1
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
2
|
Gould PS, Dyer NP, Croft W, Ott S, Easton AJ. Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism. RNA (NEW YORK, N.Y.) 2014; 20:373-381. [PMID: 24412912 PMCID: PMC3923131 DOI: 10.1261/rna.041574.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Polycistronic transcripts are considered rare in the human genome. Initiation of translation of internal ORFs of eukaryotic genes has been shown to use either leaky scanning or highly structured IRES regions to access initiation codons. Studies on mammalian viruses identified a mechanism of coupled translation termination-reinitiation that allows translation of an additional ORF. Here, the ribosome terminating translation of ORF-1 translocates upstream to reinitiate translation of ORF-2. We have devised an algorithm to identify mRNAs in the human transcriptome in which the major ORF-1 overlaps a second ORF capable of encoding a product of at least 50 aa in length. This identified 4368 transcripts representing 2214 genes. We investigated 24 transcripts, 22 of which were shown to express a protein from ORF-2 highlighting that 3' UTRs contain protein-coding potential more frequently than previously suspected. Five transcripts accessed ORF-2 using a process of coupled translation termination-reinitiation. Analysis of one transcript, encoding the CASQ2 protein, showed that the mechanism by which the coupling process of the cellular mRNAs was achieved was novel. This process was not directed by the mRNA sequence but required an aspartate-rich repeat region at the carboxyl terminus of the terminating ORF-1 protein. Introduction of wobble mutations for the aspartate codon had no effect, whereas replacing aspartate for glutamate repeats eliminated translational coupling. This is the first description of a coordinated expression of two proteins from cellular mRNAs using a coupled translation termination-reinitiation process and is the first example of such a process being determined at the amino acid level.
Collapse
Affiliation(s)
- Phillip S. Gould
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nigel P. Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Wayne Croft
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew J. Easton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Herrera-Cruz M, Cruz G, Valadez-Graham V, Fregoso-Lomas M, Villicaña C, Vázquez M, Reynaud E, Zurita M. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH. J Biol Chem 2012; 287:33567-80. [PMID: 22865882 DOI: 10.1074/jbc.m112.383505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes.
Collapse
Affiliation(s)
- Mariana Herrera-Cruz
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Hiltunen JK, Chen Z, Haapalainen AM, Wierenga RK, Kastaniotis AJ. Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism. Prog Lipid Res 2010; 49:27-45. [DOI: 10.1016/j.plipres.2009.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Huang P, Pleasance ED, Maydan JS, Hunt-Newbury R, O’Neil NJ, Mah A, Baillie DL, Marra MA, Moerman DG, Jones SJ. Identification and analysis of internal promoters in Caenorhabditis elegans operons. Genome Res 2007; 17:1478-85. [PMID: 17712020 PMCID: PMC1987351 DOI: 10.1101/gr.6824707] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The current Caenorhabditis elegans genomic annotation has many genes organized in operons. Using directionally stitched promoterGFP methodology, we have conducted the largest survey to date on the regulatory regions of annotated C. elegans operons and identified 65, over 25% of those studied, with internal promoters. We have termed these operons "hybrid operons." GFP expression patterns driven from internal promoters differ in tissue specificity from expression of operon promoters, and serial analysis of gene expression data reveals that there is a lack of expression correlation between genes in many hybrid operons. The average length of intergenic regions with putative promoter activity in hybrid operons is larger than previous estimates for operons as a whole. Genes with internal promoters are more commonly involved in gene duplications and have a significantly lower incidence of alternative splicing than genes without internal promoters, although we have observed almost all trans-splicing patterns in these two distinct groups. Finally, internal promoter constructs are able to rescue lethal knockout phenotypes, demonstrating their necessity in gene regulation and survival. Our work suggests that hybrid operons are common in the C. elegans genome and that internal promoters influence not only gene organization and expression but also operon evolution.
Collapse
Affiliation(s)
- Peiming Huang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Erin D. Pleasance
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jason S. Maydan
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rebecca Hunt-Newbury
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nigel J. O’Neil
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Allan Mah
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David L. Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Marco A. Marra
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Steven J.M. Jones
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Corresponding author.E-mail ; fax (604) 876-3561
| |
Collapse
|
6
|
Mihailovich M, Thermann R, Grohovaz F, Hentze MW, Zacchetti D. Complex translational regulation of BACE1 involves upstream AUGs and stimulatory elements within the 5' untranslated region. Nucleic Acids Res 2007; 35:2975-85. [PMID: 17439957 PMCID: PMC1888809 DOI: 10.1093/nar/gkm191] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACE1 is the protease responsible for the production of amyloid-β peptides that accumulate in the brain of Alzheimer's disease (AD) patients. BACE1 expression is regulated at the transcriptional, as well as post-transcriptional level. Very high BACE1 mRNA levels have been observed in pancreas, but the protein and activity were found mainly in brain. An up-regulation of the protein has been described in some AD patients without a change in transcript levels. The features of BACE1 5′ untranslated region (5′ UTR), such as the length, GC content, evolutionary conservation and presence of upstream AUGs (uAUGs), indicate an important regulatory role of this 5′ UTR in translational control. We demonstrate that, in brain and pancreas, almost all of the native BACE1 mRNA contains the full-length 5′ UTR. RNA transfection and in vitro translation show that translation is mainly inhibited by the presence of the uAUGs. We provide a mutational analysis that highlight the second uAUG as the main inhibitory element while mutations of all four uAUGs fully de-repress translation. Furthermore, we have evidence that a sequence within the region 222-323 of the BACE1 5′ UTR has a stimulatory effect on translation that might depend on the presence of trans-acting factors.
Collapse
Affiliation(s)
- Marija Mihailovich
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Rolf Thermann
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Fabio Grohovaz
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Matthias W. Hentze
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
| | - Daniele Zacchetti
- San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy, Vita-Salute San Raffaele University, via Olgettina 58, I-20132 Milano, Italy, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, Italian Institute of Technology (IIT), Research Unit of Molecular Neuroscience, via Olgettina 58, I-20132 Milano, Italy and Istituto Nazionale di Neuroscienze, via Olgettina 58, I-20132 Milano, Italy
- *To whom correspondence should be addressed. +39-02-2643-4817+39-02-2643-4813
| |
Collapse
|
7
|
Dai C, Cao Z, Wu Y, Yi H, Jiang D, Li W. Improved fusion protein expression of EGFP via the mutation of both Kozak and the initial ATG codon. Cell Mol Biol Lett 2007; 12:362-9. [PMID: 17318296 PMCID: PMC6275746 DOI: 10.2478/s11658-007-0008-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 11/27/2006] [Indexed: 11/21/2022] Open
Abstract
Since its discovery, green fluorescence protein (GFP) has been used as a reporter in a broad range of applications, including the determination of gene expresion in diverse organisms, and subcellular protein localization. pEGFP-N1 is a eukayotic expression vector encoding EGFP, the MCS of which locates at the N terminus of EGFP. In this study, the cDNA sequence of scorpion toxin BmKK2 was inserted into the XhoI-HindIII cut of pEGFP-N1 to construct a toxin-EGFP fusion gene (named pEGFP-BmKK2). Fluorescence imaging revealed that HEK 293T cells that were transfected by pEGFP-BmKK2 emitted green fluorescence. Transcription of pEGFP-BmKK2 was confirmed by RT-PCR. However, western blotting analysis showed that the transfected HEK 293T cells expressed mostly EGFP, but little toxin-EGFP fusion protein, implying that pEGFP-N1 cannot be used as a fusion expression vector for subcellular protein localization for the BmKK2 gene. Consequently, two modified recombinant vectors (pEGFP-BmKK2-M1 and pEGFP-BmKK2-M2) were constructed based on pEGFP-BmKK2. This greatly improved the expression of toxin-EGFP fusion protein from pEGFP-BmKK2-M2.
Collapse
Affiliation(s)
- Chao Dai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Hong Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Dahe Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072 P R China
| |
Collapse
|
8
|
Makalowska I, Lin CF, Makalowski W. Overlapping genes in vertebrate genomes. Comput Biol Chem 2005; 29:1-12. [PMID: 15680581 DOI: 10.1016/j.compbiolchem.2004.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/15/2004] [Accepted: 12/15/2004] [Indexed: 11/19/2022]
Abstract
Overlapping genes in mammalian genomes are unexpected phenomena even though hundreds of pairs of protein coding overlapping genes have been reported so far. Overlapping genes can be divided into different categories based on direction of transcription as well as on sequence segments being shared between overlapping coding regions. The biologic functions of natural antisense transcripts, their involvement in physiological processes and gene regulation in living organisms are not fully understood. Number of documented examples indicates that they may exert control at various levels of gene expression, such as transcription, mRNA processing, splicing, stability, transport, and translation. Similarly, evolutionary origin of such genes is not known, existing hypotheses can explain only selected cases of mammalian gene overlaps which could originate as result of rearrangements, overprinting and/or adoption of signals in the neighboring gene locus.
Collapse
Affiliation(s)
- Izabela Makalowska
- The Huck Institute of the Life Sciences, The Pennsylvania State University, 502 Wartik Lab, University Park, PA 16802, USA.
| | | | | |
Collapse
|
9
|
Hänzelmann P, Hernández HL, Menzel C, García-Serres R, Huynh BH, Johnson MK, Mendel RR, Schindelin H. Characterization of MOCS1A, an Oxygen-sensitive Iron-Sulfur Protein Involved in Human Molybdenum Cofactor Biosynthesis. J Biol Chem 2004; 279:34721-32. [PMID: 15180982 DOI: 10.1074/jbc.m313398200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human proteins MOCS1A and MOCS1B catalyze the conversion of a guanosine derivative to precursor Z during molybdenum cofactor biosynthesis. MOCS1A shares homology with S-adenosylmethionine (AdoMet)-dependent radical enzymes, which catalyze the formation of protein and/or substrate radicals by reductive cleavage of AdoMet through a [4Fe-4S] cluster. Sequence analysis of MOCS1A showed two highly conserved cysteine motifs, one near the N terminus and one near the C terminus. MOCS1A was heterologously expressed in Escherichia coli and purified under aerobic and anaerobic conditions. Individual mutations of the conserved cysteines to serine revealed that all are essential for synthesis of precursor Z in vivo. The type and properties of the iron-sulfur (FeS) clusters were investigated using a combination of UV-visible absorption, variable temperature magnetic circular dichroism, resonance Raman, Mössbauer, and EPR spectroscopies coupled with iron and acid-labile sulfide analyses. The results indicated that anaerobically purified MOCS1A is a monomeric protein containing two oxygen-sensitive FeS clusters, each coordinated by only three cysteine residues. A redox-active [4Fe-4S](2+,+) cluster is ligated by an N-terminal CX(3)CX(2)C motif as is the case with all other AdoMet-dependent radical enzymes investigated thus far. A C-terminal CX(2)CX(13)C motif that is unique to MOCS1A and its orthologs primarily ligates a [3Fe-4S](0) cluster. However, MOCS1A could be reconstituted in vitro under anaerobic conditions to yield a form containing two [4Fe-4S](2+) clusters. The N-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen via a semistable [2Fe-2S](2+) cluster intermediate, and the C-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen to yield a semistable [3Fe-4S](0) cluster intermediate.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Department of Biochemistry and Center for Structural Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Lodhi KM, Ozdener MH, Shayiq RM. The upstream open reading frame mediates constitutive effects on translation of cytochrome p-450c27 from the seventh in-frame AUG codon in rat liver. J Biol Chem 2003; 278:40647-57. [PMID: 12909643 DOI: 10.1074/jbc.m302081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2.3-kb mRNA that codes for cytochrome P-450c27 (CYP27) has an unexpectedly long 5'-untranslated region (UTR) that holds six AUGs, leading to several upstream open reading frames (uORFs). The initiation of translation from the seventh AUG forms a putative 55-kDa precursor, which is processed in mitochondria to form a 52-kDa mature protein. The first three AUGs form fully overlapping uORF1, uORF2, and uORF3 that are in-frame with the seventh AUG and next two form fully overlapping uORF4 and uORF5 that are out-of-frame with the seventh AUG. Although not recognized by the scanning ribosomes under normal conditions, the sixth in-frame AUG forms a putative 57-kDa extension of the main open reading frame. The purpose of this study was to identify the elements in the 5'-UTR that direct CYP27 mRNA translation exclusively from the seventh AUG. Expression of 5' deletion mutants in COS cells reveal that the intact 5'-UTR not only directs the initiation of translation from the seventh AUG but also acts as a negative regulator. A 2-kb deletion mutant that lacks uORF1 initiates translation equally from the sixth and the seventh AUGs, forming both 57- and 55-kDa precursor proteins with a 2-fold increase in rate of translation. However, induction in translation does not affect the levels of the mature 52-kDa form in mitochondria but causes accumulation of the precursor form in cytosol not seen in COS cells transfected with wild-type cDNA. Mutation of the stop codon that terminates uORF1 completely shifts the initiation of translation from the seventh to the first AUG, forming a 67-kDa precursor that is processed into a 52-kDa mature protein in mitochondria. Confirmation of the bicistronic nature of CYP27 mRNA by epitope mapping of uORF1 suggests that translation of CYP27 mRNA from the seventh AUG is directed and regulated by uORF1 expression.
Collapse
Affiliation(s)
- Khalid M Lodhi
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
12
|
Chung KR, Daub ME, Ehrenshaft M. Expression of the cercosporin toxin resistance gene ( CRG1) as a dicistronic mRNA in the filamentous fungus Cercospora nicotianae. Curr Genet 2003; 43:415-24. [PMID: 12802507 DOI: 10.1007/s00294-003-0414-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 05/19/2003] [Accepted: 05/22/2003] [Indexed: 11/28/2022]
Abstract
The CRG1 gene in Cercospora nicotianae encodes a transcription factor and is required for cercosporin toxin resistance and production. Cloning and sequencing of the downstream region of the CRG1 gene led to the discovery of an adjacent gene ( PUT1) encoding a putative uracil transporter. Expression of CRG1 and PUT1 as assessed by Northern analysis indicated that, in addition to the expected monocistronic mRNAs (2.6 kb and 2.0 kb, respectively), a common 4.5-kb mRNA could be identified, using either a CRG1 or a PUT1 gene probe. The 2.6-kb transcript identified only by the CRG1 probe was expressed constitutively, whereas the 2.0-kb transcript identified only by the PUT1 probe was differentially expressed in various media. Four cDNA clones containing CRG1, PUT1, and the CRG1- PUT1 intergenic region were identified as part of the products from the 4.5-kb transcript. Both the 4.5-kb and 2.6-kb transcripts were not detectable in three crg1-disrupted mutants, using the CRG1 probe. The 2.0-kb transcript, but not the 4.5-kb one was detected using the PUT1 probe in the three crg1-disrupted mutants. Taken together, we conclude that the 4.5-kb transcript is a dicistronic mRNA of both CRG1 and PUT1 in the fungus C. nicotianae. This is the first example of a dicistronic mRNA identified in filamentous fungi.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center and Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| | | | | |
Collapse
|
13
|
Elton TS, Martin MM. Alternative splicing: a novel mechanism to fine-tune the expression and function of the human AT1 receptor. Trends Endocrinol Metab 2003; 14:66-71. [PMID: 12591176 DOI: 10.1016/s1043-2760(02)00038-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of the angiotensin II type 1 (AT(1)) receptor is closely involved in the pathogenesis of cardiovascular diseases; therefore, aberrant regulation of the production of this receptor might play a role in these disorders. Currently, there is strong evidence to suggest that the predominant mechanism regulating the number of AT(1) receptors is the modulation of mRNA stability. Here, we discuss the importance of alternative splicing as an additional post-transcriptional mechanism regulating human AT(1) receptor number and function.
Collapse
Affiliation(s)
- Terry S Elton
- Department of Chemistry and Biochemistry, Brigham Young University, C100 Benson Science Building, Provo, UT 84602-5700, USA.
| | | |
Collapse
|
14
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Schindelin H, Kisker C, Rajagopalan KV. Molybdopterin from molybdenum and tungsten enzymes. ADVANCES IN PROTEIN CHEMISTRY 2002; 58:47-94. [PMID: 11665493 DOI: 10.1016/s0065-3233(01)58002-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H Schindelin
- Department of Biochemistry, Center for Structural Biology, SUNY Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
16
|
Peñalva MA. A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet Biol 2001; 34:1-10. [PMID: 11567547 DOI: 10.1006/fgbi.2001.1284] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crucial for the establishment and development of biochemical genetics as a self-standing discipline was Beadle and Tatum's choice of Neurospora crassa as experimental organism some 60 years ago. Although Garrod's insights on biochemical genetics and his astonishingly modern concepts of biochemical individuality and susceptibility to disease had been ignored by their contemporaries, Beadle acknowledged on several occasions how close Garrod had come to the "one-gene-one-enzyme" hypothesis. In an unexpected turn of events, several genes involved in human inborn errors of metabolism, including the gene for Garrod's favorite disease, alkaptonuria, have been characterized by exploitation of the experimental advantages of another mold, Aspergillus nidulans, which shares with N. crassa the experimental advantages that prompted pioneers of biochemical genetics to use them: rapid growth, facile genetic manipulation, and an environment (the composition of the growth medium) that can be manipulated à la carte.
Collapse
Affiliation(s)
- M A Peñalva
- Centro de Investigaciones Biológicas del CSIC, Velázquez 144, Madrid 28006, Spain
| |
Collapse
|
17
|
Guittaut M, Charpentier S, Normand T, Dubois M, Raimond J, Legrand A. Identification of an internal gene to the human Galectin-3 gene with two different overlapping reading frames that do not encode Galectin-3. J Biol Chem 2001; 276:2652-7. [PMID: 11160123 DOI: 10.1074/jbc.m002523200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that alternative transcripts were initiated within the second intron of the human Galectin-3 gene (LGALS3). We now demonstrate that these transcripts arise from an internal gene embedded within LGALS3 and named galig (Galectin-3 internal gene). Tissue-specific expression of galig was assayed by screening of several human tissues. Contrary to LGALS3, galig appears to be tightly regulated and principally activated in leukocytes from peripheral blood. Cloning and characterization of galig transcripts revealed that they contain two out-of-frame overlapping open-reading frames (ORFs). Transfection of expression vectors encoding enhanced green fluorescent protein (EGFP) chimeras indicated that both ORFs could be translated in proteins unrelated to Galectin-3. The ORF1 polypeptide targets EGFP to cytosol and nucleus whereas ORF2 targets EGFP to mitochondria. These results revealed the exceptional genetic organization of the LGALS3 locus.
Collapse
Affiliation(s)
- M Guittaut
- Centre de Biophysique Moléculaire (affiliated with the University of Orléans), CNRS UPR4301, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | | | | | | | |
Collapse
|
18
|
Wuebbens MM, Liu MT, Rajagopalan K, Schindelin H. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Structure 2000; 8:709-18. [PMID: 10903949 DOI: 10.1016/s0969-2126(00)00157-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The molybdenum cofactor (Moco) is an essential component of a large family of enzymes involved in important transformations in carbon, nitrogen and sulfur metabolism. The Moco biosynthetic pathway is evolutionarily conserved and found in archaea, eubacteria and eukaryotes. In humans, genetic deficiencies of enzymes involved in this pathway trigger an autosomal recessive and usually deadly disease with severe neurological symptoms. The MoaC protein, together with the MoaA protein, is involved in the first step of Moco biosynthesis. RESULTS MoaC from Escherichia coli has been expressed and purified to homogeneity and its crystal structure determined at 2 A resolution. The enzyme is organized into a tightly packed hexamer with 32 symmetry. The monomer consists of an antiparallel, four-stranded beta sheet packed against two long alpha helices, and its fold belongs to the ferredoxin-like family. Analysis of structural and biochemical data strongly suggests that the active site is located at the interface of two monomers in a pocket that contains several strictly conserved residues. CONCLUSIONS Asp128 in the putative active site appears to be important for catalysis as its replacement with alanine almost completely abolishes protein activity. The structure of the Asp128-->Ala variant reveals substantial conformational changes in an adjacent loop. In the human MoaC ortholog, substitution of Thr182 with proline causes Moco deficiency, and the corresponding substitution in MoaC severely compromises activity. This residue is located near the N-terminal end of helix alpha4 at an interface between two monomers. The MoaC structure provides a framework for the analysis of additional dysfunctional mutations in the corresponding human gene.
Collapse
Affiliation(s)
- M M Wuebbens
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
19
|
Gray TA, Nicholls RD. Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames. RNA (NEW YORK, N.Y.) 2000; 6:928-36. [PMID: 10917590 PMCID: PMC1369970 DOI: 10.1017/s1355838200000182] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molybdenum is an essential cofactor in many enzymes, but must first be complexed by molybdopterin, whose synthesis requires four enzymatic activities. The first two enzymes of this pathway are encoded by the MOCS1 locus in humans. We describe here a remarkably well-conserved novel mRNA splicing phenomenon that produces both an apparently bicistronic MOCS1AM-OCS1B transcript, as well as a distinct class of monocistronic transcript. The latter are created by a variety of splicing mechanisms (alternative splice donors, alternative splice acceptors, and exon-skipping) to bypass the normal termination nonsense codon of MOCS1A resulting in fusion of the MOCS1A and MOCS1B open reading frames. Therefore, these "no-nonsense" transcripts encode a single bifunctional protein embodying both MOCS1A and MOCS1B activities. This coexpression profile was observed in vertebrates (human, mouse, cow, rabbit, opossum, and chicken) and invertebrates (fruit fly and nematode) spanning at least 700 million years of evolution. Our phylogenetic data also provide evidence that the bicistronic form of MOCS1 mRNA is likely to only produce MOCS1A protein and, combined with Northern analyses, suggests that MOCS1B is translated only as a fusion with MOCS1A. Taken together, the data presented here demonstrate a very highly conserved and physiologically relevant dynamic splicing scheme that profoundly influences the protein-coding potential of the MOCS1 locus.
Collapse
Affiliation(s)
- T A Gray
- Department of Genetics, Case Western Reserve University School of Medicine, Center for Human Genetics, University Hospitals of Cleveland, Ohio 44106, USA
| | | |
Collapse
|
20
|
Furukawa K, Mizushima N, Noda T, Ohsumi Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 2000; 275:7462-5. [PMID: 10713047 DOI: 10.1074/jbc.275.11.7462] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein conjugation, such as ubiquitination, is the process by which the C-terminal glycine of a small modifier protein is covalently attached to target protein(s) through sequential reactions with an activating enzyme and conjugating enzymes. Here we report on a novel protein conjugation system in yeast. A newly identified ubiquitin related modifier, Urm1 is a 99-amino acid protein terminated with glycine-glycine. Urm1 is conjugated to target proteins, which requires the C-terminal glycine of Urm1. At the first step of this reaction, Urm1 forms a thioester with a novel E1-like protein, Uba4. Deltaurm1 and Deltauba4 cells showed a temperature-sensitive growth phenotype. Urm1 and Uba4 show similarity to prokaryotic proteins essential for molybdopterin and thiamin biosynthesis, although the Urm1 system is not involved in these pathways. This is the fifth conjugation system in yeast, following ubiquitin, Smt3, Rub1, and Apg12, but it is unique in respect to relation to prokaryotic enzyme systems. This fact may provide an important clue regarding evolution of protein conjugation systems in eukaryotic cells.
Collapse
Affiliation(s)
- K Furukawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
21
|
Unkles SE, Heck IS, Appleyard MV, Kinghorn JR. Eukaryotic molybdopterin synthase. Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants. J Biol Chem 1999; 274:19286-93. [PMID: 10383438 DOI: 10.1074/jbc.274.27.19286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe the primary structure of eukaryotic molybdopterin synthase small and large subunits and compare the sequences of the lower eukaryote, Aspergillus nidulans, and a higher eukaryote, Homo sapiens. Mutants in the A. nidulans cnxG (encoding small subunit) and cnxH (large subunit) genes have been analyzed at the biochemical and molecular level. Chlorate-sensitive mutants, all the result of amino acid substitutions, were shown to produce low levels of molybdopterin, and growth tests suggest that they have low levels of molybdoenzymes. In contrast, chlorate-resistant cnx strains have undetectable levels of molybdopterin, lack the ability to utilize nitrate or hypoxanthine as sole nitrogen sources, and are probably null mutations. Thus on the basis of chlorate toxicity, it is possible to distinguish between amino acid substitutions that permit a low level of molybdopterin production and those mutations that completely abolish molybdopterin synthesis, most likely reflecting molybdopterin synthase activity per se. Residues have been identified that are essential for function including the C-terminal Gly of the small subunit (CnxG), which is thought to be crucial for the sulfur transfer process during the formation of molybdopterin. Two independent alterations at residue Gly-148 in the large subunit, CnxH, result in temperature sensitivity suggesting that this residue resides in a region important for correct folding of the fungal protein. Many years ago it was proposed, from data showing that temperature-sensitive cnxH mutants had thermolabile nitrate reductase, that CnxH is an integral part of the molybdoenzyme nitrate reductase (MacDonald, D. W., and Cove, D. J. (1974) Eur. J. Biochem. 47, 107-110). Studies of temperature-sensitive cnxH mutants isolated in the course of this study do not support this hypothesis. Homologues of both molybdopterin synthase subunits are evident in diverse eukaryotic sources such as worm, rat, mouse, rice, and fruit fly as well as humans as discussed in this article. In contrast, molybdopterin synthase homologues are absent in the yeast Saccharomyces cerevisiae. Precursor Z and molybdopterin are undetectable in this organism nor do there appear to be homologues of molybdoenzymes.
Collapse
Affiliation(s)
- S E Unkles
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|