1
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Davidge B, Rebola KGDO, Agbor LN, Sigmund CD, Singer JD. Cul3 regulates cyclin E1 protein abundance via a degron located within the N-terminal region of cyclin E. J Cell Sci 2019; 132:jcs233049. [PMID: 31636116 PMCID: PMC6857591 DOI: 10.1242/jcs.233049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cyclin E and its binding partner Cdk2 control the G1/S transition in mammalian cells. Increased levels of cyclin E are found in some cancers. Additionally, proteolytic removal of the cyclin E N-terminus occurs in some cancers and is associated with increased cyclin E-Cdk2 activity and poor clinical prognosis. Cyclin E levels are tightly regulated and controlled in part through ubiquitin-mediated degradation initiated by one of two E3 ligases, Cul1 and Cul3. Cul1 ubiquitylates phosphorylated cyclin E, but the mechanism through which Cul3 ubiquitylates cyclin E is poorly understood. In experiments to ascertain how Cul3 mediates cyclin E destruction, we identified a degron on cyclin E that Cul3 targets for ubiquitylation. Recognition of the degron and binding of Cul3 does not require a BTB domain-containing adaptor protein. Additionally, this degron is lacking in N-terminally truncated cyclin E. Our results describe a mechanism whereby N-terminally truncated cyclin E can avoid the Cul3-mediated degradation pathway. This mechanism helps to explain the increased activity that is associated with the truncated cyclin E variants that occurs in some cancers.
Collapse
Affiliation(s)
- Brittney Davidge
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | - Larry N Agbor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
3
|
Inoue K, Fry EA. Novel Molecular Markers for Breast Cancer. BIOMARKERS IN CANCER 2016; 8:25-42. [PMID: 26997872 PMCID: PMC4790586 DOI: 10.4137/bic.s38394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/16/2016] [Accepted: 02/14/2016] [Indexed: 01/15/2023]
Abstract
The use of molecular biomarkers assures that breast cancer (BC) patients receive optimal treatment. Established biomarkers, such as estrogen receptor, progesterone receptor, HER2, and Ki67, have been playing significant roles in the subcategorization of BC to predict the prognosis and decide the specific therapy to each patient. Antihormonal therapy using 4-hydroxytamoxifen or aromatase inhibitors have been employed in patients whose tumor cells express hormone receptors, while monoclonal antibody to HER2 has been administered to HER2-positive BCs. Although new therapeutic agents have been developed in the past few decades, many patients still die of the disease due to relapse; thus, novel molecular markers that predict therapeutic failure and those that can be targets for specific therapy are expected. We have chosen four of such molecules by reviewing recent publications, which are cyclin E, B-Myb, Twist, and DMP1β. The oncogenicity of these molecules has been demonstrated in vivo and/or in vitro through studies using transgenic mice or siRNAs, and their expressions have been shown to be associated with shortened overall or disease-free survival of BC patients. The former three molecules have been shown to accelerate epithelial-mesenchymal transition that is often associated with cancer stem cell-ness and metastasis; all these four can be novel therapeutic targets as well. Thus, large prospective studies employing immunohistochemistry will be needed to establish the predictive values of these molecules in patients with BC.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
4
|
IL-17A and its homologs IL-25/IL-17E recruit the c-RAF/S6 kinase pathway and the generation of pro-oncogenic LMW-E in breast cancer cells. Sci Rep 2015; 5:11874. [PMID: 26154409 PMCID: PMC4648389 DOI: 10.1038/srep11874] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/08/2015] [Indexed: 12/24/2022] Open
Abstract
Pro-inflammatory IL-17 cytokines were initially described for their pathogenic role in chronic inflammatory diseases and subsequent accumulating evidence indicated their involvement in carcinogenesis. In the present study we report that IL-17A and IL-17E receptors subunits mRNA expressions are upregulated in breast cancers versus normal samples. IL-17E, which is undetectable in most normal breast tissues tested, seems more expressed in some tumors. Investigation of the molecular signaling following stimulation of human breast cancer cell lines with IL-17A and IL-17E showed that both cytokines induced the phosphorylation of c-RAF, ERK1/2 and p70 S6 Kinase were involved in the proliferation and survival of tumor cells. Accordingly, IL-17A and IL-17E promoted resistance to Docetaxel and failed to induce apoptosis as previously reported for IL-17E. Interestingly, we also revealed that both cytokines induced the generation of tumorogenic low molecular weight forms of cyclin E (LMW-E), which high levels correlated strongly with a poor survival in breast cancer patients. These results show for the first time some of the molecular pathways activated by IL-17A and IL-17E that may participate to their pro-oncogenic activity in breast cancers.
Collapse
|
5
|
Guo X, Connick MC, Vanderhoof J, Ishak MA, Hartley RS. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. Int J Mol Sci 2015; 16:7112-32. [PMID: 25830480 PMCID: PMC4425007 DOI: 10.3390/ijms16047112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023] Open
Abstract
RNA binding protein (RBPs) and microRNAs (miRNAs or miRs) are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR) containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC). Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Melanie C Connick
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Jennifer Vanderhoof
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mohammad-Ali Ishak
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Rebecca S Hartley
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
6
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
7
|
Rath SL, Senapati S. Why are the truncated cyclin Es more effective CDK2 activators than the full-length isoforms? Biochemistry 2014; 53:4612-24. [PMID: 24947816 DOI: 10.1021/bi5004052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell cycle regulating enzymes, CDKs, become activated upon association with their regulatory proteins, cyclins. The G1 cyclin, cyclin E, is overexpressed and present in low molecular weight (LMW) isoforms in breast cancer cells and tumor tissues. In vivo and in vitro studies have shown that these LMW isoforms of cyclin E hyperactivate CDK2 and accelerate the G1-S phase of cell division. The molecular basis of CDK2 hyperactivation due to LMW cyclin E isoforms in cancer cells is, however, unknown. Here, we employ a computational approach, combining homology modeling, bioinformatics analyses, molecular dynamics (MD) simulations, and principal component analyses to unravel the key structural features of CDK2-bound full-length and LMW isoforms of cyclin E1 and correlate those features to their differential activity. Results suggest that the missing N- and C-terminal regions of the cyclin E LMW isoforms constitute the Nuclear Localization Sequence (NLS) and PEST domains and are intrinsically disordered. These regions, when present in the full-length cyclin E/CDK2 complex, weaken the cyclin-CDK interface packing due to the loss of a large number of key interface interactions. Such weakening is manifested in the decreased contact area and increased solvent accessibility at the interface and also by the absence of concerted motions between the two partner proteins in the full-length complex. More effective packing and interactions between CDK2 and LMW cyclin E isoforms, however, produce more efficient protein-protein complexes that accelerate the cell division processes in cancer cells, where these cyclin E isoforms are overexpressed.
Collapse
Affiliation(s)
- Soumya Lipsa Rath
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras , Chennai 600036, India
| | | |
Collapse
|
8
|
Cell cycle: mechanisms of control and dysregulation in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Duong MT, Akli S, Macalou S, Biernacka A, Debeb BG, Yi M, Hunt KK, Keyomarsi K. Hbo1 is a cyclin E/CDK2 substrate that enriches breast cancer stem-like cells. Cancer Res 2013; 73:5556-68. [PMID: 23955388 DOI: 10.1158/0008-5472.can-13-0013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression of cyclin E proteolytic cleavage products, low-molecular weight cyclin E (LMW-E), is associated with poor clinical outcome in patients with breast cancer and it enhances tumorigenecity in mouse models. Here we report that LMW-E expression in human mammary epithelial cells induces an epithelial-to-mesenchymal transition phenotype, increases the CD44(hi)/CD24(lo) population, enhances mammosphere formation, and upregulates aldehyde dehydrogenase expression and activity. We also report that breast tumors expressing LMW-E have a higher proportion of CD44(hi)/CD24(lo) tumor cells as compared with tumors expressing only full-length cyclin E. In order to explore how LMW-E enriches cancer stem cells in breast tumors, we conducted a protein microarray analysis that identified the histone acetyltransferase (HAT) Hbo1 as a novel cyclin E/CDK2 substrate. The LMW-E/CDK2 complex phosphorylated Hbo1 at T88 without affecting its HAT activity. When coexpressed with LMW-E/CDK2, wild-type Hbo1 promoted enrichment of cancer stem-like cells (CSC), whereas the T88 Hbo1 mutant reversed the CSC phenotype. Finally, doxorubicin and salinomycin (a CSC-selective cytotoxic agent) synergized to kill cells expressing LMW-E, but not full-length cyclin E. Collectively, our results suggest that the heightened oncogenecity of LMW-E relates to its ability to promote CSC properties, supporting the design of therapeutic strategies to target this unique function.
Collapse
Affiliation(s)
- Mylinh T Duong
- Departments of Experimental Radiation Oncology, Radiation Oncology, and Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0066, Houston, TX77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Honda A, Valogne Y, Bou Nader M, Bréchot C, Faivre J. An intron-retaining splice variant of human cyclin A2, expressed in adult differentiated tissues, induces a G1/S cell cycle arrest in vitro. PLoS One 2012; 7:e39249. [PMID: 22745723 PMCID: PMC3379989 DOI: 10.1371/journal.pone.0039249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background Human cyclin A2 is a key regulator of S phase progression and entry into mitosis. Alternative splice variants of the G1 and mitotic cyclins have been shown to interfere with full-length cyclin functions to modulate cell cycle progression and are therefore likely to play a role in differentiation or oncogenesis. The alternative splicing of human cyclin A2 has not yet been studied. Methodology/Principal Findings Sequence-specific primers were designed to amplify various exon–intron regions of cyclin A2 mRNA in cell lines and human tissues. Intron retaining PCR products were cloned and sequenced and then overexpressed in HeLa cells. The subcellular localization of the splice variants was studied using confocal and time-lapse microscopy, and their impact on the cell cycle by flow cytometry, immunoblotting and histone H1 kinase activity. We found a splice variant of cyclin A2 mRNA called A2V6 that partly retains Intron 6. The gene expression pattern of A2V6 mRNA in human tissues was noticeably different from that of wild-type cyclin A2 (A2WT) mRNA. It was lower in proliferating fetal tissues and stronger in some differentiated adult tissues, especially, heart. In transfected HeLa cells, A2V6 localized exclusively in the cytoplasm whereas A2WT accumulated in the nucleus. We show that A2V6 induced a clear G1/S cell cycle arrest associated with a p21 and p27 upregulation and an inhibition of retinoblastoma protein phosphorylation. Like A2WT, A2V6 bound CDK2, but the A2V6/CDK2 complex did not phosphorylate histone H1. Conclusion/Significance This study has revealed that some highly differentiated human tissues express an intron-retaining cyclin A2 mRNA that induced a G1/S block in vitro. Contrary to full-length cyclin A2, which regulates cell proliferation, the A2V6 splice variant might play a role in regulating nondividing cell states such as terminal differentiation or senescence.
Collapse
Affiliation(s)
- Arata Honda
- Tokyo Metropolitan Health and Medical Treatment Corporation, Ebara Hospital, Tokyo, Japan
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Yannick Valogne
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Myriam Bou Nader
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Christian Bréchot
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Jamila Faivre
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
- * E-mail:
| |
Collapse
|
11
|
LMW-E/CDK2 deregulates acinar morphogenesis, induces tumorigenesis, and associates with the activated b-Raf-ERK1/2-mTOR pathway in breast cancer patients. PLoS Genet 2012; 8:e1002538. [PMID: 22479189 PMCID: PMC3315462 DOI: 10.1371/journal.pgen.1002538] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/29/2011] [Indexed: 12/30/2022] Open
Abstract
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2-associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E-expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2-associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib.
Collapse
|
12
|
Among B-type cyclins only CLB5 and CLB6 promote premeiotic S phase in Saccharomyces cerevisiae. Genetics 2011; 190:1001-16. [PMID: 22209902 DOI: 10.1534/genetics.111.134684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Saccharomyces cerevisiae cyclin Clb5 is required for premeiotic S phase, meiotic recombination, and successful progression through meiosis. Clb5 is not essential for mitotic proliferation because Clb1-Clb4 can support DNA replication in clb5 clb6 mutants. Clb1, Clb3, and Clb4 accumulate in clb5 clb6 cells during meiotic differentiation yet fail to promote premeiotic DNA replication. When expressed under the regulation of the CLB5 promoter, Clb1 and Clb3 accumulate and are active in the early stages of meiotic differentiation but cannot induce premeiotic DNA replication, suggesting that they do not target Cdk1 to the necessary substrates. The Clb5 hydrophobic patch (HP) residues are important for Clb5 function but this motif alone does not provide the specificity required for Clb5 to induce premeiotic S phase. Domain exchange experiments demonstrated that the amino terminus of Clb5 when fused to Clb3 confers upon Clb3 the ability to induce premeiotic S phase. Chimeric cyclins containing smaller regions of the Clb5 amino terminus displayed reduced ability to activate premeiotic DNA replication despite being more abundant and having greater associated histone H1 kinase activity than endogenous Clb5. These observations suggest that Clb5 has a unique ability to trigger premeiotic S phase and that the amino-terminal region of Clb5 contributes to its specificity and regulates the functions performed by the cyclin-Cdk complex.
Collapse
|
13
|
Targeting low molecular weight cyclin E (LMW-E) in breast cancer. Breast Cancer Res Treat 2011; 132:575-88. [PMID: 21695458 DOI: 10.1007/s10549-011-1638-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
Low molecular weight cyclin E (LMW-E) plays an important oncogenic role in breast cancer. LMW-E, which is not found in normal tissue, can promote the formation of aggressive tumors and can lead to increased genomic instability and tumorigenesis. Additionally, breast cancer patients whose tumors express LMW-E have a very poor prognosis. Therefore, we investigated LMW-E as a potential specific target for treatment either alone or in combination therapy. We hypothesized that because LMW-E binds to CDK2 more efficiently than full length cyclin E, resulting in increased activity, CDK inhibitors could be used to target tumors with LMW-E bound to CDK2. To test the hypothesis, an inducible full length and LMW-E MCF7-Tet-On system was established. Cyclin E (full length (EL) or LMW-E) is only expressed upon induction of the transgene. The doubling times of cells were unchanged when the transgenes were induced. However, upon induction, the kinase activity associated with LMW-E was much higher than that in the EL induced cells or any of the uninduced cells. Additionally only the LMW-E induced cells underwent chromosome aberrations and increased polyploidy. By examining changes in proliferation and survival in cells with induced full length and LMW-E, CDK inhibitors alone were determined to be insufficient to specifically inhibit LMW-E expressing cells. However, in combination with doxorubicin, the CDK inhibitor, roscovitine (seliciclib, CYC202), synergistically led to increased cell death in LMW-E expressing cells. Clinically, the combination of CDK inhibitors and chemotherapy such as doxorubicin provides a viable personalized treatment strategy for those breast cancer patients whose tumors express the LMW-E.
Collapse
|
14
|
Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1. PLoS One 2011; 6:e19780. [PMID: 21603621 PMCID: PMC3095625 DOI: 10.1371/journal.pone.0019780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/04/2011] [Indexed: 11/24/2022] Open
Abstract
Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.
Collapse
|
15
|
Stamatakos M, Palla V, Karaiskos I, Xiromeritis K, Alexiou I, Pateras I, Kontzoglou K. Cell cyclins: triggering elements of cancer or not? World J Surg Oncol 2010; 8:111. [PMID: 21176227 PMCID: PMC3016250 DOI: 10.1186/1477-7819-8-111] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023] Open
Abstract
Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy.
Collapse
Affiliation(s)
- Michael Stamatakos
- 4th Department of Surgery, Medical School, University of Athens, Attikon General Hospital, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wu Y, Guo X, Brandt Y, Hathaway HJ, Hartley RS. Three-dimensional collagen represses cyclin E1 via β1 integrin in invasive breast cancer cells. Breast Cancer Res Treat 2010; 127:397-406. [PMID: 20607601 DOI: 10.1007/s10549-010-1013-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/22/2010] [Indexed: 12/31/2022]
Abstract
The behavior of breast epithelial cells is influenced by their microenvironment which includes stromal cells and extracellular matrix (ECM). During cancer progression, the tissue microenvironment fails to control proliferation and differentiation, resulting in uncontrolled growth and invasion. Upon invasion, the ECM encountered by breast cancer cells changes from primarily laminin and collagen IV to primarily collagen I. We show here that culturing invasive breast cancer cells in 3-dimensional (3D) collagen I inhibits proliferation through direct regulation of cyclin E1, a G(1)/S regulator that is overexpressed in breast cancer. When the breast cancer cell line MDA-MB-231 was cultured within 3D collagen I gels, the G(1)/S transition was inhibited as compared to cells cultured on conventional 2D collagen or plastic dishes. Cells in 3D collagen downregulated cyclin E1 protein and mRNA, with no change in cyclin D1 level. Cyclin D1 was primarily cytoplasmic in 3D cultures, and this was accompanied by decreased phosphorylation of Rb, a nuclear target for both cyclin E1- and cyclin D1-associated kinases. Positive regulators of cyclin E1 expression, the transcription factor c-Myc and cold-inducible RNA binding protein (CIRP), were decreased in 3D collagen cultures, while the collagen I receptor β1 integrin was greatly increased. Inhibition of β1 integrin function rescued proliferation and cyclin E1 expression as well as c-Myc expression and Rb phosphorylation, but cyclin D1 remained cytoplasmic. We conclude that cyclin E1 is repressed independent of effects on cyclin D1 in a 3D collagen environment and dependent on β1 integrin interaction with collagen I, reducing proliferation of invasive breast cancer cells.
Collapse
Affiliation(s)
- Yuehan Wu
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center,, Albuquerque, NM 87131-0001, USA
| | | | | | | | | |
Collapse
|
17
|
Chen H, Libertini SJ, Wang Y, Kung HJ, Ghosh P, Mudryj M. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J Biol Chem 2009; 285:2368-74. [PMID: 19946123 DOI: 10.1074/jbc.m109.049379] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen ablation therapy is effective in treating androgen-dependent prostate tumors; however, tumors that can proliferate in castrate levels of androgen eventually arise. We previously reported that in CWR22Rv1 (Rv1) cells, the protease calpain 2 can cleave the androgen receptor (AR) into a constitutively active approximately 80,000 low molecular weight (LMW) form. In this study, we further dissect the mechanisms that produce the AR LMW forms using Rv1 cells and the related CWR22-R1 (R1) cells. The 39-amino acid insertional mutation in the Rv1-AR (E3DM-AR) sensitizes this AR to calpain 2 proteolysis. R1 cells encode the same AR molecule as the parental CWR22 xenograft. Using calpain 2 small interfering RNA and calpeptin, we find that calpain 2 plays a role in the generation of the LMW-AR in R1 cells. Furthermore, LMW-AR expression is regulated by the activation of calpain 2 by ERK 1 and 2. Inhibition of ERK phosphorylation or small interfering RNA-mediated decrease of ERK expression reduces LMW-AR levels in R1 cells. Conversely, activation of the MAPK pathway results in increased ERK phosphorylation and increased levels of LMW-AR. Finally, analyses of human tumor samples found that LMW-AR levels are higher in tumors that have an increased calpain/calpastatin ratio and/or increased levels of phospho-ERK (pERK). This suggests that a higher calpain/calpastatin ratio collaborates with activated ERK to promote the generation of the LMW-AR.
Collapse
Affiliation(s)
- Honglin Chen
- Department of Medical Microbiology and Immunology, University of California, Davis, California 19616, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bedrosian I, Lee C, Tucker SL, Palla SL, Lu K, Keyomarsi K. Cyclin E-associated kinase activity predicts response to platinum-based chemotherapy. Clin Cancer Res 2007; 13:4800-6. [PMID: 17699858 DOI: 10.1158/1078-0432.ccr-07-0142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The role of cyclin E as a predictive marker of response to chemotherapy remains unknown. We have previously shown that deregulation of cyclin E in an ovarian tumor cell line model enhances cyclin E-associated kinase activity and sensitizes tumor cells to cisplatinum. We hypothesized that cyclin E deregulation would predict for responsiveness to platinum-based regimens in ovarian cancer patients. EXPERIMENTAL DESIGN Patients who met the following criteria were retrospectively identified from the institutional tumor bank records: (a) high-grade ovarian epithelial malignancy, (b) stage III/stage IV disease, (c) optimally debulked, (d) completed platinum-based therapy. Tumor samples were analyzed for cyclin E, p21, and p27 by Western blot analysis and assessed for cyclin E-associated kinase activity. RESULTS Seventy-five patients, who met the study criteria, were identified. Cyclin E protein levels did not correlate with cyclin E-cdk2 kinase activity (Spearman's rho, 0.07; P = 0.58). Cyclin E-associated kinase activity was the only significant predictive marker for response to platinum-based therapy, with higher response rates seen in patients with higher levels of activity (P = 0.045). Cyclin E protein levels did not predict for platinum sensitivity (P = 0.20). In contrast, cyclin E protein levels, but not cyclin E-associated kinase activity, was a significant predictor for freedom from recurrence (P = 0.01 and P = 0.25, respectively). CONCLUSIONS Cyclin E overexpression and cyclin E-associated kinase activity have distinct roles in predicting for response to chemotherapy and outcome in ovarian cancer patients. These results suggest a compartmentalization of cyclin E functions in the oncogenic process.
Collapse
Affiliation(s)
- Isabelle Bedrosian
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cannon JD, Cherian-Shaw M, Lovekamp-Swan T, Chaffin CL. Granulosa cell expression of G1/S phase cyclins and cyclin-dependent kinases in PMSG-induced follicle growth. Mol Cell Endocrinol 2007; 264:6-15. [PMID: 17084963 DOI: 10.1016/j.mce.2006.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 12/24/2022]
Abstract
Follicular development involves a complex orchestration of granulosa cell proliferation and differentiation. It is becoming increasingly apparent that the rate of granulosa cell proliferation declines as follicles reach the large antral status, prior to an ovulatory gonadotropin stimulus, although a precise time course and mechanism for this decline has not been described. The goal of the present study was to characterize granulosa cell proliferation following the onset of antral follicle growth in PMSG-primed immature rats, with emphasis on G1/S phase cyclins and cyclin-dependent kinases. Flow cytometric analysis demonstrated that the percentage of granulosa cells in S phase peaked 24-30 h post-PMSG and declined to control levels 48 h after PMSG administration. Expression of both Cyclin D2 and Cdk 4 was highest 12h post-PMSG and decreased to control levels by 48 h. In addition, Cdk 2 protein increased transiently 12-24h after PMSG. Cyclin E expression increased significantly by 12h but remained elevated through 48 h, and multiple isoforms of Cyclin E were observed with increased proliferation. Both Cdk 4 and Cdk 2 activity parallel protein expression, although, changes in Cdk 2 were more marked. Levels of mRNA for the cell cycle inhibitors p21CIP1 and p27KIP1 increased significantly by 48 h post-PMSG. These results demonstrate that PMSG-stimulated movement of granulosa cells across the G1/S boundary during follicle growth is transient. In addition, the control of granulosa cell proliferation may reside through the regulation of both Cdk 2 and Cdk 4.
Collapse
Affiliation(s)
- Jennifer D Cannon
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
20
|
Zschemisch NH, Liedtke C, Dierssen U, Nevzorova YA, Wüstefeld T, Borlak J, Manns MP, Trautwein C. Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo. Hepatology 2006; 44:164-73. [PMID: 16799991 DOI: 10.1002/hep.21224] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin E1 controls G1/S phase transition of the eukaryotic cell cycle. We report the impact of alternative spliced cyclin E1 isoforms on cell cycle regulation in hepatocytes. We show that expression of new cyclin E1 mRNA variants IN3, Delta4, and Delta5 is associated with retarded proliferation in murine hepatocellular carcinoma. Additionally, we demonstrate that a new cyclin E1 isoform Delta3/8 lacking the central part of wild-type mRNA is expressed predominantly in nonproliferating murine hepatocytes. Following partial hepatectomy, Delta3/8 is downregulated when hepatocytes enter the cell cycle from quiescence. The Delta3/8 protein does not exhibit any cyclin box motif but binds cyclin-dependent kinase 2 without stimulating kinase activity. We demonstrate that Delta3/8 lacks any nuclear localization signal and is exclusively located in the cytoplasm. Overexpression of Delta3/8 in cultured cells leads to a delayed G0-G1 transition, indicating that this splice variant helps to maintain a quiescent state of hepatocytes. In conclusion, we identified an isoform of cyclin E1 involved in G0 maintenance and suggest an additional mechanism for cell cycle control.
Collapse
|
21
|
Rosen DG, Yang G, Deavers MT, Malpica A, Kavanagh JJ, Mills GB, Liu J. Cyclin E expression is correlated with tumor progression and predicts a poor prognosis in patients with ovarian carcinoma. Cancer 2006; 106:1925-32. [PMID: 16568440 DOI: 10.1002/cncr.21767] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cyclins, cyclin dependent kinases (cdks), and their inhibitors act in combination to regulate progression through the cell cycle and often are dysregulated in carcinoma. The authors hypothesized that cyclin E plays an important role in ovarian carcinogenesis and that its overexpression may be an indicator of a poor prognosis. METHODS Immunohistochemical analysis of cyclin E expression was performed by image analysis in normal ovaries, cystadenomas, tumors of low malignant potential, and 405 primary ovarian carcinomas by using tissue microarray technology. RESULTS Overexpression of cyclin E was found in 63.2% of the samples and was associated with clear cell, poorly differentiated, and serous carcinoma (P < or = .001), high-grade tumors (P < or = .001), late-stage disease (P = .002), age older than 60 years at the time of diagnosis (P = .04), and suboptimal cytoreduction (P = .001). A high percentage of cyclin E-expressing cells was associated with a poor outcome in univariate and in multivariate analyses. In addition, cyclin E levels also reduced survival in the late-stage disease group and in patients who underwent suboptimal debulking. CONCLUSIONS Cyclin E was identified as an independent prognostic factor in patients with ovarian carcinoma. The accumulation of cyclin E protein may be a late event in tumorigenesis and may contribute to disease progression in these patients.
Collapse
Affiliation(s)
- Daniel G Rosen
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25:1620-8. [PMID: 16550162 DOI: 10.1038/sj.onc.1209371] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cyclin D1 proto-oncogene exercises powerful control over the mechanisms that regulate the mitotic cell cycle, and excessive cyclin D1 expression and/or activity is common in human cancers. Although somatic mutations of the cyclin D1 locus are rarely observed, mounting evidence demonstrates that a specific polymorphism of cyclin D1 (G/A870) and a protein product of a potentially related alternate splicing event (cyclin D1b) may influence cancer risk and outcome. Herein, we review the epidemiological and functional literatures that link these alterations of cyclin D1 to human tumor development and progression.
Collapse
Affiliation(s)
- K E Knudsen
- Department of Cell Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | |
Collapse
|
23
|
Yin W, Cheepala S, Clifford JL. Identification of a novel splice variant of X-linked inhibitor of apoptosis-associated factor 1. Biochem Biophys Res Commun 2005; 339:1148-54. [PMID: 16343440 DOI: 10.1016/j.bbrc.2005.11.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/15/2005] [Indexed: 12/22/2022]
Abstract
XAF1 (XIAP-associated factor 1) binds to XIAP and blocks its anti-apoptotic activity. It has been reported that XAF1 is mainly expressed in normal tissues but is missing or present at low levels in most cancer cell lines, which implies a tumor-suppressing function. In the present study we describe the identification of a novel splice variant of human XAF1, designated XAF1C, which contains a cryptic exon. Incorporation of this exon (exon 4b) into the mRNA introduces an in-frame stop codon, resulting in a shortened open-reading frame (ORF) of 495 nucleotides. This ORF is predicted to encode a 164 amino acid (AA) protein lacking the C-terminal domain of the previously described XAF1(A), but containing a unique 24 AA carboxy terminus. Like XAF1(A), XAF1C mRNA expression was detected in a variety of human cancer cell lines and also in normal human tissues. The ratio of XAF1(A) and XAF1C mRNA expression differs amongst the cell lines tested, suggesting differential mRNA stabilities and/or the existence of tissue- or cell type-specific splicing regulation. In transfected cells, xaf1c encodes a truncated protein of 18kDa, which is distributed primarily in the nucleus.
Collapse
Affiliation(s)
- Weihong Yin
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center School of Medicine in Shreveport and Feist-Weiller Cancer Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
24
|
Abstract
Cyclin E-Cdk2 has long been considered an essential and master regulator of progression through G1 phase of the cell cycle. Although recent mouse models have prompted a rethinking of cyclin E function in mammals, it remains clear that cyclin E impacts upon many processes central to cell division. Normal cells maintain strict control of cyclin E activity, and this is commonly disrupted in cancer cells. Moreover, cyclin E deregulation is thought to play a fundamental role in tumorigenesis. In this review, we discuss the regulation and functions of cyclin E in normal and neoplastic mammalian cells.
Collapse
Affiliation(s)
- Harry C Hwang
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
25
|
Lu G, Seta KA, Millhorn DE. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes. J Biol Chem 2005; 280:21731-8. [PMID: 15824106 DOI: 10.1074/jbc.m412498200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells.
Collapse
Affiliation(s)
- Gang Lu
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
26
|
Abstract
E-type cyclins (cyclin E1 and cyclin E2) are expressed during the late G1 phase of the cell cycle until the end of the S-phase. The activity of cyclin E is limiting for the passage of cells through the restriction point "R" which marks a "point of no return" for cells entering the division cycle from a resting state or passing from G1 into S-phase. Expression of cyclin E is regulated on the level of gene transcription mainly by members of the E2F trrnscription factor family and by its degradation via the proteasome pathway. Cyclin E binds and activates the kinase Cdk2 and by phosphorylating its substrates, the so-called "pocket proteins", the cyclic/Cdk2 complexes initiate a cascade of events that leads to the expression of S-phase specific genes. Aside from this specific function as a regulator of S-phase-entry, cyclin E plays a direct role in the initiation of DNA replication, the control of genomic stability, and the centrosome cycle. Surprisingly, recent studies have shown that the once thought essential cyclin E is dispensable for the development of higher eukaryotes and for the mitotic division of eukaryotic cells. Nevertheless, high level cyclin E expression has been associated with the initiation or progression of different human cancers, in particular breast cancer but also leukemia, lymphoma and others. Transgenic mouse models in which cyclin E is constitutively expressed develop malignant diseases, supporting the notion of cyclin E as a dominant onco-protein.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut für Zellbiologie (Tumorforschung) (IFZ), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany.
| | | |
Collapse
|
27
|
Potemski P, Pluciennik E, Bednarek AK, Kusinska R, Jesionek-Kupnicka D, Pasz-Walczak G, Watala C, Kordek R. Cyclin E Expression in Operable Breast Cancer Quantified Using Real-Time RT–PCR: A Comparative Study with Immunostaining. Jpn J Clin Oncol 2005; 36:142-9. [PMID: 16520356 DOI: 10.1093/jjco/hyi246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The main purpose of this retrospective study was to compare cyclin E expression levels in operable breast cancer patients determined using real-time RT-PCR and immunostaining. The prognostic relevance of cyclin E was also investigated. METHODS Specimens of invasive ductal breast cancer tissues obtained from 124 women during radical mastectomy were analyzed. RESULTS Of the tumor samples, 40.3 and 59.7% showed high expression of cyclin E in RT-PCR and immunostaining, respectively. The overall agreement probability was 0.032 according to Scott's pi statistic. With a median follow-up of 55.5 months, cyclin E expression assessed using immunostaining was an independent negative prognostic factor in the node positive group (hazard ratio 3.1; 95% CI 1.0-9.2; P = 0.045). Cyclin E expression correlated with absence of steroid receptors and younger age. RT-PCR results did not predict survival in any group of patients. CONCLUSIONS Disagreement between real-time RT-PCR and immunostaining was demonstrated. Immunostaining seems to be the more reliable method for assessing cyclin E in breast cancer cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Ductal, Breast/therapy
- Combined Modality Therapy
- Cyclin E/biosynthesis
- Female
- Humans
- Immunochemistry
- Lymphatic Metastasis
- Mastectomy, Radical
- Middle Aged
- Multivariate Analysis
- Prognosis
- Receptor, ErbB-2/analysis
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
Collapse
Affiliation(s)
- Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, 4 Paderewski Street, 93-509 Lodz, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Willmarth NE, Albertson DG, Ethier SP. Chromosomal instability and lack of cyclin E regulation in hCdc4 mutant human breast cancer cells. Breast Cancer Res 2004; 6:R531-9. [PMID: 15318934 PMCID: PMC549168 DOI: 10.1186/bcr900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/14/2004] [Accepted: 05/26/2004] [Indexed: 11/10/2022] Open
Abstract
Introduction Cyclin E, a G1 cyclin essential for G1–S phase transition, is known to have a profound effect on tumorigenesis. Elevated levels of cyclin E have been associated with breast cancer, and chromosomal instability observed in breast cancer is suggested to be associated with constitutive expression of cyclin E. It was previously demonstrated that SUM149PT human breast cancer cells show very high levels of cyclin E expression by western analysis and that they express a nonfunctional cyclin E ubiquitin ligase due to a mutation in the F-box protein hCdc4. Methods We examined cyclin E expression in both MCF10A and SUM149PT cells using western blot analysis and flow cytometry. Immunofluorescence was utilized for the localization of cyclin E in both normal and breast cancer cells. In addition, array comparative genomic hybridization analysis was performed to compare chromosome copy number alterations with levels of cyclin E expression among a panel of breast cancer cell lines. Results SUM149PT cells overexpress cyclin E on a cell per cell basis for the duration of the cell cycle. High cyclin E levels are maintained throughout the S phase, and SUM149PT cells exhibit an S phase delay or arrest probably due to cyclin E overexpression. In addition, comparative genomic hybridization indicated that SUM149PT cells exhibit many chromosome copy number alterations, which may reflect prior or ongoing genomic instability. However, no direct correlation was observed between cyclin E levels and genomic copy number alteration in a panel of human breast cancer cell lines. Conclusions Cyclin E is overexpressed at high levels throughout the cell cycle in SUM149PT cells, which is in stark contrast to cyclin E degradation observed in the mid to late S phase of normal cells. SUM149PT cells are unable to regulate cyclin E and also exhibit many copy number alterations. However, there was a lack of direct correlation between cyclin E overexpression and chromosomal instability across a panel of other breast cancer cell lines examined.
Collapse
Affiliation(s)
- Nicole E Willmarth
- Department of Cellular and Molecular Biology, The University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, The University of Michigan Health System, and the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Donna G Albertson
- Cancer Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Stephen P Ethier
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, The University of Michigan Health System, and the University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Harwell RM, Mull BB, Porter DC, Keyomarsi K. Activation of Cyclin-dependent Kinase 2 by Full Length and Low Molecular Weight Forms of Cyclin E in Breast Cancer Cells. J Biol Chem 2004; 279:12695-705. [PMID: 14701826 DOI: 10.1074/jbc.m313407200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin E, a positive regulator of the cell cycle, controls the transition of cells from G(1) to S phase. Deregulation of the G(1)-S checkpoint contributes to uncontrolled cell division, a hallmark of cancer. We have reported previously that cyclin E is overexpressed in breast cancer and such overexpression is usually accompanied by the appearance of low molecular weight isoforms of cyclin E protein, which are not present in normal cells. Furthermore, we have shown that the expression of cyclin E low molecular weight isoforms can be used as a reliable prognostic marker for breast cancer to predict patient outcome. In this study we examined the role of cyclin E in directly activating cyclin-dependent kinase (CDK) 2. For this purpose, a series of N-terminal deleted forms of cyclin E corresponding to the low molecular weight forms detected only in cancer cells were translated in vitro and mixed with cell extracts. These tumor-specific N-terminal deleted forms of cyclin E are able to activate CDK2. Addition of cyclin E into both normal and tumor cell extracts was shown to increase the levels of CDK2 activity, along with an increase in the amount of phosphorylated CDK2. The increase in CDK2 activity was because of cyclin E binding to endogenous CDK2 in complex with endogenous cyclin E, cyclin A, or unbound CDK2. The increase in CDK2 phosphorylation was through a pathway involving cyclin-activating kinase, but addition of cyclin E to an extract containing unphosphorylated CDK2 can still lead to increase in CDK2 activity. Our data suggest that the ability of high levels of full-length and low molecular weight forms of cyclin E to activate CDK2 may be one mechanism that leads to the constitutive activation of cyclin E.CDK2 complexes leading to G(1)/S deregulation and tumor progression.
Collapse
Affiliation(s)
- Richard M Harwell
- Division of Molecular Medicine, Wadsworth Center, SUNY Albany, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
30
|
Mazumder S, DuPree E, Almasan A. A Dual Role of Cyclin E in Cell Proliferation and Apotosis May Provide a Target for Cancer Therapy. Curr Cancer Drug Targets 2004; 4:65-75. [PMID: 14965268 PMCID: PMC1307511 DOI: 10.2174/1568009043481669] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclin E is essential for progression through the G1-phase of the cell cycle and initiation of DNA replication by interacting with and activating its catalytic partner, the cyclin dependent kinase 2 (Cdk2). Rb, as well as Cdc6, NPAT, and nucleophosmin, critical components of cell proliferation and DNA replication, respectively, are targets of Cyclin E/Cdk2 phosphorylation. There are a number of putative binding sites for E2F in the cyclin E promoter region, suggesting an E2F-dependent regulation. Skp2 and Fbw7 are novel proteins, responsible for ubiquitin-dependent proteolysis of Cyclin E. The tight regulation of cyclin E expression, both at the transcriptional level and by ubiquitin-mediated proteolysis, indicates that it has a major role in the control of the G1- and S-phase transitions. Cyclin E is also transcriptionally regulated during radiation-induced apoptosis of hematopoietic cells. In addition to its biological roles, deregulated cyclin E expression has an established role in tumorigenesis. Cell cycle regulatory molecules, such as cyclin E, are frequently deregulated in different types of cancers, where overexpressed native or low molecular weight forms of Cyclin E have a significant role in oncogenesis. During apoptosis of hematopoietic cells, caspase-dependent proteolysis of Cyclin E generates a p18-Cyclin E variant. Understanding the role of Cyclin E in apoptosis may provide a novel target, which may be effective in cancer therapy. This review summarizes what is known about the biological role of cyclin E, its deregulation in cancer, and the opportunities it may provide as a target in clinical therapy.
Collapse
Affiliation(s)
- S. Mazumder
- Department of Cancer Biology, Lerner Research Institute
| | - E.L. DuPree
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - A. Almasan
- Department of Cancer Biology, Lerner Research Institute
- Department of Radiation Oncology, The Cleveland Clinic Foundation, Cleveland, OH 44195, and
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
- *Address correspondence to this author at the Departments of Cancer Biology and Radiation Oncology, Lerner Research Institute, NB40, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Tel.: 216-444-9970; Fax: 216-445-6269; E-mail:
| |
Collapse
|
31
|
Landberg G. Multiparameter analyses of cell cycle regulatory proteins in human breast cancer: a key to definition of separate pathways in tumorigenesis. Adv Cancer Res 2002; 84:35-56. [PMID: 11883531 DOI: 10.1016/s0065-230x(02)84002-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is one of the most common cancer forms affecting many women. The disease nevertheless has widely varying behavior and therefore patient outcome, and an important undertaking is to define and understand the molecular mechanisms behind these actions. Defects in the G1/S transition in the cell cycle affect both tumor proliferation and the fidelity of check points responsible for chromosomal integrity and DNA damage response and has lately been shown to represent one of a rather limited set of key aberrations in the transformation process. Many cell cycle regulatory proteins are either oncogenes or suppressor genes or are closely associated to the transformation process. The types of aberrations in the G1/S transition seem to be different in various cancers but are nevertheless often linked to clinical behaviors. In this review the role of multiparameter analyses of cell cycle regulatory proteins in breast cancer will be outlined with special attention to pattern analyses as well as the definition of two contrasting pathways in tumorigenesis defined by either cyclin D1 or cyclin F overexpression.
Collapse
Affiliation(s)
- Göran Landberg
- Department of Laboratory Medicine, Lund University, Malmö University Hospital, Sweden
| |
Collapse
|
32
|
Bukovsky A, Cekanova M, Caudle MR, Wimalasena J, Foster JS, Keenan JA, Elder RF. Variability of placental expression of cyclin E low molecular weight variants. Biol Reprod 2002; 67:568-74. [PMID: 12135897 DOI: 10.1095/biolreprod67.2.568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cyclin E, a G(1) cyclin serving to activate cyclin-dependent kinase 2, is the only cyclin gene for which alternative splicing leading to structurally different proteins has been described. Different cyclin E proteins are present in tumor tissues but absent from normal (steady) tissues. Cyclin E contributes to the regulation of cell proliferation and ongoing differentiation and aging. Because trophoblast has invasive properties and differentiates into syncytium and placental aging may develop at term, we examined cyclin E protein variants in human placenta. Placental samples were collected from 27 deliveries between 33 and 41 wk and were compared with ovarian cancer (positive control). Both placental and tumor tissues showed seven cyclin E low molecular weight (LMW) bands migrating between 50 and 36 kDa. Placental expression of cyclin E showed certain variability among cases. Lowest cyclin E expression was detected in normal placentas (strong expression of Thy-1 differentiation protein in villous core and low dilatation of villous blood sinusoids). Abnormal placentas (significant depletion of Thy-1 and more or less pronounced dilatation of sinusoids) showed significant increase either of all (early stages of placental aging) or only certain cyclin E proteins (advanced aging). Our studies indicate that a similar spectrum of cyclin E protein variants is expressed in the placental and tumor tissues. Low cyclin E expression in normal placentas suggests a steady state. Overexpression of all cyclin E proteins may indicate an activation of cellular proliferation and differentiation to compensate for developing placental insufficiency. However, an enhanced expression of some cyclin E LMW proteins only might reflect an association of cyclin E isoforms with placental aging or an inefficient placental adaptation.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Laboratory for Development, Differentiation, and Cancer, Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Dhillon NK, Mudryj M. Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene 2002; 21:4626-34. [PMID: 12096339 DOI: 10.1038/sj.onc.1205576] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 04/02/2002] [Accepted: 04/15/2002] [Indexed: 11/09/2022]
Abstract
Estrogens stimulate proliferation of estrogen receptor positive MCF7 breast cancer cells while antiestrogens signal a G0/G1 growth arrest. In MCF7 cells, arrest is mediated through the CDK inhibitors p21 and p27 and through a decrease in cyclin E/CDK2 kinase activity. We found that in MCF7 cells, overexpression of cyclin E partially abrogates a tamoxifen mediated growth arrest. Overexpression of cyclin E is accompanied by a decrease in the levels of RB and CDK inhibitor p21 but an increase in CDK inhibitor p27. Cyclin E overexpression also alters the composition of E2F transcription factor complexes. The E2F4/p107/cyclin E/CDK2 complex, a minor component in proliferating control cells that is absent in growth-arrested cells, is more abundant in both proliferating and tamoxifen treated cyclin E overexpressing cells. Conversely, levels of the quiescence associated E2F/p130 complex is not detected in these cells. Expression from the E2F dependant promoter is elevated in proliferating and tamoxifen treated cyclin E overexpressing cells. This study suggests that a modest overexpression of cyclin E abrogates the tamoxifen mediated growth arrest through modification of the RB/E2F pathway. Moreover, these results provide one explanation of why some cells that express the estrogen receptor may be unresponsive to antiestrogens.
Collapse
Affiliation(s)
- Navdeep K Dhillon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, CA 95616, USA
| | | |
Collapse
|
34
|
Mazumder S, Gong B, Chen Q, Drazba JA, Buchsbaum JC, Almasan A. Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells. Mol Cell Biol 2002; 22:2398-409. [PMID: 11884622 PMCID: PMC133664 DOI: 10.1128/mcb.22.7.2398-2409.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Revised: 07/18/2001] [Accepted: 12/17/2001] [Indexed: 11/20/2022] Open
Abstract
Cyclin E/Cdk2 is a critical regulator of cell cycle progression from G(1) to S in mammalian cells and has an established role in oncogenesis. Here we examined the role of deregulated cyclin E expression in apoptosis. The levels of p50-cyclin E initially increased, and this was followed by a decrease starting at 8 h after treatment with genotoxic stress agents, such as ionizing radiation. This pattern was mirrored by the cyclin E-Cdk2-associated kinase activity and a time-dependent expression of a novel p18-cyclin E. p18-cyclin E was induced during apoptosis triggered by multiple genotoxic stress agents in all hematopoietic tumor cell lines we have examined. The p18-cyclin E expression was prevented by Bcl-2 overexpression and by the general caspase and specific caspase 3 pharmacologic inhibitors zVAD-fluoromethyl ketone (zVAD-fmk) and N-acetyl-Asp-Glu-Val-Asp-aldehyde (DEVD-CHO), indicating that it was linked to apoptosis. A p18-cyclin E(276-395) (where cyclin E(276-395) is the cyclin E fragment containing residues 276 to 395) was reconstituted in vitro, with mutagenesis experiments, indicating that the caspase-dependent cleavage was at amino acid residues 272 to 275. Immunoprecipitation analyses of the ectopically expressed cyclin E(1-275), cyclin E(276-395) deletion mutants, and native p50-cyclin E demonstrated that caspase-mediated cyclin E cleavage eliminated interaction with Cdk2 and therefore inactivated the associated kinase activity. Overexpression of cyclin E(276-395), but not of several other cyclin E mutants, specifically induced phosphatidylserine exposure and caspase activation in a dose-dependent manner, which were inhibited in Bcl-2-overexpressing cells or in the presence of zVAD-fmk. Apoptosis and generation of p18-cyclin E were significantly inhibited by overexpressing the cleavage-resistant cyclin E mutant, indicating a functional role for caspase-dependent proteolysis of cyclin E for apoptosis of hematopoietic tumor cells.
Collapse
Affiliation(s)
- Suparna Mazumder
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
35
|
Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D. Genome-wide analysis of core cell cycle genes in Arabidopsis. THE PLANT CELL 2002; 14:903-16. [PMID: 11971144 PMCID: PMC150691 DOI: 10.1105/tpc.010445] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Accepted: 01/23/2002] [Indexed: 05/17/2023]
Abstract
Cyclin-dependent kinases and cyclins regulate with the help of different interacting proteins the progression through the eukaryotic cell cycle. A high-quality, homology-based annotation protocol was applied to determine the core cell cycle genes in the recently completed Arabidopsis genome sequence. In total, 61 genes were identified belonging to seven selected families of cell cycle regulators, for which 30 are new or corrections of the existing annotation. A new class of putative cell cycle regulators was found that probably are competitors of E2F/DP transcription factors, which mediate the G1-to-S progression. In addition, the existing nomenclature for cell cycle genes of Arabidopsis was updated, and the physical positions of all genes were compared with segmentally duplicated blocks in the genome, showing that 22 core cell cycle genes emerged through block duplications. This genome-wide analysis illustrates the complexity of the plant cell cycle machinery and provides a tool for elucidating the function of new family members in the future.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Crack D, Secombe J, Coombe M, Brumby A, Saint R, Richardson H. Analysis of Drosophila cyclin EI and II function during development: identification of an inhibitory zone within the morphogenetic furrow of the eye imaginal disc that blocks the function of cyclin EI but not cyclin EII. Dev Biol 2002; 241:157-71. [PMID: 11784102 DOI: 10.1006/dbio.2001.0496] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Drosophila cyclin E (DmcycE) gene gives rise to two transcripts encoding proteins that differ at their N termini, DmcycEII and DmcycEI. This study presents the first in vivo dissection of Cyclin E function. Ectopic expression studies using N- and C-terminal deletions of DmcycEI revealed that a region of 322 residues surrounding the cyclin box is sufficient to induce entry of G1-arrested larval eye imaginal disc cells into S phase. Ectopic expression of DmcycEI in the eye disc has been previously shown to drive anterior, but not posterior, G1-phase cells within the morphogenetic furrow (MF) into S phase. Significantly, ectopic expression of DmcycEII and N-terminal deletions of DmcycEI were able to drive all G1 cells within the morphogenetic furrow into S phase, while a C-terminal deletion of DmcycEI could not. The p21 homolog Dacapo was shown by yeast two-hybrid, coimmunolocalization, and in vivo functional studies not to be the mediator of the DmcycEI inhibition in posterior part of the MF. Taken together, these results reveal a novel zone within the posterior region of the MF where DmcycEI but not DmcycEII function is inhibited, and suggest that DmcycEII is a more potent inducer of S phase.
Collapse
Affiliation(s)
- Donna Crack
- Center for the Molecular Genetics of Development and Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Nabeyrat E, Corroyer S, Besnard V, Cazals-Laville V, Bourbon J, Clement A. Retinoic acid protects against hyperoxia-mediated cell-cycle arrest of lung alveolar epithelial cells by preserving late G1 cyclin activities. Am J Respir Cell Mol Biol 2001; 25:507-14. [PMID: 11694457 DOI: 10.1165/ajrcmb.25.4.4478] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epithelium of the lung alveolus is a major target for oxidant injury, and its proper repair after injury is dependent on the proliferative response of the alveolar epithelial type 2 cells. Recently, we have provided evidence that retinoic acid (RA) stimulates proliferation of type 2 cells. In the present study, we examined the effects of RA on the proliferative response of alveolar type 2 cells exposed to elevated oxygen (O(2)). We showed that pretreatment by RA was able to prevent the growth arrest and cell loss of O(2)-exposed cells. To gain insights into the mechanisms involved, we studied the effects of RA on the cyclin-dependent kinase (CDK) system. The activity of cyclin E-CDK2 complex was found to be decreased in O(2)-exposed cells. Interestingly, this decrease was no longer observed when cells were pretreated with RA. Analysis of p21(CIP1), an inhibitor of CDK, revealed an increased expression in O(2)-exposed cells that was no longer observed in cells treated with RA. These effects were associated with a reduced association of p21(CIP1) with cyclin E-CDK2 complexes in the presence of RA. In addition, studies of Smad activity strongly suggest that the mechanisms through which RA preserves late G(1) cyclin-CDK complex activity may involve interference with the transforming growth factor-beta signaling pathway.
Collapse
Affiliation(s)
- E Nabeyrat
- Département de Pneumologie Pédiatrique-INSERM U515, Hôpital Trousseau, 26, Ave Dr. Netter, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Porter DC, Zhang N, Danes C, McGahren MJ, Harwell RM, Faruki S, Keyomarsi K. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol Cell Biol 2001; 21:6254-69. [PMID: 11509668 PMCID: PMC87349 DOI: 10.1128/mcb.21.18.6254-6269.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin E is a G(1) cyclin essential for S-phase entry and has a profound role in oncogenesis. Previously this laboratory found that cyclin E is overexpressed and present in lower-molecular-weight (LMW) isoforms in breast cancer cells and tumor tissues compared to normal cells and tissues. Such alteration of cyclin E is linked to poor patient outcome. Here we report that the LMW forms of cyclin E are hyperactive biochemically and they can more readily induce G(1)-to-S progression in transfected normal cells than the full-length form of the protein can. Through biochemical and mutational analyses we have identified two proteolytically sensitive sites in the amino terminus of human cyclin E that are cleaved to generate the LMW isoforms found in tumor cells. Not only are the LMW forms of cyclin E functional, as they phosphorylate substrates such as histone H1 and GST-Rb, but also their activities are higher than the full-length cyclin E. These nuclear localized LMW forms of cyclin E are also biologically functional, as their overexpression in normal cells increases the ability of these cells to enter S and G(2)/M. Lastly, we show that cyclin E is selectively cleaved in vitro by the elastase class of serine proteases to generate LMW forms similar to those observed in tumor cells. These studies suggest that the defective entry into and exit from S phase by tumor cells is in part due to the proteolytic processing of cyclin E, which generates hyperactive LMW isoforms whose activities have been modified from that of the full-length protein.
Collapse
Affiliation(s)
- D C Porter
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|