapse
|
9
|
Balza RO, Misra RP. Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 2005; 281:6498-510. [PMID: 16368687 DOI: 10.1074/jbc.m509487200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serum response factor (SRF) is a transcriptional regulator required for mesodermal development, including heart formation and function. Previous studies have described the role of SRF in controlling expression of structural genes involved in conferring the myogenic phenotype. Recent studies by us and others have demonstrated embryonic lethal cardiovascular phenotypes in SRF-null animals, but have not directly addressed the mechanistic role of SRF in controlling broad regulatory programs in cardiac cells. In this study, we used a loss-of-function approach to delineate the role of SRF in cardiomyocyte gene expression and function. In SRF-null neonatal cardiomyocytes, we observed severe defects in the contractile apparatus, including Z-disc and stress fiber formation, as well as mislocalization and/or attenuation of sarcomeric proteins. Consistent with this, gene array and reverse transcription-PCR analyses showed down-regulation of genes encoding key cardiac transcriptional regulatory factors and proteins required for the maintenance of sarcomeric structure, function, and regulation. Chromatin immunoprecipitation analysis revealed that at least a subset of these proteins are likely regulated directly by SRF. The results presented here indicate that SRF is an essential coordinator of cardiomyocyte function due to its ability to regulate expression of numerous genes (some previously identified and at least 28 targets newly identified in this study) that are involved in multiple and disparate levels of sarcomeric function and assembly.
Collapse
Affiliation(s)
- Robert O Balza
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
10
|
Parlakian A, Charvet C, Escoubet B, Mericskay M, Molkentin JD, Gary-Bobo G, De Windt LJ, Ludosky MA, Paulin D, Daegelen D, Tuil D, Li Z. Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation 2005; 112:2930-9. [PMID: 16260633 DOI: 10.1161/circulationaha.105.533778] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Serum response factor (SRF) is a cardiac transcription factor involved in cell growth and differentiation. We have shown, using the Cre/loxP system, that cardiac-specific disruption of SRF gene in the embryonic heart results in lethal cardiac defects. The role of SRF in adult heart is unknown. METHODS AND RESULTS We disrupted SRF in the adult heart using a heart-specific tamoxifen-inducible Cre recombinase. This disruption led to impaired left ventricular function with reduced contractility, subsequently progressing to dilated cardiomyopathy, as demonstrated by serial echocardiography, including tissue Doppler imaging. The cytoarchitecture of cardiomyocytes was altered in the intercalated disks. All mutant mice died from heart failure 10 weeks after treatment. These functional and structural defects were preceded by early alterations in the cardiac gene expression program: major decreases in mRNA levels for cardiac alpha-actin, muscle creatine kinase, and calcium-handling genes. CONCLUSIONS SRF is crucial for adult cardiac function and integrity. We suggest that the rapid progression to heart failure in SRF mutant mice results primarily from decreased expression of proteins involved in force generation and transmission, low levels of polymerized actin, and changes in cytoarchitecture, without hypertrophic compensation. These cardiac-specific SRF-deficient mice have the morphological and clinical features of acquired dilated cardiomyopathy in humans and may therefore be used as an inducible model of this disorder.
Collapse
Affiliation(s)
- Ara Parlakian
- Molecular Biology of Differentiation, The Université Paris 7, EA300, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Koitabashi N, Arai M, Tomaru K, Takizawa T, Watanabe A, Niwano K, Yokoyama T, Wuytack F, Periasamy M, Nagai R, Kurabayashi M. Carvedilol effectively blocks oxidative stress-mediated downregulation of sarcoplasmic reticulum Ca2+-ATPase 2 gene transcription through modification of Sp1 binding. Biochem Biophys Res Commun 2005; 328:116-24. [PMID: 15670758 DOI: 10.1016/j.bbrc.2004.12.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 11/16/2022]
Abstract
Carvedilol is a beta-adrenoceptor blocker and a potent antioxidant that improves cardiac function in patients with heart failure. The restoration of sarcoplasmic reticulum Ca2+-ATPase (SERCA2) gene expression may be an underlying mechanism of its beneficial effects on cardiac function. In primary cultured neonatal rat cardiac myocytes, treatment with either carvedilol or its beta-receptor inactive metabolite, BM910228, attenuated the hydrogen peroxide-mediated decrease in SERCA2 mRNA and protein levels, while metoprolol, a pure beta-blocker, had no effect. Moreover, carvedilol itself significantly enhanced SERCA2 gene transcription, suggesting that carvedilol specifically restores SERCA2 gene transcription. Site-directed mutagenesis revealed that two Sp1 sites in the SERCA2 gene promoter region mediated the response to carvedilol under oxidative stress. Further, electrophoretic mobility shift assays revealed that Sp1 and Sp3 transcription factors correlated with carvedilol-mediated changes in the promoter assays. These studies may provide a mechanistic explanation for the beneficial effects of carvedilol in heart failure.
Collapse
Affiliation(s)
- Norimichi Koitabashi
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kokubo H, Miyagawa-Tomita S, Tomimatsu H, Nakashima Y, Nakazawa M, Saga Y, Johnson RL. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res 2004; 95:540-7. [PMID: 15297376 DOI: 10.1161/01.res.0000141136.85194.f0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genes involved in the Notch signaling pathway have been shown to be critical regulators of cardiovascular development. In vitro studies have revealed that the Notch signaling pathway directly regulates transcription of hairy and enhancer of split-related (hesr) genes, encoding basic helix-loop-helix transcription factors. To assess the functional role of hesr genes in cardiovascular development, we generated mice with a targeted disruption of the hesr2 gene and used echocardiography to analyze heart function of the mutant mice. In the early postnatal period, a majority of hesr2 homozygous mice die as a result of congestive heart failure accompanied by pronounced heart enlargement. Transthoracic echocardiography on 5-day-old homozygous mice revealed tricuspid and mitral valve regurgitation and a dilated left ventricular chamber with markedly diminished fractional shortening of the left ventricle. The hemodynamic anomalies were accompanied by morphological changes, such as dysplastic atrioventricular (AV) valves, a perimembranous ventricular septal defect, and a secundum atrial septal defect. AV valve regurgitations attributable to dysplasia of the AV valves were most likely responsible for the heart dysfunction in hesr2 homozygous mice. These observations indicate that the Notch signaling target hesr2 plays an important role in the formation and function of the AV valves. In addition, hesr2 activity may be important for proper development of cardiomyocytes, thereby assuring normal left ventricular contractility. Because of the unique spectrum of cardiac anomalies expressed by hesr2-null mice, they represent a useful model system for elucidating the genetic basis of heart dysfunction.
Collapse
Affiliation(s)
- Hiroki Kokubo
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Anderson JP, Dodou E, Heidt AB, De Val SJ, Jaehnig EJ, Greene SB, Olson EN, Black BL. HRC is a direct transcriptional target of MEF2 during cardiac, skeletal, and arterial smooth muscle development in vivo. Mol Cell Biol 2004; 24:3757-68. [PMID: 15082771 PMCID: PMC387749 DOI: 10.1128/mcb.24.9.3757-3768.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HRC gene encodes the histidine-rich calcium-binding protein, which is found in the lumen of the junctional sarcoplasmic reticulum (SR) of cardiac and skeletal muscle and within calciosomes of arterial smooth muscle. The expression of HRC in cardiac, skeletal, and smooth muscle raises the possibility of a common transcriptional mechanism governing its expression in all three muscle cell types. In this study, we identified a transcriptional enhancer from the HRC gene that is sufficient to direct the expression of lacZ in the expression pattern of endogenous HRC in transgenic mice. The HRC enhancer contains a small, highly conserved sequence that is required for expression in all three muscle lineages. Within this conserved region is a consensus site for myocyte enhancer factor 2 (MEF2) proteins that we show is bound efficiently by MEF2 and is required for transgene expression in all three muscle lineages in vivo. Furthermore, the entire HRC enhancer sequence lacks any discernible CArG motifs, the binding site for serum response factor (SRF), and we show that the enhancer is not activated by SRF. Thus, these studies identify the HRC enhancer as the first MEF2-dependent, CArG-independent transcriptional target in smooth muscle and represent the first analysis of the transcriptional regulation of an SR gene in vivo.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Heart/embryology
- Heart/physiology
- Humans
- MEF2 Transcription Factors
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/physiology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/physiology
- Myogenic Regulatory Factors
- Promoter Regions, Genetic
- Sequence Alignment
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Joshua P Anderson
- Cardiovascular Research Institute, University of California, San Francisco, California 94143-0130, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi JJ, Klosterman SJ, Hadwiger LA. A Promoter from Pea Gene DRR206 Is Suitable to Regulate an Elicitor-Coding Gene and Develop Disease Resistance. PHYTOPATHOLOGY 2004; 94:651-60. [PMID: 18943490 DOI: 10.1094/phyto.2004.94.6.651] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Plant nonhost disease resistance is characterized by the induction of multiple defense genes. The pea DRR206 gene is induced following inoculation with pathogens and treatment with abiotic agents, and moderately induced by wounding. A deletion series of DRR206 promoter segments was fused with the beta-glucuronidase (GUS) reporter gene and transiently transferred to tobacco, potato, and pea. GUS activity revealed that two upstream regions of the DRR206 promoter were particularly important for activation in the three plant species. Putative cis regulatory elements within the DRR206 promoter included a wound/pathogen- inducible box (W/P-box) and a WRKY box (W-box). Gel shift assays with nuclear extracts from treated and untreated tissue with the W/P-box revealed both similar and unique protein-DNA complexes from pea, potato, and tobacco. Tobacco was stably transformed with gene constructs of the DRR206 promoter fused with a DNase elicitor gene from Fusarium solani f. sp. phaseoli, FsphDNase. Pathogenicity tests indicated that the FsphDNase elicitor conferred resistance against Pseudomonas syringae pv. tabaci and Alternaria alternata in tobacco. Transgenic potatoes showed some sensitivity to the FsphDNase gene providing less protection against Phytophthora infestans. Thus, the elicitor-coding gene, FsphDNase, is capable of generating resistance in a heterologous plant system (tobacco) when fused with defined regions of the pea DRR206 promoter.
Collapse
|
15
|
Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, Shao Z, Bhattacharya K, Kilter H, Huggins G, Andreucci M, Periasamy M, Solomon RN, Liao R, Patten R, Molkentin JD, Force T. Glycogen Synthase Kinase-3β Regulates Growth, Calcium Homeostasis, and Diastolic Function in the Heart. J Biol Chem 2004; 279:21383-93. [PMID: 15020584 DOI: 10.1074/jbc.m401413200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycogen synthase kinase (GSK) 3beta is a negative regulator of stress-induced cardiomyocyte hypertrophy. It is not clear, however, if GSK-3beta plays any role in regulating normal cardiac growth and cardiac function. Herein we report that a transgenic mouse expressing wild type GSK-3beta in the heart has a dramatic impairment of normal post-natal cardiomyocyte growth as well as markedly abnormal cardiac contractile function. The most striking phenotype, however, is grossly impaired diastolic relaxation, which leads to increased filling pressures of the left ventricle and massive atrial enlargement. This is due to profoundly abnormal calcium handling, leading to an inability to normalize cytosolic [Ca2+] in diastole. The alterations in calcium handling are due at least in part to direct down-regulation of the sarcoplasmic reticulum calcium ATPase (SERCA2a) by GSK-3beta, acting at the level of the SERCA2 promoter. These studies identify GSK-3beta as a regulator of normal growth of the heart and are the first of which we are aware, to demonstrate regulation of expression of SERCA2a, a critical determinant of diastolic function, by a cytosolic signaling pathway, the activity of which is dynamically modulated. De-regulation of GSK-3beta leads to severe systolic and diastolic dysfunction and progressive heart failure. Because down-regulation of SERCA2a plays a central role in the diastolic and systolic dysfunction of patients with heart failure, these findings have potential implications for the therapy of this disorder.
Collapse
Affiliation(s)
- Ashour Michael
- Boston University Medical Center and School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Azhar G, Furr MC, Zhong Y, Wei JY. Model of functional cardiac aging: young adult mice with mild overexpression of serum response factor. Am J Physiol Regul Integr Comp Physiol 2003; 285:R552-60. [PMID: 12909581 DOI: 10.1152/ajpregu.00631.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Serum response factor (SRF) is an important transcription factor that may have a role in the maintenance of cardiac structure and function. The level of SRF mRNA expression increases approximately 16% in the hearts of mice during adult aging. To model the effect of mild SRF elevation in the aging heart, transgenic mice with low levels of SRF overexpression were generated. By 6 mo of age, the transgenic mice had a 19% increase of heart-to-body weight ratio compared with nontransgenic mice. In addition, they had a 12% increase in myocyte size, a 6.7% increase in collagen deposition, and altered gene expression of a number of muscle-specific and cardiac genes. Doppler echocardiography revealed that these transgenic mice had increased left ventricular wall thickness and decreased left ventricular (LV) volumes, increased LV stiffness with 20% reduction in early diastolic LV filling (peak E), and 35% decline in peak E-to-peak A (late diastolic filling) ratio. The observed changes, especially those in the E/A ratio, are similar to those seen clinically in late life as a part of human adult myocardial aging.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Reynolds Center on Aging, Dept. of Geriatrics, Univ. of Arkansas for Medical Science, 4301 West Markham Ave., Slot 748, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
17
|
Arai M. Advanced glycation endproducts and their receptor: do they play a role in diabetic cardiomyopathy? J Mol Cell Cardiol 2002; 34:1305-8. [PMID: 12392990 DOI: 10.1006/jmcc.2002.2097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zarain-Herzberg A, Rupp H. Therapeutic potential of CPT I inhibitors: cardiac gene transcription as a target. Expert Opin Investig Drugs 2002; 11:345-56. [PMID: 11866664 DOI: 10.1517/13543784.11.3.345] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhibitors of carnitine palmitoyl-transferase I (CPT I), the key enzyme for the transport of long-chain acyl-coenzyme A (acyl-CoA) compounds into mitochondria, have been developed as agents for treating diabetes mellitus Type 2. Findings that the CPT I inhibitor, etomoxir, has effects on overloaded heart muscle, which are associated with an improved function, were unexpected and can be attributed to selective changes in the dysregulated gene expression of hypertrophied cardiomyocytes. Also, the first clinical trial with etomoxir in patients with heart failure showed that etomoxir improved the clinical status and several parameters of heart function. In view of the action of etomoxir on gene expression, putative molecular mechanisms involved in an increased expression of SERCA2, the Ca(2+) pump of sarcoplasmic reticulum (SR) and alpha-myosin heavy chain (MHC) of failing overloaded heart muscle are described. The first 225 bp of human, rabbit, rat and mouse SERCA2 promoter sequence have high identity. Various cis-regularory elements are also given for the promoter of the rat cardiac alpha-MHC gene. It is hypothesised that etomoxir increases glucose-phosphate intermediates resulting in activation of signalling pathway(s) mediated by phosphatases. Regarding the possible direct action of etomoxir on peroxisome proliferator activated receptor alpha (PPAR-alpha) activation, it could upregulate the expression of various enzymes that participate in beta-oxidation, thereby modulating some effects of CPT 1 inhibition. Any development of alternative drugs requires a better understanding of the signal pathways involved in the altered gene expression. In particular, signals need to be identified which are altered in overloaded hearts and can selectively be re-activated by etomoxir.
Collapse
Affiliation(s)
- Angel Zarain-Herzberg
- Laboratorio de Biología Molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, México D.F. 04510.
| | | |
Collapse
|
19
|
Zhang X, Azhar G, Chai J, Sheridan P, Nagano K, Brown T, Yang J, Khrapko K, Borras AM, Lawitts J, Misra RP, Wei JY. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am J Physiol Heart Circ Physiol 2001; 280:H1782-92. [PMID: 11247792 DOI: 10.1152/ajpheart.2001.280.4.h1782] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum response factor (SRF), a member of the MCM1, agamous, deficiens, SRF (MADS) family of transcriptional activators, has been implicated in the transcriptional control of a number of cardiac muscle genes, including cardiac alpha-actin, skeletal alpha-actin, alpha-myosin heavy chain (alpha-MHC), and beta-MHC. To better understand the in vivo role of SRF in regulating genes responsible for maintenance of cardiac function, we sought to test the hypothesis that increased cardiac-specific SRF expression might be associated with altered cardiac morphology and function. We generated transgenic mice with cardiac-specific overexpression of the human SRF gene. The transgenic mice developed cardiomyopathy and exhibited increased heart weight-to-body weight ratio, increased heart weight, and four-chamber dilation. Histological examination revealed cardiomyocyte hypertrophy, collagen deposition, and interstitial fibrosis. SRF overexpression altered the expression of SRF-regulated genes and resulted in cardiac muscle dysfunction. Our results demonstrate that sustained overexpression of SRF, in the absence of other stimuli, is sufficient to induce cardiac change and suggest that SRF is likely to be one of the downstream effectors of the signaling pathways involved in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- X Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center, and Division on Aging, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arai M, Yoguchi A, Takizawa T, Yokoyama T, Kanda T, Kurabayashi M, Nagai R. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca(2+)-ATPase gene transcription. Circ Res 2000; 86:8-14. [PMID: 10625299 DOI: 10.1161/01.res.86.1.8] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DOX)-induced cardiomyopathy has been found to be associated with impaired Ca(2+) handling in the sarcoplasmic reticulum (SR), leading to reduced cardiac function. We have recently demonstrated that expression of mRNA encoding sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 (SERCA2), a major Ca(2+) transport protein in SR, is markedly decreased in DOX-treated hearts. To extend this observation, we have dissected the molecular mechanisms by which DOX downregulates SERCA2 gene transcription. Using cultured rat neonatal cardiac myocytes, we found that the antioxidant N-acetylcysteine blocked the DOX-induced decrease in SERCA2 mRNA levels, as well as the DOX-induced increase in H(2)O(2) concentration; thus, H(2)O(2) is an intracellular mediator of DOX activity. Using a luciferase reporter assay, we found that the sequence from -284 to -72 bp in the 5' flanking region of the SERCA2 gene has a DOX-responsive element. Although several transcription factors have putative binding motifs in this region of the SERCA2 gene, only the expression of Egr-1 mRNA and the binding of Egr-1 protein to the 5' regulatory sequence of SERCA2 gene increased markedly after DOX administration. We also found that overexpression of Egr-1 was associated with a significant reduction in SERCA2 gene transcription. In addition, Egr-1 antisense oligonucleotides blocked the DOX-induced reduction in SERCA2 mRNA, suggesting that Egr-1 is a transcriptional inhibitor of the SERCA2 gene in DOX-induced cardiomyopathy. We observed activation of 3 mitogen-activated protein kinases (MAPKs), p44/42 MAPK, p38 MAPK, and stress-activated MAPK/Jun N-terminal kinase, by DOX, but only a specific inhibitor of the p44/42 MAPK kinase suppressed the effects of DOX on Egr-1 and SERCA2 mRNA expression. These findings indicate that reactive oxygen intermediates, the transcription factor Egr-1, and p44/42 MAPK are critical elements in the transcriptional regulation of the SERCA2 gene in response to DOX.
Collapse
Affiliation(s)
- M Arai
- Second Department of Internal Medicine, Gunma University School of Medicine, Gunma, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Arai M. Function and regulation of sarcoplasmic reticulum Ca2+-ATPase: advances during the past decade and prospects for the coming decade. JAPANESE HEART JOURNAL 2000; 41:1-13. [PMID: 10807524 DOI: 10.1536/jhj.41.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In cardiac muscle, the contraction-relaxation cycle is tightly controlled by the regulated release and uptake of intracellular Ca2+ between sarcoplasmic reticulum and cytoplasm. A major protein controlling Ca2+ cycling is Ca2+-ATPase (SERCA2a) located in the sarcoplasmic reticulum membrane. The function of SERCA2a protein is regulated by the phosphorylatable protein, phospholamban. Phosphorylation of phospholamban releases its inhibitory effect on SERCA2a through direct molecular interaction. Recently, mice whose SERCA2a function is increased (overexpression of the gene) or lost (knock out) were developed. These mice demonstrated that SERCA2a pump levels are a major determinant of cardiac muscle contractility and relaxation. These studies open the prospect that the overexpression of SERCA2a can correct cardiac dysfunction seen in heart failure. Advances in knowledge concerning the function and gene regulation of SERCA2a are discussed in this review.
Collapse
Affiliation(s)
- M Arai
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| |
Collapse
|
22
|
Eizema K, Van Heugten HA, Bezstarosti K, Van Setten MC, Lamers JM. In vitro analysis of SERCA2 gene regulation in hypertrophic cardiomyocytes and increasing transfection efficiency by gene-gun biolistics. Ann N Y Acad Sci 1999; 874:111-24. [PMID: 10415525 DOI: 10.1111/j.1749-6632.1999.tb09229.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transcriptional downregulation of the SERCA2 gene is studied using neonatal rat cardiomyocytes stimulated with endothelin-1 to induce hypertrophy. Liposome-based transfection of cells with a 1.9 kb SERCA2 promoter fragment directed expression of a reporter gene identical to the downregulation of genomic SERCA2 expression by endothelin-1. Results of a new gene gun technology for transient transfection of cardiomyocytes with a RSV-beta-galactosidase construct are reported. This new method for propelling DNA-coated gold beads into cardiomyocytes is extremely suitable for directly testing promoter/reporter gene DNA constructs since the transfection efficiency (approximately 10%) appears to be higher than traditional transfection methods.
Collapse
Affiliation(s)
- K Eizema
- Department of Biochemistry, Erasmus University Rotterdam, Netherlands
| | | | | | | | | |
Collapse
|
23
|
Abstract
The transition of nonfailing to failing cardiac hypertrophy cannot be prevented by current drug regimens. This investigation examined whether possible drug targets have remained unexplored because they do not result in acute improvement of heart function. Of major importance, in this respect, is an inadequate performance of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2). In the present approach, binding sequences within the proximal promoter of SERCA2 are described which may be useful in the development of drugs (i.e., transcriptional modulators) that interfere selectively with the transcription of genes of the cardiomyocyte. The proximal promoter region of the SERCA2 genes has a thyroid response element, 9 potential Sp1-binding sites (5'-GGGCGG-3', 5'-CCGCCC-3' and 5'-GGGAGG-3'), and an E-box motif (5'-CACATG-3'), which may function as glucose response elements. This region also has 2 putative fatty-acid response elements (5'-GGGGGA-3'). It is proposed that the beneficial effects of the camitine palmitoyltransferase-1 inhibitor etomoxir arise from a shift in fuel metabolism involving glucose response elements and/or peroxisomal proliferator-activated receptors. Although the relative contribution of these DNA regulatory elements remains to be defined, it appears that they provide the driving force that prevents the decrease in transcriptional activity of the SERCA2 gene in the hypertrophic heart. It is further concluded that etomoxir represents a member of a novel class of transcriptional modulators that improve function of hypertrophied hearts with unimpeded blood flow by modulating gene expression of the cardiomyocyte.
Collapse
Affiliation(s)
- A Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City
| | | |
Collapse
|