1
|
Seddik RG, Shoukry AA, Rashidi FB, Salah-Eldin DS. Investigation on CT-DNA and Protein Interaction of New Pd(II) Complexes Involving Ceftazidime and 3-Amino-1,2,3-triazole: Synthesis, Characterization, Biological Impact, Anticancer Evaluation, and Molecular Docking Approaches. Chem Biodivers 2023; 20:e202301170. [PMID: 37850505 DOI: 10.1002/cbdv.202301170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Faculty of Basic Science, Galala University, 43511, Suze, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
2
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
3
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. A novel palladium(II) antitumor agent: Synthesis, characterization, DFT perspective, CT-DNA and BSA interaction studies via in-vitro and in-silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119215. [PMID: 33262078 DOI: 10.1016/j.saa.2020.119215] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Since numerous people annually pass away due to cancer, research in this field is essential. Thus a newly made and water like palladium(II) complex of formula [Pd(phen)(acac)]NO3, where phen is 1,10-phenanthroline and acac is acetylacetonato ligand, has been synthesized by the reaction between [Pd(phen)(H2O)2](NO3)2 and sodium salt of acetylacetone in the molar ratio of 1:1. It has been structurally characterized via the methods such as conductivity measurement, elemental analysis and spectroscopic methods (FT-IR, UV-Vis and 1H NMR). The geometry optimization of this complex at the DFT level of theory reveals that Pd(II) atom is situated in a square-planar geometry. The complex has been screened for its antitumor activity against K562 cancer cells which demonstrated efficacious activity. The interaction of above palladium(II) complex with CT-DNA as a target molecule for antitumor agents and BSA as a transport protein was studies by a variety of techniques. The results of UV-Vis absorption and fluorescence emission indicated that the Pd(II) complex interacts with EB + CT-DNA through hydrophobic and with BSA by hydrogen bonding and van der Waals forces at very low concentrations. In these processes, the fluorescence quenching mechanism of both the macromolecules seems to be the combined dynamic and static. The interaction was further supported for CT-DNA by carrying out the gel electrophoresis and viscosity measurement and for BSA by the circular dichroism and Förster resonance energy transfer experiments. Furthermore, results of partition coefficient determination showed that the [Pd(phen)(acac)]NO3 complex is more lipophilic than that of cisplatin. Moreover, molecular docking simulation confirms the obtained results from experimental tests and reveals that the complex tends to be located at the intercalation site of DNA and Sudlow's site I of BSA.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
4
|
Krueger E, Shim J, Fathizadeh A, Chang AN, Subei B, Yocham KM, Davis PH, Graugnard E, Khalili-Araghi F, Bashir R, Estrada D, Fologea D. Modeling and Analysis of Intercalant Effects on Circular DNA Conformation. ACS NANO 2016; 10:8910-7. [PMID: 27559753 PMCID: PMC5111899 DOI: 10.1021/acsnano.6b04876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The large-scale conformation of DNA molecules plays a critical role in many basic elements of cellular functionality and viability. By targeting the structural properties of DNA, many cancer drugs, such as anthracyclines, effectively inhibit tumor growth but can also produce dangerous side effects. To enhance the development of innovative medications, rapid screening of structural changes to DNA can provide important insight into their mechanism of interaction. In this study, we report changes to circular DNA conformation from intercalation with ethidium bromide using all-atom molecular dynamics simulations and characterized experimentally by translocation through a silicon nitride solid-state nanopore. Our measurements reveal three distinct current blockade levels and a 6-fold increase in translocation times for ethidium bromide-treated circular DNA as compared to untreated circular DNA. We attribute these increases to changes in the supercoiled configuration hypothesized to be branched or looped structures formed in the circular DNA molecule. Further evidence of the conformational changes is demonstrated by qualitative atomic force microscopy analysis. These results expand the current methodology for predicting and characterizing DNA tertiary structure and advance nanopore technology as a platform for deciphering structural changes of other important biomolecules.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Physics, Boise State University, Boise, ID, United States
- Department of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Jiwook Shim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arman Fathizadeh
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| | - A. Nicole Chang
- Department of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Basheer Subei
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| | - Katie M. Yocham
- Department of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Paul H. Davis
- Department of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Elton Graugnard
- Department of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | | | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - David Estrada
- Department of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID, United States
| |
Collapse
|
5
|
Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Shoukry AA, Mohamed MS. DNA-binding, spectroscopic and antimicrobial studies of palladium(II) complexes containing 2,2'-bipyridine and 1-phenylpiperazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:586-93. [PMID: 22864394 DOI: 10.1016/j.saa.2012.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/13/2012] [Accepted: 07/05/2012] [Indexed: 05/07/2023]
Abstract
With the purpose of evaluating the ability of Pd(II) complex to interact with DNA molecule as the main biological target, two new complexes [Pd(bpy)(OH(2))(2)] (1) and [Pd(Phenpip)(OH(2))(2)] (2), where (bpy=2,2'-bipyridine; Phenpip=1-phenylpiperazine), have been synthesized and the binding properties of these complexes with CT-DNA were investigated. The intrinsic binding constants (K(b)) calculated from UV-Vis absorption studies were 3.78×10(3) M(-1) and 4.14×10(3)M(-1) for complexes 1 and 2 respectively. Thermal denaturation has been systematically studied by spectrophotometric method and the calculated ΔT(m) was nearly 5 °C for each complex. All the results suggest an electrostatic and/or groove binding mode for the interaction between the complexes and CT-DNA. The redox behavior of the two complexes in the absence and in the presence of calf thymus DNA has been investigated by cyclic voltammetry. The cyclic voltammogram exhibits one quasi-reversible redox wave. The change in E(1/2), ΔE(p) and I(pc)/I(pa) supports that the two complexes exhibit strong binding to calf thymus DNA. Further insight into the binding of complexes with CT-DNA has been made by gel electrophoresis, where the binding of complexes is confirmed through decreasing the intensity of DNA bands. The two complexes have been screened for their antimicrobial activities using the disc diffusion method against some selected Gram-positive and Gram-negative bacteria. The activity data showed that both complexes were more active against Gram-negative than Gram-positive bacteria. It may be concluded that the antimicrobial activity of the compounds is related to cell wall structure of bacteria.
Collapse
Affiliation(s)
- Azza A Shoukry
- Department of Chemistry, Inorganic Chemistry Speciality, Faculty of Science, Cairo University, Egypt
| | | |
Collapse
|
7
|
Magae Y. Molecular characterization of a novel mycovirus in the cultivated mushroom, Lentinula edodes. Virol J 2012; 9:60. [PMID: 22390839 PMCID: PMC3365873 DOI: 10.1186/1743-422x-9-60] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 03/06/2012] [Indexed: 11/13/2022] Open
Abstract
Background In the 1970s, mycoviruses were identified that infected the edible mushroom Lentinula edodes (shiitake), but they were not regarded as causal agents for mushroom diseases. None of their genes has been sequenced. In this study, the dsRNA genome of a mycovirus recently found in a shiitake commercial strain was sequenced and its molecular structure was characterized. Methods A cDNA library was constructed from a dsRNA purified from the fruiting body of L. edodes. The virus was tentatively named L. edodes mycovirus HKB (LeV). Based on the deduced RNA-dependent RNA polymerase (RdRp) sequence, phylogenetic analysis of LeV was conducted. Because no virion particles associated with the dsRNA were observed by electron microscopic observation, atomic force microscopy (AFM) observation was chosen for achieving molecular imaging of the virus. Results The 11,282-bp genome of LeV was obtained. The genome encoded two open reading frames (ORFs). ORF1 coded for a hypothetical protein and ORF2 for a putative RdRp, respectively. In addition, a region coding for a NUDIX domain was present in ORF1. There was a 62-bp intergenic region between ORF1 and RdRp. Similarity with coat protein of mycoviruses was not found within the whole sequence. Based on phylogenetic analysis of the putative RdRp sequence, LeV grouped into a clade with dsRNA found in the basidiomycetes Phlebiopsis gigantea and Helicobasidium mompa. The clade was placed apart from the Totiviridae and Chrysoviridae families. As suggested from the genome sequence, AFM revealed that the structure of LeV was linear unencapsidated dsRNA. Conclusions The results suggest that LeV represents a novel family of mycoviruses, found thus far only among the basidiomycetes.
Collapse
Affiliation(s)
- Yumi Magae
- Department of Applied Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| |
Collapse
|
8
|
Mohamed MS, Shoukry AA, Ali AG. Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2,2'-bipyridine and 2,2'-dipyridylamine. The DNA-binding studies and biological activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 86:562-570. [PMID: 22153742 DOI: 10.1016/j.saa.2011.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
In this study two new complexes [Cu(bpy)(Gly)Cl]·2H(2)O (1) and [Cu(dpa)(Gly)Cl]·2H(2)O (2) (bpy=2,2'-bipyridine; dpa=2,2'-dipyridylamine, Gly=glycine) have been synthesized and characterized by elemental analysis, IR, TGA, UV-vis and magnetic susceptibility measurements. The binding properties of the complexes with CT-DNA were investigated by electronic absorption spectra. The intrinsic binding constants (K(b)) calculated from UV-vis absorption studies were 1.84 × 10(3) M(-1) and 3.1 × 10(3) M(-1) for complexes 1 and 2 respectively. Thermal denaturation has been systematically studied by spectrophotometric method and the calculated ΔT(m) was nearly 5 °C for each complex. All the results suggest that the interaction modes between the complexes and CT-DNA were electrostatic and/or groove binding. The redox behavior of the two complexes was investigated by cyclic voltammetry. Both complexes, in presence and absence of CT-DNA show a quasi-reversible wave corresponding to Cu(II)/Cu(I) redox couple. The change in E(1/2), ΔE and I(pc)/I(pa) ascertain the interaction of complexes 1 and 2 with CT-DNA. Further insight into the binding of complexes with CT-DNA has been made by gel electrophoresis, where the binding of complexes is confirmed through decreasing the mobility and intensity of DNA bands. In addition, the antitumor activity of the complexes was tested on two cancer cell lines; the breast cancer (MCF7) and the human hepatocellular carcinoma (HEPG2), as well as one normal cell line; the human normal melanocytes (HFB4). The results showed that complex 1 was more potent antitumor agent than complex 2. The in-vitro antimicrobial activity of the two complexes was carried out using the disc diffusion method against different species of pathogenic bacteria and fungi. The activity data showed that complex 2 was more active in inhibiting the growth of the tested organisms.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Egypt
| | | | | |
Collapse
|
9
|
Sagan SM, Nasheri N, Luebbert C, Pezacki JP. The Efficacy of siRNAs against Hepatitis C Virus Is Strongly Influenced by Structure and Target Site Accessibility. ACTA ACUST UNITED AC 2010; 17:515-27. [DOI: 10.1016/j.chembiol.2010.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 03/31/2010] [Accepted: 04/12/2010] [Indexed: 02/05/2023]
|
10
|
Maeda Y, Gao Y, Nagai M, Nakayama Y, Ichinose T, Kuroda R, Umemura K. Study of the nanoscopic deformation of an annealed nafion film by using atomic force microscopy and a patterned substrate. Ultramicroscopy 2008; 108:529-35. [PMID: 17897784 DOI: 10.1016/j.ultramic.2007.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/18/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
We demonstrated the repetitive imaging of the same area of a nafion film before and after annealing by using atomic force microscopy (AFM). In order to find the exact same area of the same sample after changing the cantilever and reattaching the sample, a micropatterned substrate was developed. A micropattern with a 250-500 microm pitch was prepared on the backside of a transparent glass substrate. This pattern includes various signs such as colored letters and numbers at the center of each lattice of the pattern. The nanostructures fabricated by AFM nanolithography on a nafion film using this new method were successfully characterized before and after annealing (over 100 degrees C). The AFM images clearly showed that the nanostructures on a nafion film were dramatically changed by annealing. The data indicated an evidence to understand why the nafion fuel cell does not work well at high temperatures. Our method is probably effective for the study of nanoscopic dynamics in various surface structures.
Collapse
Affiliation(s)
- Yuta Maeda
- Graduate School of Energy Science and Nuclear Engineering, Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Turner YTA, Roberts CJ, Davies MC. Scanning probe microscopy in the field of drug delivery. Adv Drug Deliv Rev 2007; 59:1453-73. [PMID: 17920719 DOI: 10.1016/j.addr.2007.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/10/2007] [Indexed: 01/14/2023]
Abstract
The scanning probe microscopes (SPMs) are a group of powerful surface sensitive instruments which when used complimentarily with traditional analytical techniques can provide invaluable, definitive information aiding our understanding and development of drug delivery systems. In this review, the main use of the SPMs (particularly the atomic force microscopy (AFM)) and their successes in forwarding drug delivery are highlighted and categorised into two interlinked sections namely, preformulation and formulation. SPM in preformulation concentrates on applications in pharmaceutical processes including, crystal morphology and modification, discriminating polymorphs, drug dissolution and release, solid state stability and interaction. The ability of the AFM to detect forces between different surfaces and at the same time to operate in liquids or controlled humidity and defined temperatures has also been particularly useful in the study of drug delivery. In formulation, the use of SPMs in different drug delivery systems is discussed in light of different host entry routes.
Collapse
Affiliation(s)
- Ya Tsz A Turner
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
12
|
Noestheden M, Hu Q, Tonary AM, Tay LL, Pezacki JP. Evaluation of chemical labeling strategies for monitoring HCV RNA using vibrational microscopy. Org Biomol Chem 2007; 5:2380-9. [PMID: 17637957 DOI: 10.1039/b704812b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Raman and coherent anti-Stokes Raman scattering (CARS) microscopies have the potential to aid in detailed longitudinal studies of RNA localization. Here, we evaluate the use of carbon-deuterium and benzonitrile functional group labels as contrast agents for vibrational imaging of hepatitis C virus (HCV) replicon RNA. Dynamic light scattering and atomic force microscopy were used to evaluate the structural consequences of altering HCV subgenomic replicon RNA. Modification with benzonitrile labels caused the replicon RNA tertiary structure to partially unfold. Conversely, deuterium-modified replicon RNA was structurally similar to unmodified replicon RNA. Furthermore, the deuterated replicon RNA provided promising vibrational contrast in Raman imaging experiments. The functional effect of modifying subgenomic HCV replicon RNA was evaluated using the luciferase gene as a genetic reporter of translation. Benzonitrile labeling of the replicon RNA prevented translation in cell-based luciferase assays, while the deuterated replicon RNA retained both translation and replication competency. Thus, while the scattering cross-section for benzonitrile labels was higher, only carbon-deuterium labels proved to be non-perturbative to the function of HCV replicon RNA.
Collapse
Affiliation(s)
- Matthew Noestheden
- Steacie Institute for Molecular Sciences, The National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
13
|
Li WG, Li QH, Tan Z. Detection of telomere damage as a result of strand breaks in telomeric and subtelomeric DNA. Electrophoresis 2005; 26:533-6. [PMID: 15690454 DOI: 10.1002/elps.200410123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Telomeres are the tandem repetitive DNA sequences at both ends of a chromosome with a repeating unit of TTAGGG. The integrity of a telomere is crucial to chromosomal stability and cellular viability. Damages to telomere DNA disrupt telomere integrity and accelerate telomere shortening. We describe a method for the assessment of strand breaks in the telomere/subtelomere region in cultured cells. Cells were embedded in agarose plugs and subjected to lysis and alkaline treatment to relax the DNA double helix. The telomere fragments as the result of strand breaks in the telomere/subtelomere region were then separated from the genomic DNA by electrophoresis, blotted onto membranes, and detected by a probe specific to the telomere sequence. Because of the large content of the telomere in human cells and the fact that telomere DNA is much more prone to damage than the bulk genomic DNA, the analysis may serve as a good indication of general DNA damage as well.
Collapse
Affiliation(s)
- Wei-guo Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
| | | | | |
Collapse
|
14
|
Abdelhady HG, Allen S, Davies MC, Roberts CJ, Tendler SJB, Williams PM. Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I. Nucleic Acids Res 2003; 31:4001-5. [PMID: 12853616 PMCID: PMC165977 DOI: 10.1093/nar/gkg462] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The need to protect DNA from in vivo degradation is one of the basic tenets of therapeutic gene delivery and a standard test for any proposed delivery vector. The currently employed in vitro tests, however, presently provide no direct link between the molecular structure of the vector complexes and their success in this role, thus hindering the rational design of successful gene delivery agents. Here we apply atomic force microscopy (AFM) in liquid to visualise at the molecular scale and in real time, the effect of DNase I on generation 4 polyamidoamine dendrimers (G4) complexed with DNA. These complexes are revealed to be dynamic in nature showing a degree of mobility, in some cases revealing the addition and loss of dendrimers to individual complexes. The formation of the G4-DNA complexes is observed to provide a degree of protection to the DNA. This protection is related to the structural morphology of the formed complex, which is itself shown to be dependent on the dendrimer loading and the time allowed for complex formation.
Collapse
Affiliation(s)
- Hosam G Abdelhady
- Laboratory of Biophysics and Surface Analysis, School of Pharmaceutical Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
15
|
Mizuta R, Mizuta M, Kitamura D. Atomic force microscopy analysis of rolling circle amplification of plasmid DNA. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2003; 66:175-81. [PMID: 12846557 DOI: 10.1679/aohc.66.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rolling circle amplification (RCA) of plasmid DNA using random hexamers and bacteriophage phi29 DNA polymerase is an increasingly applied technique for amplifying template DNA for DNA sequencing. We analyzed this RCA reaction at a single-molecular level by atomic force microscopy (AFM) and found that multibranched amplified products containing tandem repeats of a circle unit are formed within 1 h. We also used the RCA product of a GFP expression vector for the protein expression in cells, and found that the crude RCA product from one bacterial colony is sufficient for the GFP expression. Thus, the RCA reaction is useful in amplifying DNA for both DNA sequencing and protein expression.
Collapse
Affiliation(s)
- Ryushin Mizuta
- Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | |
Collapse
|
16
|
Abstract
Single-strand-specific nucleases are multifunctional enzymes and widespread in distribution. Their ability to act selectively on single-stranded nucleic acids and single-stranded regions in double-stranded nucleic acids has led to their extensive application as probes for the structural determination of nucleic acids. Intracellularly, they have been implicated in recombination, repair and replication, whereas extracellular enzymes have a role in nutrition. Although more than 30 single-strand-specific nucleases from various sources have been isolated till now, only a few enzymes (S1 nuclease from Aspergillus oryzae, P1 nuclease from Penicillium citrinum and nucleases from Alteromonas espejiana, Neurospora crassa, Ustilago maydis and mung bean) have been characterized to a significant extent. Recently, some of these enzymes have been cloned, their crystal structures solved and their interactions with different substrates have been established. The detection, purification, characteristics, structure-function correlations, biological role and applications of single-strand-specific nucleases are reviewed.
Collapse
Affiliation(s)
- Neelam A Desai
- Division of Biochemical Sciences, National Chemical Laboratory, 411008, Pune, India
| | | |
Collapse
|
17
|
Abstract
Double-stranded DNA molecules were patterned by selective adsorption to aminosilane patterns on mica surfaces. Line patterns with 10 microm spacing were made by photolithography and transferred to a polymer stamp. The stamp was then used for applying aminosilane molecules by microcontact-printing technique on mica substrates. We applied DNA in Tris-EDTA (TE) buffer solution on the patterned substrate, and incubated it for 5 min at room temperature. The sample was then rinsed with pure water, and dried with nitrogen gas. Tapping mode force microscopy showed that DNA was adsorbed selectively on the aminosilanized parts of the mica substrate. We also tried to bridge two aluminum electrodes with DNA using AC electrophoresis.
Collapse
Affiliation(s)
- M Fujita
- National Institute of Advanced Industrial Science and Technology, Nanotechnology Research Institute, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
18
|
Nagami F, Zuccheri G, Samorì B, Kuroda R. Time-lapse imaging of conformational changes in supercoiled DNA by scanning force microscopy. Anal Biochem 2002; 300:170-6. [PMID: 11779108 DOI: 10.1006/abio.2001.5435] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the scanning force microscopy (SFM) images of supercoiled DNA on untreated mica thus far reported have not shown tight plectonemic structure seen by electron microscopy, but instead less coiled molecules and sometimes a partly "condensed" state with intimate chain-chain interactions. By observing time-lapse images of conformational changes of DNA induced by decreasing ionic strength of imaging buffer in solution SFM, we could show that the process of water rinsing, an indispensable step for preparation of dried samples, may be responsible for some of the conformational anomalies in the images previously reported. We have studied several protocols to observe supercoiled DNA molecules by SFM and discuss the merits and the demerits. Images obtained following uranyl acetate treatment may be ideal for the detection of DNA damage, as the supercoiled and nicked forms are easily distinguishable.
Collapse
Affiliation(s)
- Fuji Nagami
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|