1
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
2
|
Yan F, Xiao X, Long C, Tang L, Wang C, Zhang M, Zhang J, Lin H, Huang H, Zhang Y, Li S. Molecular Characterization of U6 Promoters from Orange-Spotted Grouper (Epinephelus coioides) and Its Application in DNA Vector-Based RNAi Technology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10212-9. [PMID: 37154998 DOI: 10.1007/s10126-023-10212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The U6 promoter, a typical RNA polymerase III promoter, is widely used to transcribe small RNAs in vector-based siRNA systems. The RNAi efficiency is mainly dependent on the transcriptional activity of the U6 promoter. However, studies have found that U6 promoters isolated from some fishes do not work well in distantly related species. To isolate a U6 promoter with high transcriptional efficiency from fish, in this study, we cloned five U6 promoters in orange-spotted grouper, of which only the grouper U6-1 (GU6-1) promoter contains the OCT element in the distant region. Functional studies revealed that the GU6-1 promoter has high transcriptional ability, which could efficiently transcribe shRNA and result in target gene knockdown in vitro and in vivo. Subsequently, the deletion or mutation of the OCT motif resulted in a significant decrease in promoter transcriptional activity, demonstrating that the OCT element plays an important role in enhancing the grouper U6 promoter transcription. Moreover, the transcriptional activity of the GU6-1 promoter showed little species specificity. It not only works in the grouper but also possesses high transcriptional activity in the zebrafish. Knockdown of the mstn gene in zebrafish and grouper through shRNA driven by the GU6-1 promoter could promote fish growth, suggesting that the GU6-1 promoter can be used as a potential molecular tool in aquaculture practice.
Collapse
Affiliation(s)
- Fengying Yan
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Xinxun Xiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chen Long
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Lin Tang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chongwei Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Mingqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, 572022, Sanya, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China.
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene 2020; 769:145205. [PMID: 33031894 DOI: 10.1016/j.gene.2020.145205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Zinc Finger Protein 143 (ZNF143) is a pervasive C2H2 zinc-finger transcriptional activator protein regulating the efficiency of eukaryotic promoter regions. ZNF143 is able to activate transcription at both protein coding genes and small RNA genes transcribed by either RNA polymerase II or RNA polymerase III. Target genes regulated by ZNF143 are involved in an array of different cellular processes including both cancer and development. Although a key player in regulating eukaryotic genes, the molecular mechanism by with ZNF143 binds and activates genes transcribed by two different polymerases is still relatively unknown. In addition to its role as a transcriptional regulator, recent genomics experiments have implicated ZNF143 as a potential co-factor involved in chromatin looping and establishing higher order structure within the genome. This review focuses primarily on possible activation mechanisms of promoters by ZNF143, with less emphasis on the role of ZNF143 in cancer and development, and its function in establishing higher order chromatin contacts within the genome.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
4
|
Li B, Sun S, Li M, Cheng X, Li H, Kang F, Kang J, Dörnbrack K, Nassal M, Sun D. Suppression of hepatitis B virus antigen production and replication by wild-type HBV dependently replicating HBV shRNA vectors in vitro and in vivo. Antiviral Res 2016; 134:117-129. [PMID: 27591142 DOI: 10.1016/j.antiviral.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/07/2016] [Accepted: 08/07/2016] [Indexed: 02/08/2023]
Abstract
Chronic infection with hepatitis B virus (HBV), a small DNA virus that replicates by reverse transcription of a pregenomic (pg) RNA precursor, greatly increases the risk for terminal liver disease. RNA interference (RNAi) based therapy approaches have shown potential to overcome the limited efficacy of current treatments. However, synthetic siRNAs as well as small hairpin (sh) RNAs expressed from non-integrating vectors require repeated applications; integrating vectors suffer from safety concerns. We pursue a new concept by which HBV itself is engineered into a conditionally replicating, wild-type HBV dependent anti-HBV shRNA vector. Beyond sharing HBV's hepatocyte tropism, such a vector would be self-renewing, but only as long as wild-type HBV is present. Here, we realized several important aspects of this concept. We identified two distinct regions in the 3.2 kb HBV genome which tolerate replacement by shRNA expression cassettes without compromising reverse transcription when complemented in vitro by HBV helper constructs or by wild-type HBV; a representative HBV shRNA vector was infectious in cell culture. The vector-encoded shRNAs were active, including on HBV as target. A dual anti-HBV shRNA vector delivered into HBV transgenic mice, which are not susceptible to HBV infection, by a chimeric adenovirus-HBV shuttle reduced serum hepatitis B surface antigen (HBsAg) up to ∼4-fold, and virus particles up to ∼20-fold. Importantly, a fraction of the circulating particles contained vector-derived DNA, indicating successful complementation in vivo. These data encourage further investigations to prove antiviral efficacy and the predicted self-limiting vector spread in a small animal HBV infection model.
Collapse
Affiliation(s)
- Baosheng Li
- Chinese PLA Medical School, Chinese PLA General Hospital, 100853, Beijing, PR China; The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Shuo Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; Troop 66220 of PLA, Xingtai, Hebei Province, 054000, PR China
| | - Minran Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; The Fourth Department of the Fifth Hospital, Shijiazhuang City, 050017, PR China
| | - Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Jiwen Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Katharina Dörnbrack
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany
| | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany.
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China.
| |
Collapse
|
5
|
Wu CW, Chien MS, Huang C. Characterization of the swine U6 promoter for short hairpin RNA expression and its application to inhibition of virus replication. J Biotechnol 2013; 168:78-84. [PMID: 23916945 DOI: 10.1016/j.jbiotec.2013.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
Expression of short hairpin RNAs (shRNAs) by the RNA polymerase type III U6 promoter is an effective and widely used strategy for RNA interference (RNAi) which is a sequence-specific gene silencing mechanism. The U6 promoters from human, mouse, and swine were cloned, respectively for constructing various shRNA expression vectors. The transcription efficiency of each U6 promoter was analyzed for its activity to drive expression of shRNA targeting enhanced green fluorescent protein (EGFP) mRNA in different mammalian cells. All three U6 promoters were functional and the swine U6 promoter demonstrated the most efficient knockdown of EGFP synthesis in all these three species of cell lines including porcine kidney (PK-15), human embryonic kidney (HEK293T), and mouse fibroblast (LM) cells. Furthermore, the antiviral effect of shRNA targeting the classical swine fever virus (CSFV) NS5B driven by the swine U6 promoter was confirmed by the significant reduction of virus replication.
Collapse
Affiliation(s)
- Ching-Wei Wu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | | | | |
Collapse
|
6
|
Mroczek S, Dziembowski A. U6 RNA biogenesis and disease association. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:581-92. [PMID: 23776162 DOI: 10.1002/wrna.1181] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
U6 snRNA is one of five uridine-rich noncoding RNAs that form the major spliceosome complex. Unlike other U-snRNAs, it reveals many distinctive aspects of biogenesis such as transcription by RNA polymerase III, transcript nuclear retention and particular features of transcript ends: monomethylated 5'-guanosine triphosphate as cap structure and a 2',3'-cyclic phosphate moiety (>P) at the 3' termini. U6-snRNA plays a central role in splicing and thus its transcription, maturation, snRNP formation, and recycling are essential for cellular homeostasis. U6 snRNA enters the splicing cycle as part of the tri-U4/U6.U5snRNP complex, and after significant structural arrangements forms the catalytic site of the spliceosome together with U2 snRNA and Prp8. U6 snRNA also contributes to the splicing reaction by coordinating metal cations required for catalysis. Many human diseases are associated with altered splicing processes. Disruptions of the basal splicing machinery can be lethal or lead to severe diseases such as spinal muscular atrophy, amyotrophic lateral sclerosis, or retinitis pigmentosa. Recent studies have identified a new U6 snRNA biogenesis factor Usb1, the absence of which leads to poikiloderma with neutropenia (PN) (OMIM 604173), an autosomal recessive skin disease. Usb1 is an evolutionarily conserved 3'→5' exoribonuclease that is responsible for removing 3'-terminal uridines from U6 snRNA transcripts, which leads to the formation of a 2',3' cyclic phosphate moiety (>P). This maturation step is fundamental for U6 snRNP assembly and recycling. Usb1 represents the first example of a direct association between a spliceosomal U6 snRNA biogenesis factor and human genetic disease.
Collapse
Affiliation(s)
- Seweryn Mroczek
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
7
|
Boonanuntanasarn S, Panyim S, Yoshizaki G. Characterization and organization of the U6 snRNA gene in zebrafish and usage of their promoters to express short hairpin RNA. Mar Genomics 2008; 1:115-21. [PMID: 21798162 DOI: 10.1016/j.margen.2008.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
We have characterized three U6 snRNA genes in zebrafish and randomly designated them as U6-1, U6-2, and U6-3. The U6-1 gene is closely related to the mammal U6 snRNA genes and that the U6-2 and U6-3 genes are more closely related to the Drosophila and Xenopus U6 snRNA genes. The upstream regulatory sequences were located based on their conserved position relative to the transcription start site. Furthermore, we speculate that the "CCAAT box" functions as the distal sequence element in the zebrafish U6 snRNA genes. Genomic BLASTn analysis revealed that at least 555 copies of the U6-1 gene are dispersed throughout the zebrafish genome, whereas the U6-2 and U6-3 genes are each present as a single copy. Three U6 snRNA genes are functionally expressed in various tissues. All three putative promoters were able to transcribe short hairpin RNA (shRNA) in zebrafish cell extracts. Our findings demonstrate that these putative promoters have the potential to be used for vector-based RNA interference (RNAi) in zebrafish. Another U6 snRNA was found from the genomic BLASTn search and designated as U6-4, demonstrating that there are four different types of zebrafish U6 snRNA genes.
Collapse
Affiliation(s)
- Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000 Thailand
| | | | | |
Collapse
|
8
|
Halbig KM, Lekven AC, Kunkel GR. Zebrafish U6 small nuclear RNA gene promoters contain a SPH element in an unusual location. Gene 2008; 421:89-94. [PMID: 18619527 DOI: 10.1016/j.gene.2008.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/03/2008] [Accepted: 06/03/2008] [Indexed: 11/29/2022]
Abstract
Promoters for vertebrate small nuclear RNA (snRNA) genes contain a relatively simple array of transcriptional control elements, divided into proximal and distal regions. Most of these genes are transcribed by RNA polymerase II (e.g., U1, U2), whereas the U6 gene is transcribed by RNA polymerase III. Previously identified vertebrate U6 snRNA gene promoters consist of a proximal sequence element (PSE) and TATA element in the proximal region, plus a distal region with octamer (OCT) and SphI postoctamer homology (SPH) elements. We have found that zebrafish U6 snRNA promoters contain the SPH element in a novel proximal position immediately upstream of the TATA element. The zebrafish SPH element is recognized by SPH-binding factor/selenocysteine tRNA gene transcription activating factor/zinc finger protein 143 (SBF/Staf/ZNF143) in vitro. Furthermore, a zebrafish U6 promoter with a defective SPH element is inefficiently transcribed when injected into embryos.
Collapse
Affiliation(s)
- Kari M Halbig
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
9
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
10
|
Gridasova AA, Henry RW. The p53 tumor suppressor protein represses human snRNA gene transcription by RNA polymerases II and III independently of sequence-specific DNA binding. Mol Cell Biol 2005; 25:3247-60. [PMID: 15798209 PMCID: PMC1069601 DOI: 10.1128/mcb.25.8.3247-3260.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human U1 and U6 snRNA genes are transcribed by RNA polymerases II and III, respectively. While the p53 tumor suppressor protein is a general repressor of RNA polymerase III transcription, whether p53 regulates snRNA gene transcription by RNA polymerase II is uncertain. The data presented herein indicate that p53 is an effective repressor of snRNA gene transcription by both polymerases. Both U1 and U6 transcription in vitro is repressed by recombinant p53, and endogenous p53 occupancy at these promoters is stimulated by UV light. In response to UV light, U1 and U6 transcription is strongly repressed. Human U1 genes, but not U6 genes, contain a high-affinity p53 response element located within the core promoter region. Nonetheless, this element is not required for p53 repression and mutant p53 molecules that do not bind DNA can maintain repression, suggesting a reliance on protein interactions for p53 promoter recruitment. Recruitment may be mediated by the general transcription factors TATA-box binding protein and snRNA-activating protein complex, which interact well with p53 and function for both RNA polymerase II and III transcription.
Collapse
Affiliation(s)
- Anastasia A Gridasova
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824.
| | | |
Collapse
|
11
|
Abstract
Aldehyde reductase is involved in the reductive detoxification of reactive aldehydes that can modify cellular macromolecules. To analyze the mechanism of basal regulation of aldehyde reductase expression, we cloned the murine gene and adjacent regulatory region and compared it to the human gene. The mouse enzyme exhibits substrate specificity similar to that of the human enzyme, but with a 2-fold higher catalytic efficiency. In contrast to the mouse gene, the human aldehyde reductase gene has two alternatively spliced transcripts. A fragment of 57 bp is sufficient for 25% of human promoter activity and consists of two elements. The 3' element binds transcription factors of the Sp1 family. Gel-shift assays and chromatin immunoprecipitation as well as deletion/mutation analysis reveal that selenocysteine tRNA transcription activating factor (STAF) binds to the 5' element and drives constitutive expression of both mouse and human aldehyde reductase. Aldehyde reductase thus becomes the fourth protein-encoding gene regulated by STAF. The human, but not the mouse, promoter also binds C/EBP homologous protein (CHOP), which competes with STAF for the same binding site. Transfection of the human promoter into ethoxyquin-treated mouse 3T3 cells induces a 3.5-fold increase in promoter activity and a CHOP-C/EBP band appears on gel shifts performed with the 5' probe from the human aldehyde reductase promoter. Induction is attenuated in similar transfection studies of the mouse promoter. Mutation of the CHOP-binding site in the human promoter abolishes CHOP binding and significantly reduces ethoxyquin induction, suggesting that CHOP mediates stimulated expression in response to antioxidants in the human. This subtle difference in the human promoter suggests a further evolution of the promoter toward responsiveness to exogenous stress and/or toxins.
Collapse
MESH Headings
- 3T3 Cells
- Aldehyde Reductase/genetics
- Aldehyde Reductase/metabolism
- Animals
- Base Sequence
- Binding Sites/genetics
- Blotting, Northern
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Line
- Cell Line, Tumor
- Chromatin/metabolism
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Ethoxyquin/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Genes/genetics
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Mutation
- Precipitin Tests
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factor CHOP
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Oleg A Barski
- Harry B. & Aileen Gordon Diabetes Research Laboratory, Molecular Diabetes & Metabolism Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
12
|
Hu P, Wu S, Hernandez N. A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2. Mol Cell 2003; 12:699-709. [PMID: 14527415 DOI: 10.1016/j.molcel.2003.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In higher eukaryotes, RNA polymerase (pol) III is known to use different transcription factors to recognize three basic types of promoters, but in no case have these transcription factors been completely defined. We show that a highly purified pol III complex combined with the recombinant transcription factors SNAP(c), TBP, Brf2, and Bdp1 directs multiple rounds of transcription initiation and termination from the human U6 promoter. The pol III complex contains traces of CK2, and CK2 associates with the U6 promoter region in vivo. Transcription requires CK2 phosphorylation of the pol III complex. In contrast, CK2 phosphorylation of TBP, Brf2, and Bdp1 combined is inhibitory. The results define a minimum core machinery, the ultimate target of regulatory mechanisms, capable of directing all steps of the transcription process-initiation, elongation, and termination-by a metazoan RNA polymerase, and suggest positive and negative regulatory roles for CK2 in transcription by pol III.
Collapse
Affiliation(s)
- Ping Hu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
13
|
Czauderna F, Fechtner M, Aygün H, Arnold W, Klippel A, Giese K, Kaufmann J. Functional studies of the PI(3)-kinase signalling pathway employing synthetic and expressed siRNA. Nucleic Acids Res 2003; 31:670-82. [PMID: 12527776 PMCID: PMC140507 DOI: 10.1093/nar/gkg141] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) is a RNA-mediated sequence-specific gene silencing mechanism. Recently, this mechanism has been used to down-regulate protein expression in mammalian cells by applying synthetic- or vector-generated small interfering RNAs (siRNAs). However, for the evaluation of this new knockdown technology, it is crucial to demonstrate biological consequences beyond protein level reduction. Here, we demonstrate that this new siRNA-based technology is suitable to analyse protein functions using the phosphatidylinositol (PI) 3-kinase signal transduction pathway as a model system. We demonstrate stable and transient siRNA-mediated knockdown of one of the PI 3-kinase catalytic subunits, p110beta, which leads to inhibition of invasive cell growth in vitro as well as in a tumour model system. Importantly, this result is consistent with loss-of-function phenotypes induced by conventional RNase H-dependent antisense molecules or treatment with the PI 3-kinase inhibitor LY294002. RNAi knockdown of the downstream kinases Akt1 and Akt2 does not reduce cell growth on extracellular matrix. Our data show that synthetic siRNAs, as well as vector-based expression of siRNAs, are a powerful new tool to interfere with signal transduction processes for the elucidation of gene function in mammalian cells.
Collapse
MESH Headings
- Animals
- Catalytic Domain/genetics
- Catalytic Domain/physiology
- Cell Division/genetics
- Cell Division/physiology
- Gene Expression
- HeLa Cells
- Humans
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Nucleic Acid Conformation
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoric Monoester Hydrolases/genetics
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA Polymerase III/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemical synthesis
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Transplantation, Heterologous
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Frank Czauderna
- Atugen AG, Otto Warburg Haus (Nr. 80), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Mach CM, Hargrove BW, Kunkel GR. The Small RNA gene activator protein, SphI postoctamer homology-binding factor/selenocysteine tRNA gene transcription activating factor, stimulates transcription of the human interferon regulatory factor-3 gene. J Biol Chem 2002; 277:4853-8. [PMID: 11724783 DOI: 10.1074/jbc.m108308200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many small nuclear RNA gene promoters are activated by SphI postoctamer homology (SPH)-binding factor/selenocysteine tRNA gene transcription activating factor (SBF/Staf). Whereas this transcription factor was initially identified by its ability to bind to SPH elements in such promoters, it was more recently shown to have the capacity to activate transcription of a synthetic mRNA gene promoter through a distinct activation domain. Here, we show that the human interferon regulatory factor-3 (IRF-3) gene promoter contains a functional SPH element that is bound by SBF/Staf in vitro and in transfected cells.
Collapse
Affiliation(s)
- Claire M Mach
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | |
Collapse
|
15
|
McNamara-Schroeder KJ, Hennessey RF, Harding GA, Jensen RC, Stumph WE. The Drosophila U1 and U6 gene proximal sequence elements act as important determinants of the RNA polymerase specificity of small nuclear RNA gene promoters in vitro and in vivo. J Biol Chem 2001; 276:31786-92. [PMID: 11431466 DOI: 10.1074/jbc.m101273200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes coding for metazoan spliceosomal snRNAs by RNA polymerase II (U1, U2, U4, U5) or RNA polymerase III (U6) is dependent upon a unique, positionally conserved regulatory element referred to as the proximal sequence element (PSE). Previous studies in the organism Drosophila melanogaster indicated that as few as three nucleotide differences in the sequences of the U1 and U6 PSEs can play a decisive role in recruiting the different RNA polymerases to transcribe the U1 and U6 snRNA genes in vitro. Those studies utilized constructs that contained only the minimal promoter elements of the U1 and U6 genes in an artificial context. To overcome the limitations of those earlier studies, we have now performed experiments that demonstrate that the Drosophila U1 and U6 PSEs have functionally distinct properties even in the environment of the natural U1 and U6 gene 5'-flanking DNAs. Moreover, assays in cells and in transgenic flies indicate that expression of genes from promoters that contain the "incorrect" PSE is suppressed in vivo. The Drosophila U6 PSE is incapable of recruiting RNA polymerase II to initiate transcription from the U1 promoter region, and the U1 PSE is unable to recruit RNA polymerase III to transcribe the U6 gene.
Collapse
Affiliation(s)
- K J McNamara-Schroeder
- Department of Chemistry and Molecular Biology Institute, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | | | |
Collapse
|
16
|
Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 2001; 276:26733-6. [PMID: 11390411 DOI: 10.1074/jbc.r100032200] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- N Hernandez
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
17
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|