1
|
Wetzel D, Rizvi A, Edwards AN, McBride SM. A metabolite dehydrogenase pathway represses sporulation of Clostridioides difficile. Anaerobe 2025; 93:102971. [PMID: 40349827 DOI: 10.1016/j.anaerobe.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES Clostridioides difficile is a major gastrointestinal pathogen that is transmitted as a dormant spore. As an intestinal pathogen, C. difficile must contend with variable environmental conditions, including fluctuations in pH and nutrient availability. Nutrition and pH both influence growth and spore formation, but how pH and nutrition jointly influence sporulation are not known. In this study, we investigated the dual impact of pH and pH-dependent metabolism on C. difficile sporulation. METHODS We examined the impacts of pH and the metabolite acetoin on C. difficile growth, gene expression, and sporulation. RESULTS We found that expression of the predicted acetoin dehydrogenase operon, CD0035-CD0039, was pH-dependent and repressed by acetoin and pyruvate. Regulation of the C. difficile CD0035-CD0039 locus is distinct from characterized orthologous systems and appears to involve a co-transcribed DeoR-family regulator, rather than a sigma54-dependent activator. In addition, an CD0036 null mutant produced significantly more spores and initiated sporulation earlier than the parent strain. However, unlike other Firmicutes, growth and culture density of C. difficile was not increased by acetoin availability or disruption of the dehydrogenase pathway. CONCLUSIONS Together, these results indicate that acetoin, pH, and the CD0036-CD0039 dehydrogenase pathway play important roles in nutritional repression of sporulation in C. difficile. However, the data do not support the involvement of the CD0036-CD0039 pathway in acetoin metabolism and acetoin is not a significant stationary phase energy source for C. difficile.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, USA; Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine, USA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, USA; Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| |
Collapse
|
2
|
Schwab S, Dame RT. Identification, characterization and classification of prokaryotic nucleoid-associated proteins. Mol Microbiol 2025; 123:206-217. [PMID: 39039769 PMCID: PMC11894785 DOI: 10.1111/mmi.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.
Collapse
Affiliation(s)
- Samuel Schwab
- Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenThe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenThe Netherlands
| | - Remus T. Dame
- Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenThe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
3
|
Sasaki Y, Mogi Y, Yoshioka M, Liu K, Otsuka Y. A type II toxin-antitoxin system, ECs3274-ECs3275, in enterohemorrhagic Escherichia coli O157. Biosci Biotechnol Biochem 2024; 89:62-71. [PMID: 39424600 DOI: 10.1093/bbb/zbae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The toxin-antitoxin (TA) genetic module controls various bacterial events. Novel toxins with different functions are still being discovered. This study aimed to determine whether the ECs3274-ECs3275 gene pair encoded by enterohemorrhagic Escherichia coli O157 functions as a TA system. To characterize this putative TA system, we analyzed the growth of E. coli expressing ECs3274, ECs3275, or both; the interaction between ECs3274 and ECs3275 using bacterial adenylate cyclase two-hybrid assays; and the DNA-binding ability of ECs3274 using gel-mobility shift assays. We observed that the ECs3274 antitoxin interacted with the ECs3275 toxin, was destabilized by Lon protease, and repressed its promoter activity via its helix-turn-helix (HTH) motif. These properties are consistent with those of typical type II TA antitoxins. Interestingly, ECs3275 has an HTH motif not observed in other TA toxins and is necessary for ECs3275 toxicity, suggesting that ECs3275 may exert its toxicity by regulating the expression of specific genes.
Collapse
Affiliation(s)
- Yuka Sasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Yuna Mogi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Mizuki Yoshioka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Ke Liu
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Yuichi Otsuka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| |
Collapse
|
4
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
5
|
Borges Farias A, Sganzerla Martinez G, Galán-Vásquez E, Nicolás MF, Pérez-Rueda E. Predicting bacterial transcription factor binding sites through machine learning and structural characterization based on DNA duplex stability. Brief Bioinform 2024; 25:bbae581. [PMID: 39541188 PMCID: PMC11562833 DOI: 10.1093/bib/bbae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial TFs-DNA interactions remains an intricate challenge. A deeper understanding of DNA secondary structures could greatly enhance our knowledge of how TFs recognize and interact with DNA, thereby elucidating their biological function. In this study, we employed machine learning algorithms to predict transcription factor binding sites (TFBS) and classify them as directed-repeat (DR) or inverted-repeat (IR). To accomplish this, we divided the set of TFBS nucleotide sequences by size, ranging from 8 to 20 base pairs, and converted them into thermodynamic data known as DNA duplex stability (DDS). Our results demonstrate that the Random Forest algorithm accurately predicts TFBS with an average accuracy of over 82% and effectively distinguishes between IR and DR with an accuracy of 89%. Interestingly, upon converting the base pairs of several TFBS-IR into DDS values, we observed a symmetric profile typical of the palindromic structure associated with these architectures. This study presents a novel TFBS prediction model based on a DDS characteristic that may indicate how respective proteins interact with base pairs, thus providing insights into molecular mechanisms underlying bacterial TFs-DNA interaction.
Collapse
Affiliation(s)
- André Borges Farias
- Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México
| | - Gustavo Sganzerla Martinez
- Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax B3H 4H7, Nova Scotia, Canada
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar S/N, Mexico City 01000, México
| | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México
| |
Collapse
|
6
|
Taboada-Castro H, Hernández-Álvarez AJ, Castro-Mondragón JA, Encarnación-Guevara S. RhizoBindingSites v2.0 Is a Bioinformatic Database of DNA Motifs Potentially Involved in Transcriptional Regulation Deduced From Their Genomic Sites. Bioinform Biol Insights 2024; 18:11779322241272395. [PMID: 39246685 PMCID: PMC11380129 DOI: 10.1177/11779322241272395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024] Open
Abstract
RhizoBindingSites is a de novo depurified database of conserved DNA motifs potentially involved in the transcriptional regulation of the Rhizobium, Sinorhizobium, Bradyrhizobium, Azorhizobium, and Mesorhizobium genera covering 9 representative symbiotic species, deduced from the upstream regulatory sequences of orthologous genes (O-matrices) from the Rhizobiales taxon. The sites collected with O-matrices per gene per genome from RhizoBindingSites were used to deduce matrices using the dyad-Regulatory Sequence Analysis Tool (RSAT) method, giving rise to novel S-matrices for the construction of the RizoBindingSites v2.0 database. A comparison of the S-matrix logos showed a greater frequency and/or re-definition of specific-position nucleotides found in the O-matrices. Moreover, S-matrices were better at detecting genes in the genome, and there was a more significant number of transcription factors (TFs) in the vicinity than O-matrices, corresponding to a more significant genomic coverage for S-matrices. O-matrices of 3187 TFs and S-matrices of 2754 TFs from 9 species were deposited in RhizoBindingSites and RhizoBindingSites v2.0, respectively. The homology between the matrices of TFs from a genome showed inter-regulation between the clustered TFs. In addition, matrices of AraC, ArsR, GntR, and LysR ortholog TFs showed different motifs, suggesting distinct regulation. Benchmarking showed 72%, 68%, and 81% of common genes per regulon for O-matrices and approximately 14% less common genes with S-matrices of Rhizobium etli CFN42, Rhizobium leguminosarum bv. viciae 3841, and Sinorhizobium meliloti 1021. These data were deposited in RhizoBindingSites and the RhizoBindingSites v2.0 database (http://rhizobindingsites.ccg.unam.mx/).
Collapse
|
7
|
Verschueren KHG, Dodson EJ, Wilkinson AJ. The Structure of the LysR-type Transcriptional Regulator, CysB, Bound to the Inducer, N-acetylserine. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:311-326. [PMID: 38976018 PMCID: PMC11329422 DOI: 10.1007/s00249-024-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
In Escherichia coli and Salmonella typhimurium, cysteine biosynthesis requires the products of 20 or more cys genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, N-acetylserine, CysB binds to cys promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD). The crystal structure of a dimeric EBD fragment of CysB from Klebsiella aerogenes revealed a protein fold similar to that seen in Lac repressor but with a different symmetry in the dimer so that the mode of DNA binding was not apparent. To elucidate the subunit arrangement in the tetramer, we determined the crystal structure of intact CysB in complex with N-acetylserine. The tetramer has two subunit types that differ in the juxtaposition of their winged helix-turn-helix DNA binding domains with respect to the effector binding domain. In the assembly, the four EBDs form a core with the DNA binding domains arranged in pairs on the surface. N-acetylserine makes extensive polar interactions in an enclosed binding site, and its binding is accompanied by substantial conformational rearrangements of surrounding residues that are propagated to the protein surface where they appear to alter the arrangement of the DNA binding domains. The results are (i) discussed in relation to the extensive mutational data available for CysB and (ii) used to propose a structural mechanism of N-acetylserine induced CysB activation.
Collapse
Affiliation(s)
- Koen H G Verschueren
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Eleanor J Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
8
|
Rybina AA, Glushak RA, Bessonova TA, Dakhnovets AI, Rudenko AY, Ozhiganov RM, Kaznadzey AD, Tutukina MN, Gelfand MS. Phylogeny and structural modeling of the transcription factor CsqR (YihW) from Escherichia coli. Sci Rep 2024; 14:7852. [PMID: 38570624 PMCID: PMC10991401 DOI: 10.1038/s41598-024-58492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
CsqR (YihW) is a local transcription factor that controls expression of yih genes involved in degradation of sulfoquinovose in Escherichia coli. We recently showed that expression of the respective gene cassette might be regulated by lactose. Here, we explore the phylogenetic and functional traits of CsqR. Phylogenetic analysis revealed that CsqR had a conserved Met25. Western blot demonstrated that CsqR was synthesized in the bacterial cell as two protein forms, 28.5 (CsqR-l) and 26 kDa (CsqR-s), the latter corresponding to start of translation at Met25. CsqR-s was dramatically activated during growth with sulfoquinovose as a sole carbon source, and displaced CsqR-l in the stationary phase during growth on rich medium. Molecular dynamic simulations revealed two possible states of the CsqR-s structure, with the interdomain linker being represented by either a disordered loop or an ɑ-helix. This helix allowed the hinge-like motion of the N-terminal domain resulting in a switch of CsqR-s between two conformational states, "open" and "compact". We then modeled the interaction of both CsqR forms with putative effectors sulfoquinovose, sulforhamnose, sulfoquinovosyl glycerol, and lactose, and revealed that they all preferred the same pocket in CsqR-l, while in CsqR-s there were two possible options dependent on the linker structure.
Collapse
Affiliation(s)
- Anna A Rybina
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205.
| | - Roman A Glushak
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Tatiana A Bessonova
- Institute of Cell Biophysics RAS (Federal Research Center "Pushchino Scientific Center for Biological Research RAS"), Pushchino, Russia, 142290
| | | | - Alexander Yu Rudenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Ratislav M Ozhiganov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Anna D Kaznadzey
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| | - Maria N Tutukina
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
- Institute of Cell Biophysics RAS (Federal Research Center "Pushchino Scientific Center for Biological Research RAS"), Pushchino, Russia, 142290
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| |
Collapse
|
9
|
Gollapalli P, Rudrappa S, Kumar V, Santosh Kumar HS. Domain Architecture Based Methods for Comparative Functional Genomics Toward Therapeutic Drug Target Discovery. J Mol Evol 2023; 91:598-615. [PMID: 37626222 DOI: 10.1007/s00239-023-10129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Genes duplicate, mutate, recombine, fuse or fission to produce new genes, or when genes are formed from de novo, novel functions arise during evolution. Researchers have tried to quantify the causes of these molecular diversification processes to know how these genes increase molecular complexity over a period of time, for instance protein domain organization. In contrast to global sequence similarity, protein domain architectures can capture key structural and functional characteristics, making them better proxies for describing functional equivalence. In Prokaryotes and eukaryotes it has proven that, domain designs are retained over significant evolutionary distances. Protein domain architectures are now being utilized to categorize and distinguish evolutionarily related proteins and find homologs among species that are evolutionarily distant from one another. Additionally, structural information stored in domain structures has accelerated homology identification and sequence search methods. Tools for functional protein annotation have been developed to discover, protein domain content, domain order, domain recurrence, and domain position as all these contribute to the prediction of protein functional accuracy. In this review, an attempt is made to summarise facts and speculations regarding the use of protein domain architecture and modularity to identify possible therapeutic targets among cellular activities based on the understanding their linked biological processes.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sushmitha Rudrappa
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - Vadlapudi Kumar
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka, 577007, India
| | - Hulikal Shivashankara Santosh Kumar
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| |
Collapse
|
10
|
Wetzel D, Rizvi A, Edwards AN, McBride SM. The predicted acetoin dehydrogenase pathway represses sporulation of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551048. [PMID: 37546766 PMCID: PMC10402147 DOI: 10.1101/2023.07.28.551048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Clostridioides difficile is a major gastrointestinal pathogen that is transmitted as a dormant spore. As an intestinal pathogen, C. difficile must contend with variable environmental conditions, including fluctuations in pH and nutrient availability. Nutrition and pH both influence growth and spore formation, but how pH and nutrition jointly influence sporulation are not known. In this study, we investigated the dual impact of pH and pH-dependent metabolism on C. difficile sporulation. Specifically, we examined the impacts of pH and the metabolite acetoin on C. difficile growth and sporulation. We found that expression of the predicted acetoin dehydrogenase operon, acoRABCL , was pH-dependent and regulated by acetoin. Regulation of the C. difficile aco locus is distinct from other characterized systems and appears to involve a co-transcribed DeoR-family regulator rather than the sigma 54 -dependent activator. In addition, an acoA null mutant produced significantly more spores and initiated sporulation earlier than the parent strain. However, unlike other Firmicutes, growth and culture density of C. difficile was not increased by acetoin availability or disruption of the aco pathway. Together, these results indicate that acetoin, pH, and the aco pathway play important roles in nutritional repression of sporulation in C. difficile , but acetoin metabolism does not support cell growth as a stationary phase energy source. IMPORTANCE Clostridioides difficile, or C. diff , is an anaerobic bacterium that lives within the gut of many mammals and causes infectious diarrhea. C. difficile is able to survive outside of the gut and transmit to new hosts by forming dormant spores. It is known that the pH of the intestine and the nutrients available both affect the growth and sporulation of C. diffiicile, but the specific conditions that result in sporulation in the host are not clear. In this study, we investigated how pH and the metabolite acetoin affect the ability of C. difficile to grow, proliferate, and form spores. We found that a mutant lacking the predicted acetoin metabolism pathway form more spores, but their growth is not impacted. These results show that C. difficile uses acetoin differently than many other species and that acetoin has an important role as an environmental metabolite that influences spore formation.
Collapse
|
11
|
O’Boyle N, Douce GR, Farrell G, Rattray NJW, Schembri MA, Roe AJ, Connolly JPR. Distinct ecological fitness factors coordinated by a conserved Escherichia coli regulator during systemic bloodstream infection. Proc Natl Acad Sci U S A 2023; 120:e2212175120. [PMID: 36574699 PMCID: PMC9910484 DOI: 10.1073/pnas.2212175120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
The ability of bacterial pathogens to adapt to host niches is driven by the carriage and regulation of genes that benefit pathogenic lifestyles. Genes that encode virulence or fitness-enhancing factors must be regulated in response to changing host environments to allow rapid response to challenges presented by the host. Furthermore, this process can be controlled by preexisting transcription factors (TFs) that acquire new roles in tailoring regulatory networks, specifically in pathogens. However, the mechanisms underlying this process are poorly understood. The highly conserved Escherichia coli TF YhaJ exhibits distinct genome-binding dynamics and transcriptome control in pathotypes that occupy different host niches, such as uropathogenic E. coli (UPEC). Here, we report that this important regulator is required for UPEC systemic survival during murine bloodstream infection (BSI). This advantage is gained through the coordinated regulation of a small regulon comprised of both virulence and metabolic genes. YhaJ coordinates activation of both Type 1 and F1C fimbriae, as well as biosynthesis of the amino acid tryptophan, by both direct and indirect mechanisms. Deletion of yhaJ or the individual genes under its control leads to attenuated survival during BSI. Furthermore, all three systems are up-regulated in response to signals derived from serum or systemic host tissue, but not urine, suggesting a niche-specific regulatory trigger that enhances UPEC fitness via pleiotropic mechanisms. Collectively, our results identify YhaJ as a pathotype-specific regulatory aide, enhancing the expression of key genes that are collectively required for UPEC bloodstream pathogenesis.
Collapse
Affiliation(s)
- Nicky O’Boyle
- School of Microbiology, University College Cork, National University of Ireland, CorkT12 K8AF, Ireland
| | - Gillian R. Douce
- Institute of Infection, Immunity and Inflammation, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Gillian Farrell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, United Kingdom
| | - Nicholas J. W. Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, United Kingdom
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew J. Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - James P. R. Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-TyneNE2 4HH, United Kingdom
| |
Collapse
|
12
|
Wisniewska A, Wons E, Potrykus K, Hinrichs R, Gucwa K, Graumann PL, Mruk I. Molecular basis for lethal cross-talk between two unrelated bacterial transcription factors - the regulatory protein of a restriction-modification system and the repressor of a defective prophage. Nucleic Acids Res 2022; 50:10964-10980. [PMID: 36271797 DOI: 10.1093/nar/gkac914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression depends on the efficient functioning of global transcriptional networks, however their interconnectivity and orchestration rely mainly on the action of individual DNA binding proteins called transcription factors (TFs). TFs interact not only with their specific target sites, but also with secondary (off-target) sites, and vary in their promiscuity. It is not clear yet what mechanisms govern the interactions with secondary sites, and how such rewiring affects the overall regulatory network, but this could clearly constrain horizontal gene transfer. Here, we show the molecular mechanism of one such off-target interaction between two unrelated TFs in Escherichia coli: the C regulatory protein of a Type II restriction-modification system, and the RacR repressor of a defective prophage. We reveal that the C protein interferes with RacR repressor expression, resulting in derepression of the toxic YdaT protein. These results also provide novel insights into regulation of the racR-ydaST operon. We mapped the C regulator interaction to a specific off-target site, and also visualized C protein dynamics, revealing intriguing differences in single molecule dynamics in different genetic contexts. Our results demonstrate an apparent example of horizontal gene transfer leading to adventitious TF cross-talk with negative effects on the recipient's viability. More broadly, this study represents an experimentally-accessible model of a regulatory constraint on horizontal gene transfer.
Collapse
Affiliation(s)
- Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Rebecca Hinrichs
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps Universität Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps Universität Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
13
|
Novel switchable ECF sigma factor transcription system for improving thaxtomin A production in Streptomyces. Synth Syst Biotechnol 2022; 7:972-981. [PMID: 35756964 PMCID: PMC9194655 DOI: 10.1016/j.synbio.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
The application of the valuable natural product thaxtomin A, a potent bioherbicide from the potato scab pathogenic Streptomyces strains, has been greatly hindered by the low yields from its native producers. Here, we developed an orthogonal transcription system, leveraging extra-cytoplasmic function (ECF) sigma (σ) factor 17 (ECF17) and its cognate promoter Pecf17, to express the thaxtomin gene cluster and improve the production of thaxtomin A. The minimal Pecf17 promoter was determined, and a Pecf17 promoter library with a wide range of strengths was constructed. Furthermore, a cumate inducible system was developed for precise temporal control of the ECF17 transcription system in S. venezuelae ISP5230. Theoretically, the switchable ECF17 transcription system could reduce the unwanted influences from host and alleviate the burdens introduced by overexpression of heterologous genes. The yield of thaxtomin A was significantly improved to 202.1 ± 15.3 μ g/mL using the switchable ECF17 transcription system for heterologous expression of the thaxtomin gene cluster in S. venezuelae ISP5230. Besides, the applicability of this transcription system was also tested in Streptomyces albus J1074, and the titer of thaxtomin A was raised to as high as 239.3 ± 30.6 μg/mL. Therefore, the inducible ECF17 transcription system could serve as a complement of the generally used transcription systems based on strong native constitutive promoters and housekeeping σ factors for the heterologous expression of valuable products in diverse Streptomyces hosts.
Collapse
|
14
|
High Abundance of Transcription Regulators Compacts the Nucleoid in Escherichia coli. J Bacteriol 2022; 204:e0002622. [PMID: 35583339 DOI: 10.1128/jb.00026-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In enteric bacteria organization of the circular chromosomal DNA into a highly dynamic and toroidal-shaped nucleoid involves various factors, such as DNA supercoiling, nucleoid-associated proteins (NAPs), the structural maintenance of chromatin (SMC) complex, and macrodomain organizing proteins. Here, we show that ectopic expression of transcription regulators at high levels leads to nucleoid compaction. This serendipitous result was obtained by fluorescence microscopy upon ectopic expression of the transcription regulator and phosphodiesterase PdeL of Escherichia coli. Nucleoid compaction by PdeL depends on DNA-binding, but not on its enzymatic phosphodiesterase activity. Nucleoid compaction was also observed upon high-level ectopic expression of the transcription regulators LacI, RutR, RcsB, LeuO, and Cra, which range from single-target gene regulators to global regulators. In the case of LacI, its high-level expression in the presence of the gratuitous inducer IPTG (isopropyl-β-d-thiogalactopyranoside) also led to nucleoid compaction, indicating that compaction is caused by unspecific DNA-binding. In all cases nucleoid compaction correlated with misplacement of the FtsZ ring and loss of MukB foci, a subunit of the SMC complex. Thus, high levels of several transcription regulators cause nucleoid compaction with consequences for replication and cell division. IMPORTANCE The bacterial nucleoid is a highly organized and dynamic structure for simultaneous transcription, replication, and segregation of the bacterial genome. Compaction of the nucleoid and disturbance of DNA segregation and cell division by artificially high levels of transcription regulators, as described here, reveals that an excess of DNA-binding protein disturbs nucleoid structuring. The results suggest that ectopic expression levels of DNA-binding proteins for genetic studies of their function but also for their purification should be carefully controlled and adjusted.
Collapse
|
15
|
Yin L, Cheng B, Tu J, Shao Y, Song X, Pan X, Qi K. YqeH contributes to avian pathogenic Escherichia coli pathogenicity by regulating motility, biofilm formation, and virulence. Vet Res 2022; 53:30. [PMID: 35436977 PMCID: PMC9014576 DOI: 10.1186/s13567-022-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a pathotype of extraintestinal pathogenic E. coli and one of the most serious infectious diseases of poultry. It not only causes great economic losses to the poultry industry, but also poses a serious threat to public health worldwide. Here, we examined the role of YqeH, a transcriptional regulator located at E. coli type III secretion system 2 (ETT2), in APEC pathogenesis. To investigate the effects of YqeH on APEC phenotype and virulence, we constructed a yqeH deletion mutant (APEC40-ΔyqeH) and a complemented strain (APEC40-CΔyqeH) of APEC40. Compared with the wild type (WT), the motility and biofilm formation of APEC40-ΔyqeH were significantly reduced. The yqeH mutant was highly attenuated in a chick infection model compared with WT, and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. However, the mechanisms underlying these phenomena were unclear. Therefore, we analyzed the transcriptional effects of the yqeH deletion to clarify the regulatory mechanisms of YqeH, and the role of YqeH in APEC virulence. The deletion of yqeH downregulated the transcript levels of several flagellum-, biofilm-, and virulence-related genes. Our results demonstrate that YqeH is involved in APEC pathogenesis, and the reduced virulence of APEC40-ΔyqeH may be related to its reduced motility and biofilm formation.
Collapse
|
16
|
Femerling G, Gama-Castro S, Lara P, Ledezma-Tejeida D, Tierrafría VH, Muñiz-Rascado L, Bonavides-Martínez C, Collado-Vides J. Sensory Systems and Transcriptional Regulation in Escherichia coli. Front Bioeng Biotechnol 2022; 10:823240. [PMID: 35237580 PMCID: PMC8882922 DOI: 10.3389/fbioe.2022.823240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
In free-living bacteria, the ability to regulate gene expression is at the core of adapting and interacting with the environment. For these systems to have a logic, a signal must trigger a genetic change that helps the cell to deal with what implies its presence in the environment; briefly, the response is expected to include a feedback to the signal. Thus, it makes sense to think of genetic sensory mechanisms of gene regulation. Escherichia coli K-12 is the bacterium model for which the largest number of regulatory systems and its sensing capabilities have been studied in detail at the molecular level. In this special issue focused on biomolecular sensing systems, we offer an overview of the transcriptional regulatory corpus of knowledge for E. coli that has been gathered in our database, RegulonDB, from the perspective of sensing regulatory systems. Thus, we start with the beginning of the information flux, which is the signal's chemical or physical elements detected by the cell as changes in the environment; these signals are internally transduced to transcription factors and alter their conformation. Signals transduced to effectors bind allosterically to transcription factors, and this defines the dominant sensing mechanism in E. coli. We offer an updated list of the repertoire of known allosteric effectors, as well as a list of the currently known different mechanisms of this sensing capability. Our previous definition of elementary genetic sensory-response units, GENSOR units for short, that integrate signals, transport, gene regulation, and the biochemical response of the regulated gene products of a given transcriptional factor fit perfectly with the purpose of this overview. We summarize the functional heterogeneity of their response, based on our updated collection of GENSORs, and we use them to identify the expected feedback as part of their response. Finally, we address the question of multiple sensing in the regulatory network of E. coli. This overview introduces the architecture of sensing and regulation of native components in E.coli K-12, which might be a source of inspiration to bioengineering applications.
Collapse
Affiliation(s)
- Georgette Femerling
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
17
|
Gao Y, Lim HG, Verkler H, Szubin R, Quach D, Rodionova I, Chen K, Yurkovich JT, Cho BK, Palsson BO. Unraveling the functions of uncharacterized transcription factors in Escherichia coli using ChIP-exo. Nucleic Acids Res 2021; 49:9696-9710. [PMID: 34428301 PMCID: PMC8464067 DOI: 10.1093/nar/gkab735] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria regulate gene expression to adapt to changing environments through transcriptional regulatory networks (TRNs). Although extensively studied, no TRN is fully characterized since the identity and activity of all the transcriptional regulators comprising a TRN are not known. Here, we experimentally evaluate 40 uncharacterized proteins in Escherichia coli K-12 MG1655, which were computationally predicted to be transcription factors (TFs). First, we used a multiplexed chromatin immunoprecipitation method combined with lambda exonuclease digestion (multiplexed ChIP-exo) assay to characterize binding sites for these candidate TFs; 34 of them were found to be DNA-binding proteins. We then compared the relative location between binding sites and RNA polymerase (RNAP). We found 48% (283/588) overlap between the TFs and RNAP. Finally, we used these data to infer potential functions for 10 of the 34 TFs with validated DNA binding sites and consensus binding motifs. Taken together, this study: (i) significantly expands the number of confirmed TFs to 276, close to the estimated total of about 280 TFs; (ii) provides putative functions for the newly discovered TFs and (iii) confirms the functions of four representative TFs through mutant phenotypes.
Collapse
Affiliation(s)
- Ye Gao
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hans Verkler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Quach
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Rodionova
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:6312496. [PMID: 34196371 DOI: 10.1093/femsre/fuab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulation for genome expression determines growth and adaptation of single-cell bacteria that are directly exposed to environment. The transcriptional apparatus in Escherichia coli K-12 is composed of RNA polymerase core enzyme and two groups of its regulatory proteins, seven species of promoter-recognition subunit sigma and about 300 species of transcription factors. The identification of regulatory targets for all these regulatory proteins is critical toward understanding the genome regulation as a whole. For this purpose, we performed a systematic search in vitro of the whole set of binding sites for each factor by gSELEX system. This review summarizes the accumulated knowledge of regulatory targets for more than 150 TFs from E. coli K-12. Overall TFs could be classified into four families: nucleoid-associated bifunctional TFs; global regulators; local regulators; and single-target regulators, in which the regulatory functions remain uncharacterized for the nucleoid-associated TFs. Here we overview the regulatory targets of two nucleoid-associated TFs, H-NS and its paralog StpA, both together playing the silencing role of a set of non-essential genes. Participation of LeuO and other global regulators have been indicated for the anti-silencing. Finally, we propose the hierarchy of TF network as a key framework of the bacterial genome regulation.
Collapse
Affiliation(s)
- Akira Ishihama
- Hosei University, Research Institute for Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
19
|
Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803. [PMID: 34220787 PMCID: PMC8249747 DOI: 10.3389/fmicb.2021.697803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.
Collapse
Affiliation(s)
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoki Kobayashi
- Department of Frontier Science, Hosei University, Koganei, Japan
| | - Akira Ishihama
- Department of Frontier Science, Hosei University, Koganei, Japan.,Micro-Nano Technology Research Center, Hosei University, Koganei, Japan
| |
Collapse
|
20
|
Suvorova IA, Gelfand MS. Comparative Analysis of the IclR-Family of Bacterial Transcription Factors and Their DNA-Binding Motifs: Structure, Positioning, Co-Evolution, Regulon Content. Front Microbiol 2021; 12:675815. [PMID: 34177859 PMCID: PMC8222616 DOI: 10.3389/fmicb.2021.675815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The IclR-family is a large group of transcription factors (TFs) regulating various biological processes in diverse bacteria. Using comparative genomics techniques, we have identified binding motifs of IclR-family TFs, reconstructed regulons and analyzed their content, finding co-occurrences between the regulated COGs (clusters of orthologous genes), useful for future functional characterizations of TFs and their regulated genes. We describe two main types of IclR-family motifs, similar in sequence but different in the arrangement of the half-sites (boxes), with GKTYCRYW3-4RYGRAMC and TGRAACAN1-2TGTTYCA consensuses, and also predict that TFs in 32 orthologous groups have binding sites comprised of three boxes with alternating direction, which implies two possible alternative modes of dimerization of TFs. We identified trends in site positioning relative to the translational gene start, and show that TFs in 94 orthologous groups bind tandem sites with 18-22 nucleotides between their centers. We predict protein-DNA contacts via the correlation analysis of nucleotides in binding sites and amino acids of the DNA-binding domain of TFs, and show that the majority of interacting positions and predicted contacts are similar for both types of motifs and conform well both to available experimental data and to general protein-DNA interaction trends.
Collapse
Affiliation(s)
- Inna A Suvorova
- Institute for Information Transmission Problems of Russian Academy of Sciences (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems of Russian Academy of Sciences (The Kharkevich Institute), Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
21
|
Tsevelkhoroloo M, Shim SH, Lee CR, Hong SK, Hong YS. LacI-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:658657. [PMID: 33889146 PMCID: PMC8055832 DOI: 10.3389/fmicb.2021.658657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
Actinobacteria utilize various polysaccharides in the soil as carbon source by degrading them via extracellular hydrolytic enzymes. Agarose, a marine algal polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose (AHG), is one of the carbon sources used by S. coelicolor A3(2). However, little is known about agar hydrolysis in S. coelicolor A3(2), except that the regulation of agar hydrolysis metabolism is strongly inhibited by glucose as in the catabolic pathways of other polysaccharides. In this study, we elucidated the role of DagR in regulating the expression of three agarase genes (dagA, dagB, and dagC) in S. coelicolor A3(2) by developing a dagR-deletion mutant (Δsco3485). We observed that the Δsco3485 mutant had increased mRNA level of the agarolytic pathway genes and 1.3-folds higher agarase production than the wild type strain, indicating that the dagR gene encodes a cluster-suited repressor. Electrophoretic mobility shift assay revealed that DagR bound to the upstream regions of the three agarase genes. DNase 1 footprinting analysis demonstrated that a palindromic sequence present in the upstream region of the three agarase genes was essential for DagR-binding. Uniquely, the DNA-binding activity of DagR was inhibited by AHG, one of the final degradation products of agarose. AHG-induced agarase production was not observed in the Δsco3485 mutant, as opposed to that in the wild type strain. Therefore, DagR acts as a repressor that binds to the promoter region of the agarase genes, inhibits gene expression at the transcriptional level, and is derepressed by AHG. This is the first report on the regulation of gene expression regarding agar metabolism in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - So Heon Shim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
| |
Collapse
|
22
|
Wang T, Sun W, Fan L, Hua C, Wu N, Fan S, Zhang J, Deng X, Yan J. An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs prediction of novel regulators in virulence. eLife 2021; 10:61885. [PMID: 33779544 PMCID: PMC8041468 DOI: 10.7554/elife.61885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
A high-throughput systematic evolution of ligands by exponential enrichment assay was applied to 371 putative TFs in Pseudomonas aeruginosa, which resulted in the robust enrichment of 199 unique sequence motifs describing the binding specificities of 182 TFs. By scanning the genome, we predicted in total 33,709 significant interactions between TFs and their target loci, which were more than 11-fold enriched in the intergenic regions but depleted in the gene body regions. To further explore and delineate the physiological and pathogenic roles of TFs in P. aeruginosa, we constructed regulatory networks for nine major virulence-associated pathways and found that 51 TFs were potentially significantly associated with these virulence pathways, 32 of which had not been characterized before, and some were even involved in multiple pathways. These results will significantly facilitate future studies on transcriptional regulation in P. aeruginosa and other relevant pathogens, and accelerate to discover effective treatment and prevention strategies for the associated infectious diseases.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Wenju Sun
- School of Medicine, Northwest University, Xi'an, China
| | - Ligang Fan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| | - Canfeng Hua
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Nan Wu
- School of Medicine, Northwest University, Xi'an, China
| | - Shaorong Fan
- School of Medicine, Northwest University, Xi'an, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
23
|
Li X, Jiang X, Xu M, Fang Y, Wang Y, Sun G, Guo J. Identification of stress-responsive transcription factors with protein-bound Escherichia coli genomic DNA libraries. AMB Express 2020; 10:199. [PMID: 33140118 PMCID: PMC7606416 DOI: 10.1186/s13568-020-01133-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022] Open
Abstract
Bacteria promoters along with operators are crucial elements in the control of gene expression in microbes in response to environmental stress changes. A genome-wide promoter DNA regulatory library is in demand to be developed for a microbe reporter method to monitor the existence of any given environmental stress substance. In this study, we utilized Escherichia coli (E. coli) as a model system for the preparation of both cell lysates and genomic DNA fragments. Through enriching protein-bound DNA fragments to construct luciferase reporter libraries, we found that, of 280 clones collected and sequenced, 131 clones contained either the promoter-35 and -10 conservative sequences and/or an operator transcription factor binding sites (TFBS) region. To demonstrate the functionality of the identified clones, five of 131 clones containing LexA binding sequence have been demonstrated to be induced in response to mitomycin C treatment. To evaluate our libraries as a functional screening library, 80 randomly picked up clones were cultured and treated with and without MMC, where two clones were shown to have greater than twofold induction. In addition, two arsenite-responsive clones were identified from 90 clones, one having the well-known ArsR and another having the osmotically inducible lipoprotein (OsmE1). The newly discovered osmE1 has been quantitatively validated to be induced by arsenite treatment with real-time PCR in a dose response and time course manner. This enriching protein-bound DNA luciferase reporter libraries and functional screening facilitate the identification of stress-responsive transcriptional factors in microbes. We developed functional libraries containing E. coli genomic-wide protein-bound DNA as enhancers/operators to regulate downstream luciferase in response to stress.
Collapse
|
24
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
25
|
A compendium of DNA-binding specificities of transcription factors in Pseudomonas syringae. Nat Commun 2020; 11:4947. [PMID: 33009392 PMCID: PMC7532196 DOI: 10.1038/s41467-020-18744-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas syringae is a Gram-negative and model pathogenic bacterium that causes plant diseases worldwide. Here, we set out to identify binding motifs for all 301 annotated transcription factors (TFs) of P. syringae using HT-SELEX. We successfully identify binding motifs for 100 TFs. We map functional interactions between the TFs and their targets in virulence-associated pathways, and validate many of these interactions and functions using additional methods such as ChIP-seq, electrophoretic mobility shift assay (EMSA), RT-qPCR, and reporter assays. Our work identifies 25 virulence-associated master regulators, 14 of which had not been characterized as TFs before. The authors set out to identify binding motifs for all 301 transcription factors of a plant pathogenic bacterium, Pseudomonas syringae, using HT-SELEX. They successfully identify binding motifs for 100 transcription factors, infer their binding sites on the genome, and validate the predicted interactions and functions.
Collapse
|
26
|
Ogasawara H, Ishizuka T, Hotta S, Aoki M, Shimada T, Ishihama A. Novel regulators of the csgD gene encoding the master regulator of biofilm formation in Escherichia coli K-12. Microbiology (Reading) 2020; 166:880-890. [DOI: 10.1099/mic.0.000947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under stressful conditions,
Escherichia coli
forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Asahi 3-1-1, Matsumoto, 390–8621, Japan
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Toshiyuki Ishizuka
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Shuhei Hotta
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Michiko Aoki
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, Kanagawa 214–8571, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
27
|
Flores-Bautista E, Hernandez-Guerrero R, Huerta-Saquero A, Tenorio-Salgado S, Rivera-Gomez N, Romero A, Ibarra JA, Perez-Rueda E. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms. PLoS One 2020; 15:e0237135. [PMID: 32822422 PMCID: PMC7446807 DOI: 10.1371/journal.pone.0237135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
DNA-binding Transcription Factors (TFs) play a central role in regulation of gene expression in prokaryotic organisms, and similarities at the sequence level have been reported. These proteins are predicted with different abundances as a consequence of genome size, where small organisms contain a low proportion of TFs and large genomes contain a high proportion of TFs. In this work, we analyzed a collection of 668 experimentally validated TFs across 30 different species from diverse taxonomical classes, including Escherichia coli K-12, Bacillus subtilis 168, Corynebacterium glutamicum, and Streptomyces coelicolor, among others. This collection of TFs, together with 111 hidden Markov model profiles associated with DNA-binding TFs collected from diverse databases such as PFAM and DBD, was used to identify the repertoire of proteins putatively devoted to gene regulation in 1321 representative genomes of Archaea and Bacteria. The predicted regulatory proteins were posteriorly analyzed in terms of their genomic context, allowing the prediction of functions for TFs and their neighbor genes, such as genes involved in virulence, enzymatic functions, phosphorylation mechanisms, and antibiotic resistance. The functional analysis associated with PFAM groups showed diverse functional categories were significantly enriched in the collection of TFs and the proteins encoded by the neighbor genes, in particular, small-molecule binding and amino acid transmembrane transporter activities associated with the LysR family and proteins devoted to cellular aromatic compound metabolic processes or responses to drugs, stress, or abiotic stimuli in the MarR family. We consider that with the increasing data derived from new technologies, novel TFs can be identified and help improve the predictions for this class of proteins in complete genomes. The complete collection of experimentally characterized and predicted TFs is available at http://web.pcyt.unam.mx/EntrafDB/.
Collapse
Affiliation(s)
- Emanuel Flores-Bautista
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Silvia Tenorio-Salgado
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Mérida, Yucatán, México
| | | | - Alba Romero
- Microbiota Host Interactions and Clostridia Research Group, Universidad Nacional Andrés Bello, Santiago de Chile, Chile
| | - Jose Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- * E-mail:
| |
Collapse
|
28
|
Eran Z, Akçelik M, Yazıcı BC, Özcengiz G, Akçelik N. Regulation of biofilm formation by marT in Salmonella Typhimurium. Mol Biol Rep 2020; 47:5041-5050. [PMID: 32529277 DOI: 10.1007/s11033-020-05573-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
In this study, we aimed at identifying the regulatory role of marT gene, known as the regulator of misL, on 15 different biofilm-related genes in S. Typhimurium 14028 strain. We also tested the strains for their ability to form biofilm and determined the adherence characteristics of the wild type and the mutant strains of the organism on Caco-2 and HEp-2 cells. For comparative analyses of the candidate genes, individual gene mutations were created via antibiotic gene cassette insertion into each gene of interest. marT gene was cloned behind an arabinose inducible BAD promoter in order to control marT expression. This recombinant plasmid was transfer into each of the 15 mutant strains to investigate the level of expression of each single gene in the presence and absence of marT induction. Besides determination of variations in biofilm formation by each mutant strain, the attachment characteristics of them onto Caco-2 and HEp-2 cell lines were also reported. As a result of attachments experiments on polystyrene surfaces, it was determined that the biofilm production capacity of each mutant strain decreased in a statistically significant manner (p < 0.05). QRT-PCR trials indicated that the marT gene regulates the expression of 14 genes, namely fimA, fimD, fimF, fimH, stjB, stjC, csgA, csgD, ompC, sthB, sthE, rmbA, fliZ and yaiC, in a positive manner. QRT-PCR studies were also revealed that the MarT protein positively regulates its own promoter. When the adherence characteristics of the mutant strains and the wild-type were investigated by using Caco-2 and HEp-2 cells, it was determined that the single gene mutations did have no effect on bacterial adhesion. In view of our mutational analyses and biofilm formation studies, it was concluded that fliZ, ompC, rmbA, stjB and stjC genes are related with biofilm formation in Salmonella, besides other cellular functions of them. Taken together, our data suggested that the regulatory role of MarT protein is not only restricted to the regulation of misL gene expression, but it rather acts as a general regulator on the biofilm-related genes in Salmonella.
Collapse
Affiliation(s)
- Zeynep Eran
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | | | | | - Gülay Özcengiz
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey.
| |
Collapse
|
29
|
Brödel AK, Rodrigues R, Jaramillo A, Isalan M. Accelerated evolution of a minimal 63-amino acid dual transcription factor. SCIENCE ADVANCES 2020; 6:eaba2728. [PMID: 32577520 PMCID: PMC7286687 DOI: 10.1126/sciadv.aba2728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/14/2020] [Indexed: 05/13/2023]
Abstract
Transcription factors control gene expression in all life. This raises the question of what is the smallest protein that can support such activity. In nature, Cro from bacteriophage λ is one of the smallest known repressors (66 amino acids), and activators are typically much larger (e.g., λ cI, 237 amino acids). Previous efforts to engineer a minimal activator from λ Cro resulted in no activity in vivo in cells. In this study, we show that directed evolution results in a new Cro activator-repressor that functions as efficiently as λ cI in vivo. To achieve this, we develop phagemid-assisted continuous evolution (PACEmid). We find that a peptide as small as 63 amino acids functions efficiently as an activator and/or repressor. To our knowledge, this is the smallest protein activator that enables polymerase recruitment, highlighting the capacity of transcription factors to evolve from very short peptide sequences.
Collapse
Affiliation(s)
- Andreas K. Brödel
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Rui Rodrigues
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- CNRS-UMR8030, Laboratoire iSSB and Université Paris-Saclay and Université d’Évry and CEA, DRF, IG, Genoscope, Évry 91000, France
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Corresponding author.
| |
Collapse
|
30
|
Santos-Zavaleta A, Salgado H, Gama-Castro S, Sánchez-Pérez M, Gómez-Romero L, Ledezma-Tejeida D, García-Sotelo JS, Alquicira-Hernández K, Muñiz-Rascado LJ, Peña-Loredo P, Ishida-Gutiérrez C, Velázquez-Ramírez DA, Del Moral-Chávez V, Bonavides-Martínez C, Méndez-Cruz CF, Galagan J, Collado-Vides J. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res 2020; 47:D212-D220. [PMID: 30395280 PMCID: PMC6324031 DOI: 10.1093/nar/gky1077] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/19/2018] [Indexed: 01/31/2023] Open
Abstract
RegulonDB, first published 20 years ago, is a comprehensive electronic resource about regulation of transcription initiation of Escherichia coli K-12 with decades of knowledge from classic molecular biology experiments, and recently also from high-throughput genomic methodologies. We curated the literature to keep RegulonDB up to date, and initiated curation of ChIP and gSELEX experiments. We estimate that current knowledge describes between 10% and 30% of the expected total number of transcription factor- gene regulatory interactions in E. coli. RegulonDB provides datasets for interactions for which there is no evidence that they affect expression, as well as expression datasets. We developed a proof of concept pipeline to merge binding and expression evidence to identify regulatory interactions. These datasets can be visualized in the RegulonDB JBrowse. We developed the Microbial Conditions Ontology with a controlled vocabulary for the minimal properties to reproduce an experiment, which contributes to integrate data from high throughput and classic literature. At a higher level of integration, we report Genetic Sensory-Response Units for 200 transcription factors, including their regulation at the metabolic level, and include summaries for 70 of them. Finally, we summarize our research with Natural language processing strategies to enhance our biocuration work.
Collapse
Affiliation(s)
- Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Laura Gómez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Daniela Ledezma-Tejeida
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | | | - Kevin Alquicira-Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Luis José Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Pablo Peña-Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Cecilia Ishida-Gutiérrez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - David A Velázquez-Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor Del Moral-Chávez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | | | - James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
31
|
Nitta KR, Vincentelli R, Jacox E, Cimino A, Ohtsuka Y, Sobral D, Satou Y, Cambillau C, Lemaire P. High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities. Methods Mol Biol 2020; 2025:487-517. [PMID: 31267468 DOI: 10.1007/978-1-4939-9624-7_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transcription factors (TFs) control gene transcription, binding to specific DNA motifs located in cis-regulatory elements across the genome. The identification of TF-binding motifs is thus an important aspect to understand the role of TFs in gene regulation. SELEX, Systematic Evolution of Ligands by EXponential enrichment, is an efficient in vitro method, which can be used to determine the DNA-binding specificity of TFs. Thanks to the development of high-throughput (HT) DNA cloning system and protein production technology, the classical SELEX assay has be extended to high-throughput scale (HT-SELEX).We report here the detailed protocol for the cloning, production, and purification of 420 Ciona robusta DNA BD. 263 Ciona robusta TF DNA-binding domain proteins were purified in milligram quantities and analyzed by HT-SELEX. The identification of 139 recognition sequences generates an atlas of protein-DNA-binding specificities that is crucial for the understanding of the gene regulatory network (GRN) of Ciona robusta. Overall, our analysis suggests that the Ciona robusta repertoire of sequence-specific transcription factors comprises less than 500 genes. The protocols for high-throughput protein production and HT-SELEX described in this article for the study of Ciona robusta TF DNA-binding specificity are generic and have been successfully applied to a wide range of TFs from other species, including human, mouse, and Drosophila.
Collapse
Affiliation(s)
- Kazuhiro R Nitta
- Institute of Developmental Biology of Marseille (IBDM), Aix-Marseille Université/CNRS, Marseille cedex 9, France.,Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille cedex 9, France
| | - Edwin Jacox
- Institute of Developmental Biology of Marseille (IBDM), Aix-Marseille Université/CNRS, Marseille cedex 9, France.,Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier/CNRS, Montpellier cedex 5, France
| | - Agnès Cimino
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, CNRS, Aix-Marseille Université, Marseille cedex 9, France
| | - Yukio Ohtsuka
- Institute of Developmental Biology of Marseille (IBDM), Aix-Marseille Université/CNRS, Marseille cedex 9, France.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daniel Sobral
- Institute of Developmental Biology of Marseille (IBDM), Aix-Marseille Université/CNRS, Marseille cedex 9, France.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, CNRS, Aix-Marseille Université, Marseille cedex 9, France
| | - Patrick Lemaire
- Institute of Developmental Biology of Marseille (IBDM), Aix-Marseille Université/CNRS, Marseille cedex 9, France. .,Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), Université de Montpellier/CNRS, Montpellier cedex 5, France.
| |
Collapse
|
32
|
Li WJ, Narancic T, Kenny ST, Niehoff PJ, O’Connor K, Blank LM, Wierckx N. Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440. Front Microbiol 2020; 11:382. [PMID: 32256468 PMCID: PMC7090098 DOI: 10.3389/fmicb.2020.00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Plastics, in all forms, are a ubiquitous cornerstone of modern civilization. Although humanity undoubtedly benefits from the versatility and durability of plastics, they also cause a tremendous burden for the environment. Bio-upcycling is a promising approach to reduce this burden, especially for polymers that are currently not amenable to mechanical recycling. Wildtype P. putida KT2440 is able to grow on 1,4-butanediol as sole carbon source, but only very slowly. Adaptive laboratory evolution (ALE) led to the isolation of several strains with significantly enhanced growth rate and yield. Genome re-sequencing and proteomic analysis were applied to characterize the genomic and metabolic basis of efficient 1,4-butanediol metabolism. Initially, 1,4-butanediol is oxidized to 4-hydroxybutyrate, in which the highly expressed dehydrogenase enzymes encoded within the PP_2674-2680 ped gene cluster play an essential role. The resulting 4-hydroxybutyrate can be metabolized through three possible pathways: (i) oxidation to succinate, (ii) CoA activation and subsequent oxidation to succinyl-CoA, and (iii) beta oxidation to glycolyl-CoA and acetyl-CoA. The evolved strains were both mutated in a transcriptional regulator (PP_2046) of an operon encoding both beta-oxidation related genes and an alcohol dehydrogenase. When either the regulator or the alcohol dehydrogenase is deleted, no 1,4-butanediol uptake or growth could be detected. Using a reverse engineering approach, PP_2046 was replaced by a synthetic promotor (14g) to overexpress the downstream operon (PP_2047-2051), thereby enhancing growth on 1,4-butanediol. This work provides a deeper understanding of microbial 1,4-butanediol metabolism in P. putida, which is also expandable to other aliphatic alpha-omega diols. It enables the more efficient metabolism of these diols, thereby enabling biotechnological valorization of plastic monomers in a bio-upcycling approach.
Collapse
Affiliation(s)
- Wing-Jin Li
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- BEACON – SFI Bioeconomy Research Centre, University College Dublin, Dublin, Ireland
| | - Shane T. Kenny
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Paul-Joachim Niehoff
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Kevin O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- BEACON – SFI Bioeconomy Research Centre, University College Dublin, Dublin, Ireland
| | - Lars M. Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
33
|
O'Boyle N, Turner NCA, Roe AJ, Connolly JPR. Plastic Circuits: Regulatory Flexibility in Fine Tuning Pathogen Success. Trends Microbiol 2020; 28:360-371. [PMID: 32298614 DOI: 10.1016/j.tim.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens employ diverse fitness and virulence mechanisms to gain an advantage in competitive niches. These lifestyle-specific traits require integration into the regulatory network of the cell and are often controlled by pre-existing transcription factors. In this review, we highlight recent advances that have been made in characterizing this regulatory flexibility in prominent members of the Enterobacteriaceae. We focus on the direct global interactions between transcription factors and their target genes in pathogenic Escherichia coli and Salmonella revealed using chromatin immunoprecipitation coupled with next-generation sequencing. Furthermore, the implications and advantages of such regulatory adaptations in benefiting distinct pathogenic lifestyles are discussed.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Natasha C A Turner
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew J Roe
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - James P R Connolly
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|
34
|
Thöming JG, Tomasch J, Preusse M, Koska M, Grahl N, Pohl S, Willger SD, Kaever V, Müsken M, Häussler S. Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. NPJ Biofilms Microbiomes 2020; 6:2. [PMID: 31934344 PMCID: PMC6954232 DOI: 10.1038/s41522-019-0113-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023] Open
Abstract
Studying parallel evolution of similar traits in independent within-species lineages provides an opportunity to address evolutionary predictability of molecular changes underlying adaptation. In this study, we monitored biofilm forming capabilities, motility, and virulence phenotypes of a plethora of phylogenetically diverse clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. We also recorded biofilm-specific and planktonic transcriptional responses. We found that P. aeruginosa isolates could be stratified based on the production of distinct organismal traits. Three major biofilm phenotypes, which shared motility and virulence phenotypes, were produced repeatedly in several isolates, indicating that the phenotypes evolved via parallel or convergent evolution. Of note, while we found a restricted general response to the biofilm environment, the individual groups of biofilm phenotypes reproduced biofilm transcriptional profiles that included the expression of well-known biofilm features, such as surface adhesive structures and extracellular matrix components. Our results provide insights into distinct ways to make a biofilm and indicate that genetic adaptations can modulate multiple pathways for biofilm development that are followed by several independent clinical isolates. Uncovering core regulatory pathways that drive biofilm-associated growth and tolerance towards environmental stressors promises to give clues to host and environmental interactions and could provide useful targets for new clinical interventions.
Collapse
Affiliation(s)
- Janne G. Thöming
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michal Koska
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nora Grahl
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sarah Pohl
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven D. Willger
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Mathias Müsken
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Bethke JH, Davidovich A, Cheng L, Lopatkin AJ, Song W, Thaden JT, Fowler VG, Xiao M, You L. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. SCIENCE ADVANCES 2020; 6:eaax3173. [PMID: 32042895 PMCID: PMC6981087 DOI: 10.1126/sciadv.aax3173] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/20/2019] [Indexed: 05/10/2023]
Abstract
Plasmids are key vehicles of horizontal gene transfer (HGT), mobilizing antibiotic resistance, virulence, and other traits among bacterial populations. The environmental and genetic forces that drive plasmid transfer are poorly understood, however, due to the lack of definitive quantification coupled with genomic analysis. Here, we integrate conjugative phenotype with plasmid genotype to provide quantitative analysis of HGT in clinical Escherichia coli pathogens. We find a substantial proportion of these pathogens (>25%) able to readily spread resistance to the most common classes of antibiotics. Antibiotics of varied modes of action had less than a 5-fold effect on conjugation efficiency in general, with one exception displaying 31-fold promotion upon exposure to macrolides and chloramphenicol. In contrast, genome sequencing reveals plasmid incompatibility group strongly correlates with transfer efficiency. Our findings offer new insights into the determinants of plasmid mobility and have implications for the development of treatments that target HGT.
Collapse
Affiliation(s)
- Jonathan H. Bethke
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Adam Davidovich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Li Cheng
- BGI-Shenzhen, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Allison J. Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Joshua T. Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Vance G. Fowler
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lingchong You
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
36
|
Morikawa K, Ushijima Y, Ohniwa RL, Miyakoshi M, Takeyasu K. What Happens in the Staphylococcal Nucleoid under Oxidative Stress? Microorganisms 2019; 7:microorganisms7120631. [PMID: 31795457 PMCID: PMC6956076 DOI: 10.3390/microorganisms7120631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
The evolutionary success of Staphylococcus aureus as an opportunistic human pathogen is largely attributed to its prominent abilities to cope with a variety of stresses and host bactericidal factors. Reactive oxygen species are important weapons in the host arsenal that inactivate phagocytosed pathogens, but S. aureus can survive in phagosomes and escape from phagocytic cells to establish infections. Molecular genetic analyses combined with atomic force microscopy have revealed that the MrgA protein (part of the Dps family of proteins) is induced specifically in response to oxidative stress and converts the nucleoid from the fibrous to the clogged state. This review collates a series of evidences on the staphylococcal nucleoid dynamics under oxidative stress, which is functionally and physically distinct from compacted Escherichia coli nucleoid under stationary phase. In addition, potential new roles of nucleoid clogging in the staphylococcal life cycle will be proposed.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| | - Masatoshi Miyakoshi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
- Correspondence: (K.M.); (R.L.O.); (K.T.)
| |
Collapse
|
37
|
Shimada T, Ogasawara H, Ishihama A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res 2019. [PMID: 29529243 PMCID: PMC5934670 DOI: 10.1093/nar/gky138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroshi Ogasawara
- Shinshu University, Research Center for Supports to Advanced Science, Division of Gene Research, Ueda, Nagano 386-8567, Japan.,Shinshu University, Research Center for Fungal and Microbial Dynamism, Kamiina, Nagano 399-4598, Japan
| | - Akira Ishihama
- Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
38
|
Martis B S, Forquet R, Reverchon S, Nasser W, Meyer S. DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria? Comput Struct Biotechnol J 2019; 17:1047-1055. [PMID: 31452857 PMCID: PMC6700405 DOI: 10.1016/j.csbj.2019.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.
Collapse
Affiliation(s)
- Shiny Martis B
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
39
|
MacArthur I, Belcher T, King JD, Ramasamy V, Alhammadi M, Preston A. The evolution of Bordetella pertussis has selected for mutations of acr that lead to sensitivity to hydrophobic molecules and fatty acids. Emerg Microbes Infect 2019; 8:603-612. [PMID: 30966996 PMCID: PMC6461096 DOI: 10.1080/22221751.2019.1601502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Whooping cough, or pertussis, is resurgent in numerous countries worldwide. This has renewed interest in Bordetella pertussis biology and vaccinology. The in vitro growth of B. pertussis has been a source of difficulty, both for the study of the organism and the production of pertussis vaccines. It is inhibited by fatty acids and other hydrophobic molecules. The AcrAB efflux system is present in many different bacteria and in combination with an outer membrane factor exports acriflavine and other small hydrophobic molecules from the cell. Here, we identify that the speciation of B. pertussis has selected for an Acr system that is naturally mutated and displays reduced activity compared to B. bronchiseptica, in which the system appears intact. Replacement of the B. pertussis locus with that of B. bronchiseptica conferred higher levels of resistance to growth inhibition by acriflavine and fatty acids. In addition, we identified that the transcription of the locus is repressed by a LysR-type transcriptional regulator. Palmitate de-represses the expression of the acr locus, dependent on the LysR regulator, strongly suggesting that it is a transcriptional repressor that is regulated by palmitate. It is intriguing that the speciation of B. pertussis has selected for a reduction in activity of the Acr efflux system that typically is regarded as protective to bacteria.
Collapse
Affiliation(s)
- Iain MacArthur
- a The Milner Centre for Evolution, University of Bath , Bath , UK.,b Department of Biology and Biochemistry , University of Bath , Bath , UK
| | - Thomas Belcher
- b Department of Biology and Biochemistry , University of Bath , Bath , UK
| | - Jerry D King
- b Department of Biology and Biochemistry , University of Bath , Bath , UK
| | - Vasantha Ramasamy
- b Department of Biology and Biochemistry , University of Bath , Bath , UK
| | - Munirah Alhammadi
- b Department of Biology and Biochemistry , University of Bath , Bath , UK
| | - Andrew Preston
- a The Milner Centre for Evolution, University of Bath , Bath , UK.,b Department of Biology and Biochemistry , University of Bath , Bath , UK
| |
Collapse
|
40
|
Rioualen C, Charbonnier-Khamvongsa L, Collado-Vides J, van Helden J. Integrating Bacterial ChIP-seq and RNA-seq Data With SnakeChunks. CURRENT PROTOCOLS IN BIOINFORMATICS 2019; 66:e72. [PMID: 30786165 PMCID: PMC7302399 DOI: 10.1002/cpbi.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Next-generation sequencing (NGS) is becoming a routine approach in most domains of the life sciences. To ensure reproducibility of results, there is a crucial need to improve the automation of NGS data processing and enable forthcoming studies relying on big datasets. Although user-friendly interfaces now exist, there remains a strong need for accessible solutions that allow experimental biologists to analyze and explore their results in an autonomous and flexible way. The protocols here describe a modular system that enable a user to compose and fine-tune workflows based on SnakeChunks, a library of rules for the Snakemake workflow engine. They are illustrated using a study combining ChIP-seq and RNA-seq to identify target genes of the global transcription factor FNR in Escherichia coli, which has the advantage that results can be compared with the most up-to-date collection of existing knowledge about transcriptional regulation in this model organism, extracted from the RegulonDB database. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claire Rioualen
- Aix-Marseille University, INSERM, Laboratory of Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Lucie Charbonnier-Khamvongsa
- Aix-Marseille University, INSERM, Laboratory of Theory and Approaches of Genome Complexity (TAGC), Marseille, France
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jacques van Helden
- Aix-Marseille University, INSERM, Laboratory of Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
41
|
Abstract
In the self-assembly process which drives the formation of cellular membranes, micelles, and capsids, a collection of separated subunits spontaneously binds together to form functional and more ordered structures. In this work, we study the statistical physics of self-assembly in a simpler scenario: the formation of dimers from a system of monomers. The properties of the model allow us to frame the microstate counting as a combinatorial problem whose solution leads to an exact partition function. From the associated equilibrium conditions, we find that such dimer systems come in two types: "search-limited" and "combinatorics-limited," only the former of which has states where partial assembly can be dominated by correct contacts. Using estimates of biophysical quantities in systems of single-stranded DNA dimerization, transcription factor and DNA interactions, and protein-protein interactions, we find that all of these systems appear to be of the search-limited type, i.e., their fully correct dimerization regimes are more limited by the ability of monomers to find one another in the constituent volume than by the combinatorial disadvantage of correct dimers. We derive the parameter requirements for fully correct dimerization and find that rather than the ratio of particle number and volume (i.e., number density) being the relevant quantity, it is the product of particle diversity and volume that is constrained. Ultimately, this work contributes to an understanding of self-assembly by using the simple case of a system of dimers to analytically study the combinatorics of assembly.
Collapse
Affiliation(s)
- Mobolaji Williams
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
42
|
Identification of new DNA-associated proteins from Waddlia chondrophila. Sci Rep 2019; 9:4885. [PMID: 30894592 PMCID: PMC6426960 DOI: 10.1038/s41598-019-40732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional regulation in Chlamydiae is still poorly understood. The absence until recently of genetic tools is the main cause of this gap. We discovered three new potential DNA-associated proteins of Waddlia chondrophila, a Chlamydia-related bacterium, using heparin chromatography coupled to mass spectrometry (Wcw_0377, Wcw_1456, and Wcw_1460). By ChIP-seq analysis, we determined the regulatory landscape of these three proteins and we showed that Wcw_0377 binds all along the genome whereas Wcw_1456 and _1460 possess a wide regulon with a large number of co-regulated genes. Wcw_1456 and Wcw_1460 interact with RpoD (σ66), emerging as potential RpoD regulators. On the other hand, Wcw_0377 is able to reach the host nucleus, where it might interact with eukaryotic histones through its putative chromatin-remodelling SWIB/MDM2 domain.
Collapse
|
43
|
Shimada T, Yamamoto K, Nakano M, Watanabe H, Schleheck D, Ishihama A. Regulatory role of CsqR (YihW) in transcription of the genes for catabolism of the anionic sugar sulfoquinovose (SQ) in Escherichia coli K-12. MICROBIOLOGY-SGM 2018; 165:78-89. [PMID: 30372406 DOI: 10.1099/mic.0.000740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units. De-repression of the yih operons was found to be under the control of SQ as inducer, but not of lactose, glucose or galactose. Furthermore, a mode of its cooperative DNA binding was suggested for YihW by atomic force microscopy. Hence, as a regulator of the catabolism of SQ, we renamed YihW as CsqR.
Collapse
Affiliation(s)
- Tomohiro Shimada
- 1Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Kaneyoshi Yamamoto
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| | - Masahiro Nakano
- 4Kyoto University, Institute for Frontier Life and Medical Sciences, Sakyo-ku, Kyoto, Japan
| | - Hiroki Watanabe
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - David Schleheck
- 5Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Akira Ishihama
- 3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| |
Collapse
|
44
|
Singh S, Sevalkar RR, Sarkar D, Karthikeyan S. Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis. FEBS J 2018; 285:4424-4444. [PMID: 30306715 DOI: 10.1111/febs.14676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/02/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
Abstract
The gene Rv1828 in Mycobacterium tuberculosis is shown to be essential for the pathogen and encodes for an uncharacterized protein. In this study, we have carried out biochemical and structural characterization of Rv1828 at the molecular level to understand its mechanism of action. The Rv1828 is annotated as helix-turn-helix (HTH)-type MerR family transcription regulator based on its N-terminal amino acid sequence similarity. The MerR family protein binds to a specific DNA sequence in the spacer region between -35 and -10 elements of a promoter through its N-terminal domain (NTD) and acts as transcriptional repressor or activator depending on the absence or presence of effector that binds to its C-terminal domain (CTD). A characteristic feature of MerR family protein is its ability to bind to 19 ± 1 bp DNA sequence in the spacer region between -35 and -10 elements which is otherwise a suboptimal length for transcription initiation by RNA polymerase. Here, we show the Rv1828 through its NTD binds to a specific DNA sequence that exists on its own as well as in other promoter regions. Moreover, the crystal structure of CTD of Rv1828, determined by single-wavelength anomalous diffraction method, reveals a distinctive dimerization. The biochemical and structural analysis reveals that Rv1828 specifically binds to an everted repeat through its winged-HTH motif. Taken together, we demonstrate that the Rv1828 encodes for a MerR family transcription regulator.
Collapse
Affiliation(s)
- Suruchi Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ritesh Rajesh Sevalkar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Dibyendu Sarkar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| |
Collapse
|
45
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
46
|
Shimada T, Momiyama E, Yamanaka Y, Watanabe H, Yamamoto K, Ishihama A. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12. FEMS Microbiol Lett 2018; 364:4566516. [PMID: 29087459 DOI: 10.1093/femsle/fnx220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eri Momiyama
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Yuki Yamanaka
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
47
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
48
|
Monteiro LMO, Arruda LM, Silva-Rocha R. Emergent Properties in Complex Synthetic Bacterial Promoters. ACS Synth Biol 2018; 7:602-612. [PMID: 29091423 DOI: 10.1021/acssynbio.7b00344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulation of gene expression in bacteria results from the interplay between hundreds of transcriptional factors (TFs) at target promoters. However, how the arrangement of binding sites for TFs generates the regulatory logic of promoters is not well-known. Here, we generated and fully characterized a library of synthetic complex promoters for the global regulators, CRP and IHF, in Escherichia coli, which are formed by a weak -35/-10 consensus sequence preceded by four combinatorial binding sites for these two TFs. Using this approach, we found that while cis-elements for CRP preferentially activate promoters when located immediately upstream of the promoter consensus, binding sites for IHF mainly function as "UP" elements and stimulate transcription in several different architectures in the absence of this protein. However, the combination of CRP- and IHF-binding sites resulted in emergent properties in these complex promoters, where the activity of combinatorial promoters cannot be predicted from the individual behavior of its components. Taken together, the results presented here add to the information on architecture-logic of complex promoters in bacteria.
Collapse
Affiliation(s)
- Lummy Maria Oliveira Monteiro
- Systems and Synthetic Biology Lab,
Ribeirao Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| | - Letícia Magalhães Arruda
- Systems and Synthetic Biology Lab,
Ribeirao Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Lab,
Ribeirao Preto Medical School, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
| |
Collapse
|
49
|
van der Stel AX, van de Lest CHA, Huynh S, Parker CT, van Putten JPM, Wösten MMSM. Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels. Environ Microbiol 2018; 20:1374-1388. [PMID: 29318721 DOI: 10.1111/1462-2920.14042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/06/2018] [Indexed: 12/28/2022]
Abstract
Bacteria have evolved different mechanisms to catabolize carbon sources from nutrient mixtures. They first consume their preferred carbon source, before others are used. Regulatory mechanisms adapt the metabolism accordingly to maximize growth and to outcompete other organisms. The human pathogen Campylobacter jejuni is an asaccharolytic Gram-negative bacterium that catabolizes amino acids and organic acids for growth. It prefers serine and aspartate as carbon sources, however it lacks all regulators known to be involved in regulating carbon source utilization in other organisms. In which manner C. jejuni adapts its metabolism towards the presence or absence of preferred carbon sources is unknown. In this study, we show with transcriptomic analysis and enzyme assays how C. jejuni adapts its metabolism in response to its preferred carbon sources. In the presence of serine as well as lactate and pyruvate C. jejuni inhibits the utilization of other carbon sources, by repressing the expression of a number of central metabolic enzymes. The regulatory proteins RacR, Cj1000 and CsrA play a role in the regulation of these metabolic enzymes. This metabolism dependent transcriptional repression correlates with an accumulation of intracellular succinate. Hence, we propose a demand-based catabolite repression mechanism in C. jejuni, depended on intracellular succinate levels.
Collapse
Affiliation(s)
| | - Chris H A van de Lest
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Steven Huynh
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Craig T Parker
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
CRISPR-Cas-Mediated Gene Silencing Reveals RacR To Be a Negative Regulator of YdaS and YdaT Toxins in Escherichia coli K-12. mSphere 2017; 2:mSphere00483-17. [PMID: 29205229 PMCID: PMC5700377 DOI: 10.1128/msphere.00483-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 01/05/2023] Open
Abstract
racR is an essential gene and one of the many poorly studied genes found on the rac prophage element that is present in many Escherichia coli genomes. Employing a CRISPR-based approach, we have silenced racR expression to various levels and elucidated its physiological consequences. We show that the downregulation of racR leads to upregulation of the adjacent ydaS-ydaT operon. Both YdaS and YdaT act as toxins by perturbing the cell division resulting in enhanced cell killing. This work establishes a physiological role for RacR, which is to keep the toxic effects of YdaS and YdaT in check and promote cell survival. We, thus, provide a rationale for the essentiality of racR in Escherichia coli K-12 strains. Bacterial genomes are rich in horizontally acquired prophages. racR is an essential gene located in the rac prophage that is resident in many Escherichia coli genomes. Employing a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-based gene silencing approach, we show that RacR is a negative regulator of the divergently transcribed and adjacent ydaS-ydaT operon in Escherichia coli K-12. Overexpression of YdaS and YdaT due to RacR depletion leads to cell division defects and decrease in survival. We further show that both YdaS and YdaT can act independently as toxins and that RacR serves to counteract the toxicity by tightly downregulating the expression of these toxins. IMPORTANCEracR is an essential gene and one of the many poorly studied genes found on the rac prophage element that is present in many Escherichia coli genomes. Employing a CRISPR-based approach, we have silenced racR expression to various levels and elucidated its physiological consequences. We show that the downregulation of racR leads to upregulation of the adjacent ydaS-ydaT operon. Both YdaS and YdaT act as toxins by perturbing the cell division resulting in enhanced cell killing. This work establishes a physiological role for RacR, which is to keep the toxic effects of YdaS and YdaT in check and promote cell survival. We, thus, provide a rationale for the essentiality of racR in Escherichia coli K-12 strains.
Collapse
|