1
|
Lin G, Liang W, He Q, Wang Y, Yang X. Dual single nucleotide polymorphisms typing of apolipoprotein E gene based on double restriction endonuclease with lambda exonuclease and triple helix molecular switch assistance. Biosens Bioelectron 2025; 278:117365. [PMID: 40086116 DOI: 10.1016/j.bios.2025.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Single nucleotide polymorphisms (SNPs) are critical determinants of disease susceptibility, pathogenesis, and drug response, underscoring the need for their accurate monitoring in clinical practice. In this study, we propose a novel apolipoprotein E (APOE) genotyping method for the rapid and precise identification of six genotypes (ε2/ε2, ε3/ε3, ε4/ε4, ε2/ε3, ε2/ε4, and ε3/ε4). The method utilizes restriction endonucleases AflIII and HaeII to selectively cleave the rs429358 and rs7412 sites, thereby generating distinct double-stranded DNA fragments. These fragments are subsequently processed by Lambda exonuclease to produce single-stranded DNA, which binds to a triple-helix molecular switch (THMS) and induces its conformational transition into a hairpin structure, resulting in a fluorescence change. The optimized assay exhibits a linear detection range of 5-1000 copies with a minimum detection limit of 2 copies for the rs429358 site, and a range of 10-1000 copies with a minimum detection limit of 6 copies for the rs7412 site. Furthermore, the method was validated using clinical samples from 10 Alzheimer's disease patients, achieving complete concordance with sequencing results, which underlines the high specificity and sensitivity of the method and demonstrates its potential as a valuable tool for the early diagnosis and personalized treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Gangyuan Lin
- Department of Pharmacy, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, PR China
| | - Weiting Liang
- Department of Pharmacy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Qidi He
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511447, PR China
| | - Yong Wang
- Department of Pharmacy, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, PR China.
| | - Xiujuan Yang
- Department of Pharmacy, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510280, PR China.
| |
Collapse
|
2
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
3
|
Mojžíšek M. Triplex Forming Oligonucleotides – Tool for Gene Targeting. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review deals with the antigene strategy whereby an oligonucleotide binds to the major or minor groove of double helical DNA where it forms a local triple helix. Preoccupation of this article is triplex-forming oligonucleotides (TFO). These are short, synthetic single-stranded DNAs that recognize polypurine:polypyrimidine regions in double stranded DNA in a sequence-specific manner and form triplex. Therefore, the mechanisms for DNA recognition by triple helix formation are discussed, together with main characteristics of TFO and also major obstacles that remain to be overcome are highlighted. TFOs can selectively inhibit gene expression at the transcriptional level or repair genetic defect by direct genome modification in human cells. These qualities makes TFO potentially powerful therapeutic tool for gene repair and/or expression regulation.
Collapse
|
4
|
del Mundo I, Zewail-Foote M, Kerwin SM, Vasquez KM. Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res 2017; 45:4929-4943. [PMID: 28334873 PMCID: PMC5416782 DOI: 10.1093/nar/gkx100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene.
Collapse
Affiliation(s)
- Imee Marie A. del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, USA
| | - Sean M. Kerwin
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| |
Collapse
|
5
|
Saleh AF, Fellows MD, Ying L, Gooderham NJ, Priestley CC. The Lack of Mutagenic Potential of a Guanine-Rich Triplex Forming Oligonucleotide in Physiological Conditions. Toxicol Sci 2016; 155:101-111. [PMID: 27660205 DOI: 10.1093/toxsci/kfw179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Amer F Saleh
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Mick D Fellows
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Liming Ying
- Molecular medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Catherine C Priestley
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom;
| |
Collapse
|
6
|
Villalobos X, Rodríguez L, Prévot J, Oleaga C, Ciudad CJ, Noé V. Stability and immunogenicity properties of the gene-silencing polypurine reverse Hoogsteen hairpins. Mol Pharm 2013; 11:254-64. [PMID: 24251728 DOI: 10.1021/mp400431f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gene silencing by either small-interference RNAs (siRNA) or antisense oligodeoxynucleotides (aODN) is widely used in biomedical research. However, their use as therapeutic agents is hindered by two important limitations: their low stability and the activation of the innate immune response. Recently, we developed a new type of molecule to decrease gene expression named polypurine reverse Hoogsteen hairpins (PPRHs) that bind to polypyrimidine targets in the DNA. Herein, stability experiments performed in mouse, human, and fetal calf serum and in PC3 cells revealed that the half-life of PPRHs is much longer than that of siRNAs in all cases. Usage of PPRHs with a nicked-circular structure increased the binding affinity to their target sequence and their half-life in FCS when bound to the target. Regarding the innate immune response, we determined that the levels of the transcription factors IRF3 and its phosphorylated form, as well as NF-κB were increased by siRNAs and not by PPRHs; that the expression levels of several proinflammatory cytokines including IL-6, TNF-α, IFN-α, IFN-ß, IL-1ß, and IL-18 were not significantly increased by PPRHs; and that the cleavage and activation of the proteolytic enzyme caspase-1 was not triggered by PPRHs. These determinations indicated that PPRHs, unlike siRNAs, do not activate the innate inflammatory response.
Collapse
Affiliation(s)
- Xenia Villalobos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Detection of triple helix DNA formation of guanine-rich oligonucleotide in sodium ion abundant buffer by cross-checking FRET scheme. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wan C, Cui M, Song F, Liu Z, Liu S. Evaluation of effects of bivalent cations on the formation of purine-rich triple-helix DNA by ESI-FT-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1281-1286. [PMID: 19297188 DOI: 10.1016/j.jasms.2009.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 05/27/2023]
Abstract
The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co(2+) and Ni(2+), significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba(2+) is notably beneficial to the formation of homodimer instead of triplex.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | | | | | | | | |
Collapse
|
9
|
Rudi K. Environmental shaping of ribosomal RNA nucleotide composition. MICROBIAL ECOLOGY 2009; 57:469-477. [PMID: 18825450 DOI: 10.1007/s00248-008-9446-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
Ribosomal RNA (rRNA) is one of the most important macromolecules in the cell. It is well established that high-temperature environmental conditions destabilize rRNA, leading to a selection for G+C-rich stabilizing structures. Our knowledge about the nucleotide composition effect of other environmental conditions, however, is limited. In the present work, I addressed this by correlating the rRNA nucleotide composition to known environmental habitats for bacteria. The bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria were chosen for in-depth analyses due to the abundance of information available in the databases. Major differences in nucleotide composition were identified between these phyla. In addition to the G+C-->A+T gradients, a main gradient of G+A-->C+T was identified for Firmicutes, while a G+T-->A+C gradient was identified for Actinobacteria. With respect to correlation to environmental conditions, the Firmicutes showed a main structure of high G+C being correlated to thermophilic conditions, high A+T to anaerobic conditions, and high C+T to halophilic conditions. The main patterns detected for Firmicutes can be explained by structural stability for high G+C, chemical instability of G under aerobic conditions, and structural stability by purine/pyrimidine skew for halophilic conditions. On the contrary, the correlations for Actinobacteria cannot easily be explained by chemical and/or structural stability. This may indicate interference with factors not included in my work. Finally, I found a main correlation between high A+T and endosymbiosis for Proteobacteria. High A+T probably reflects adaptation to cell internal growth. Further support for environmentally driven nucleotide composition shaping was found and that polyphyletic bacteria were associated with the same environment/nucleotide correlations. My conclusion is that environmental conditions and habitats have a major effect on rRNA nucleotide composition but that the effects may differ between the bacterial phyla.
Collapse
Affiliation(s)
- Knut Rudi
- Hedmark University College, Hamar, Norway.
| |
Collapse
|
10
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
11
|
Rossetti L, D'Isa G, Mauriello C, Varra M, De Santis P, Mayol L, Savino M. A model for triple helix formation on human telomerase reverse transcriptase (hTERT) promoter and stabilization by specific interactions with the water soluble perylene derivative, DAPER. Biophys Chem 2007; 129:70-81. [PMID: 17560709 DOI: 10.1016/j.bpc.2007.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 01/07/2023]
Abstract
The promoter of human telomerase reverse transcriptase (hTERT) gene, in the region from -1000 to +1, contains two homopurine-homopyrimidine sequences (-835/-814 and -108/-90), that can be considered as potential targets to triple helix forming oligonucleotides (TFOs) for applying antigene strategy. We have chosen the sequence (-108/-90) on the basis of its unfavorable chromatin organization, evaluated by theoretical nucleosome positioning and nuclease hypersensitive sites mapping. On this sequence, anti-parallel triplex with satisfactory thermodynamic stability is formed by two TFOs, having different lengths. Triplex stability is significantly increased by specific interactions with the perylene derivative N,N'-bis[3,3'-(dimethylamino) propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER). Since DAPER is a symmetric molecule, the induced Circular Dichroism (CD) spectra in the range 400-600 nm allows us to obtain information on drug binding to triplex and duplex DNA. The drug-induced ellipticity is significantly higher in the case of triplex with respect to duplex and, surprisingly, it increases at decreasing of DNA. A model is proposed where self-stacked DAPER binds to triplex or to duplex narrow grooves.
Collapse
Affiliation(s)
- Luigi Rossetti
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, Piazzale Aldo Moro, 5, c.a.p. 00185, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Hewett PW, Daft EL, Laughton CA, Ahmad S, Ahmed A, Murray JC. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites. Mol Med 2006; 12:8-16. [PMID: 16838069 PMCID: PMC1514554 DOI: 10.2119/2005-00046.hewett] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/13/2006] [Indexed: 11/06/2022] Open
Abstract
The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.
Collapse
Affiliation(s)
- Peter W Hewett
- Department of Vascular and Reproductive Biology, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK. p.w.hewett.@bham.ac.uk
| | | | | | | | | | | |
Collapse
|
13
|
Michel T, Debart F, Heitz F, Vasseur JJ. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Chembiochem 2005; 6:1254-62. [PMID: 15912553 DOI: 10.1002/cbic.200400436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of cationic phosphoramidate pyrimidine alpha-oligonucleotides (ONs) to form triplexes with DNA duplexes was investigated by UV melting experiments, circular dichroism spectroscopy and gel mobility shift experiments. Replacement of the phosphodiester linkages in alpha-ONs with positively charged phosphoramidate linkages results in more efficient triplex formation, the triplex stability increasing with the number of positive charges. At a neutral pH and in the absence of magnesium ions, it was found that a fully cationic phosphoramidate alpha-TFO (triplex-forming oligonucleotide) forms a highly stable triplex that melts at a higher temperature than the duplex target. No hysteresis between the annealing and melting curves was noticed; this indicates fast association. Moreover, the recognition of a DNA duplex with a cationic alpha-TFO through Hoogsteen base pairing is highly sequence-specific. To the best of our knowledge, this is the first report of stable triplexes in the pyrimidine motif formed by cationic alpha-oligonucleotides and duplex targets.
Collapse
Affiliation(s)
- Thibaut Michel
- LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
14
|
Kusic J, Kojic S, Divac A, Stefanovic D. Noncanonical DNA elements in the lamin B2 origin of DNA replication. J Biol Chem 2005; 280:9848-54. [PMID: 15611042 DOI: 10.1074/jbc.m408310200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA replication origins of eukaryotes lack linear replicator elements but contain short (dT)(n) (dA)(n) sequences that could build mutually equivalent unorthodox structures. Here we report that the lamin B2 origin of DNA replication adopts an alternative form characterized by unpaired regions CTTTTTTTTTTCC/GGAAAAAAAAAAG (3900-3912) and CCTTTTTTTTC/GAAAAAAAAGG (4141-4151). Both unpaired regions are resistant to DNase and except in central parts of their homopyrimidine strands are sensitive to single strand-specific chemicals. Interactions that protect central pyrimidines probably stabilize the bubble-like areas. Because DNA fragments containing either one or both bubbles migrate in TBM (89 mm Tris base, 89 mm boric acid, and 2 mm MgCl(2)) PAGE even faster than expected from their linear size, interacting regions are expected to belong to the same molecule. In an origin fragment containing a single bubble, free homopyrimidine strand can only interact with Hoogsteen hydrogen bonding surfaces from a complementary double stranded sequence. Indeed, this origin fragment reacts with triplex preferring antibody. In competition binding experiments control double stranded DNA or single stranded (dT)(40) do not affect origin-antibody interaction, whereas TAT and GGC triplexes exert competitive effect. Because the chosen fragment does not contain potential GGC forming sequences, these experiments confirm that the lamin B2 origin adopts a structure partly composed of intramolecular TAT triads.
Collapse
Affiliation(s)
- Jelena Kusic
- Institute of Molecular Genetics and Genetic Engineering, 11010 Belgrade, Serbia and Montenegro
| | | | | | | |
Collapse
|
15
|
Nagatsugi F, Sasaki S. Chemical tools for targeted mutagenesis of DNA based on triple helix formation. Biol Pharm Bull 2004; 27:463-7. [PMID: 15056848 DOI: 10.1248/bpb.27.463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of methods for targeted mutagenesis shows promise as an alternative form of gene therapy. Triple helix-forming oligonucleotides (TFOs) provide an attractive strategy for inducing mutations. Especially, alkylation of nucleobases with functionalized TFOs would have potential for site-directed mutation. Several studies have demonstrated that treatment of mammalian cells with TFOs can be exploited to introduce desired sequence changes and point mutations. This review summarizes targeted mutagenesis using reactive TFOs, including studies with photo reactive psolaren derivatives as well as a new reactive derivative recently developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
16
|
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. The specificity of this binding raises the possibility of using triplex formation for directed genome modification, with the ultimate goal of repairing genetic defects in human cells. Several studies have demonstrated that treatment of mammalian cells with TFOs can provoke DNA repair and recombination, in a manner that can be exploited to introduce desired sequence changes. This review will summarize recent advances in this field while also highlighting major obstacles that remain to be overcome before the application of triplex technology to therapeutic gene repair can be achieved.
Collapse
Affiliation(s)
- Michael M Seidman
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
17
|
Majumdar A, Puri N, Cuenoud B, Natt F, Martin P, Khorlin A, Dyatkina N, George AJ, Miller PS, Seidman MM. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 2003; 278:11072-7. [PMID: 12538585 DOI: 10.1074/jbc.m211837200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Successful gene-targeting reagents must be functional under physiological conditions and must bind chromosomal target sequences embedded in chromatin. Triple helix-forming oligonucleotides (TFOs) recognize and bind specific sequences via the major groove of duplex DNA and may have potential for gene targeting in vivo. We have constructed chemically modified, psoralen-linked TFOs that mediate site-specific mutagenesis of a chromosomal gene in living cells. Here we show that targeting efficiency is sensitive to the biology of the cell, specifically, cell cycle status. Targeted mutagenesis was variable across the cycle with the greatest activity in S phase. This was the result of differential TFO binding as measured by cross-link formation. Targeted cross-linking was low in quiescent cells but substantially enhanced in S phase cells with adducts in approximately 20-30% of target sequences. 75-80% of adducts were repaired faithfully, whereas the remaining adducts were converted into mutations (>5% mutation frequency). Clones with mutations could be recovered by direct screening of colonies chosen at random. These results demonstrate high frequency target binding and target mutagenesis by TFOs in living cells. Successful protocols for TFO-mediated manipulation of chromosomal sequences are likely to reflect a combination of appropriate oligonucleotide chemistry and manipulation of the cell biology.
Collapse
Affiliation(s)
- Alokes Majumdar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blume SW, Meng Z, Shrestha K, Snyder RC, Emanuel PD. The 5'-untranslated RNA of the human dhfr minor transcript alters transcription pre-initiation complex assembly at the major (core) promoter. J Cell Biochem 2003; 88:165-80. [PMID: 12461786 DOI: 10.1002/jcb.10326] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human dhfr minor transcript is distinguished from the predominant dhfr mRNA by an approximately 400 nucleotide extension of the 5'-untranslated region, which corresponds to the major (core) promoter DNA (its template). Based on its unusual sequence composition, we hypothesized that the minor transcript 5'-UTR might be capable of altering transcription pre-initiation complex assembly at the core promoter, through direct interactions of the RNA with specific regulatory polypeptides or the promoter DNA itself. We found that the minor transcript 5'-UTR selectively sequesters transcription factor Sp3, and to a lesser extent Sp1, preventing their binding to the dhfr core promoter. This allows a third putative transcriptional regulatory protein, which is relatively resistant to sequestration by the minor transcript RNA, the opportunity to bind the dhfr core promoter. The selective sequestration of Sp3 > Sp1 by the minor transcript 5'-UTR involves an altered conformation of the RNA, and a structural domain of the protein distinct from that required for binding to DNA. As a consequence, the minor transcript 5'-UTR inhibits transcription from the core promoter in vitro (in trans) in a concentration-dependent manner. These results suggest that the dhfr minor transcript may function in vivo (in cis) to regulate the transcriptional activity of the major (core) promoter.
Collapse
Affiliation(s)
- Scott W Blume
- Department of Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
19
|
Sun XG, Cao EH, Zhang XY, Liu D, Bai C. The divalent cation-induced DNA condensation studied by atomic force microscopy and spectra analysis. INORG CHEM COMMUN 2002. [DOI: 10.1016/s1387-7003(02)00320-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Basye J, Trent JO, Gao D, Ebbinghaus SW. Triplex formation by morpholino oligodeoxyribonucleotides in the HER-2/neu promoter requires the pyrimidine motif. Nucleic Acids Res 2001; 29:4873-80. [PMID: 11726697 PMCID: PMC96684 DOI: 10.1093/nar/29.23.4873] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are good candidates to be used as site-specific DNA-binding agents. Two obstacles encountered with TFOs are susceptibility to nuclease activity and a requirement for magnesium for triplex formation. Morpholino oligonucleotides were shown in one study to form triplexes in the absence of magnesium. In the current study, we have compared phosphodiester and morpholino oligonucleotides targeting a homopurine-homopyrimidine region in the human HER2/neu promoter. Using gel mobility shift analysis, our data demonstrate that triplex formation by phosphodiester oligonucleotides at the HER-2/neu promoter target is possible with pyrimidine-parallel, purine-antiparallel and mixed sequence (GT)-antiparallel motifs. Only the pyrimidine-parallel motif morpholino TFO was capable of efficient triple helix formation, which required low pH. Triplex formation with the morpholino TFO was efficient in low or no magnesium. The pyrimidine motif TFOs with either a phosphodiester or morpholino backbone were able to form triple helices in the presence of potassium ions, but required low pH. We have rationalized the experimental observations with detailed molecular modeling studies. These data demonstrate the potential for the development of TFOs based on the morpholino backbone modification and demonstrate that the pyrimidine motif is the preferred motif for triple helix formation by morpholino oligonucleotides.
Collapse
Affiliation(s)
- J Basye
- Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | |
Collapse
|
21
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
22
|
Puri N, Majumdar A, Cuenoud B, Natt F, Martin P, Boyd A, Miller PS, Seidman MM. Targeted gene knockout by 2'-O-aminoethyl modified triplex forming oligonucleotides. J Biol Chem 2001; 276:28991-8. [PMID: 11389147 DOI: 10.1074/jbc.m103409200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex forming oligonucleotides (TFOs) are of interest because of their potential for facile gene targeting. However, the failure of TFOs to bind target sequences at physiological pH and Mg(2+) concentration has limited their biological applications. Recently, pyrimidine TFOs with 2'-O-aminoethyl (AE) substitutions were shown to have enhanced kinetics and stability of triplex formation (Cuenoud, B., Casset, F., Husken, D., Natt, F., Wolf, R. M., Altmann, K. H., Martin, P., and Moser H. E. (1998) Angew. Chem. Int. Ed. 37, 1288--1291). We have prepared psoralen-linked TFOs with varying amounts of the AE-modified residues, and have characterized them in biochemical assays in vitro, and in stability and HPRT gene knockout assays in vivo. The AE TFOs showed higher affinity for the target in vitro than a TFO with uniform 2'-OMe substitution, with relatively little loss of affinity when the assay was performed in reduced Mg(2+). Once formed they were also more stable in "physiological" buffer, with the greatest affinity and stability displayed by the TFO with all but one residue in the AE format. However, TFOs with lesser amounts of the AE modification formed the most stable triplexes in vivo, and showed the highest HPRT gene knockout activity. We conclude that the AE modification can enhance the biological activity of pyrimidine TFOs, but that extensive substitution is deleterious.
Collapse
Affiliation(s)
- N Puri
- NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin FL, Majumdar A, Klotz LC, Reszka AP, Neidle S, Seidman MM. Stability of DNA triplexes on shuttle vector plasmids in the replication pool in mammalian cells. J Biol Chem 2000; 275:39117-24. [PMID: 10993885 DOI: 10.1074/jbc.m005404200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.
Collapse
Affiliation(s)
- F L Lin
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
24
|
Debin A, Laboulais C, Ouali M, Malvy C, Le Bret M, Svinarchuk F. Stability of G,A triple helices. Nucleic Acids Res 1999; 27:2699-707. [PMID: 10373587 PMCID: PMC148479 DOI: 10.1093/nar/27.13.2699] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work we selected double-stranded DNA sequences capable of forming stable triplexes at 20 or 50 degrees C with corresponding 13mer purine oligonucleotides. This selection was obtained by a double aptamer approach where both the starting sequences of the oligonucleotides and the target DNA duplex were random. The results of selection were confirmed by a cold exchange method and the influence of the position of a 'mismatch' on the stability of the triplex was documented in several cases. The selected sequences obey two rules: (i) they have a high G content; (ii) for a given G content the stability of the resulting triplex is higher if the G residues lie in stretches. The computer simulation of the Mg2+, Na+and Cl-environment around three triplexes by a density scaled Monte Carlo method provides an interpretation of the experimental observations. The Mg2+cations are statistically close to the G N7 and relatively far from the A N7. The presence of an A repels the Mg2+from adjacent G residues. Therefore, the triplexes are stabilized when the Mg2+can form a continuous spine on G N7.
Collapse
Affiliation(s)
- A Debin
- CNRS UMR 8532, Institut Gustave-Roussy, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|