1
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
2
|
Zhao Z, Zhang H, Shu D, Montemagno C, Ding B, Li J, Guo P. Construction of Asymmetrical Hexameric Biomimetic Motors with Continuous Single-Directional Motion by Sequential Coordination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201601600. [PMID: 27709780 PMCID: PMC5217803 DOI: 10.1002/smll.201601600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/12/2016] [Indexed: 05/21/2023]
Abstract
The significance of bionanomotors in nanotechnology is analogous to mechanical motors in daily life. Here the principle and approach for designing and constructing biomimetic nanomotors with continuous single-directional motion are reported. This bionanomotor is composed of a dodecameric protein channel, a six-pRNA ring, and an ATPase hexamer. Based on recent elucidations of the one-way revolving mechanisms of the phi29 double-stranded DNA (dsDNA) motor, various RNA and protein elements are designed and tested by single-molecule imaging and biochemical assays, with which the motor with active components has been constructed. The motor motion direction is controlled by three operation elements: (1) Asymmetrical ATPase with ATP-interacting domains for alternative DNA binding/pushing regulated by an arginine finger in a sequential action manner. The arginine finger bridges two adjacent ATPase subunits into a non-covalent dimer, resulting in an asymmetrical hexameric complex containing one dimer and four monomers. (2) The dsDNA translocation channel as a one-way valve. (3) The hexameric pRNA ring geared with left-/right-handed loops. Assessments of these constructs reveal that one inactive subunit of pRNA/ATPase is sufficient to completely block motor function (defined as K = 1), implying that these components work sequentially based on the principle of binomial distribution and Yang Hui's triangle.
Collapse
Affiliation(s)
- Zhengyi Zhao
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hui Zhang
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Dan Shu
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Carlo Montemagno
- Chemical and Materials Engineering and Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jingyuan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Beijing, China
| | - Peixuan Guo
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor. Mol Cell Biol 2016; 36:2514-23. [PMID: 27457616 PMCID: PMC5021374 DOI: 10.1128/mcb.00142-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022] Open
Abstract
Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images.
Collapse
|
4
|
Structure and mechanism of the ATPase that powers viral genome packaging. Proc Natl Acad Sci U S A 2015; 112:E3792-9. [PMID: 26150523 DOI: 10.1073/pnas.1506951112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model's predictive power by identifying the motor's DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.
Collapse
|
5
|
Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 2015; 32:853-72. [PMID: 24913057 DOI: 10.1016/j.biotechadv.2014.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/15/2022]
Abstract
Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantageous for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy.
Collapse
|
6
|
Nand A, Singh V, Pérez JB, Tyagi D, Cheng Z, Zhu J. In situ protein microarrays capable of real-time kinetics analysis based on surface plasmon resonance imaging. Anal Biochem 2014; 464:30-5. [DOI: 10.1016/j.ab.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
7
|
Guo P, Schwartz C, Haak J, Zhao Z. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation. Virology 2013; 446:133-43. [PMID: 24074575 PMCID: PMC3941703 DOI: 10.1016/j.virol.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/27/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022]
Abstract
Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, and Markey Cancer Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
8
|
Schwartz C, De Donatis GM, Fang H, Guo P. The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily. Virology 2013; 443:20-7. [PMID: 23706809 PMCID: PMC3700617 DOI: 10.1016/j.virol.2013.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/01/2013] [Accepted: 04/07/2013] [Indexed: 12/21/2022]
Abstract
The AAA+ superfamily of proteins is a class of motor ATPases performing a wide range of functions that typically exist as hexamers. The ATPase of phi29 DNA packaging motor has long been a subject of debate in terms of stoichiometry and mechanism of action. Here, we confirmed the stoichiometry of phi29 motor ATPase to be a hexamer and provide data suggesting that the phi29 motor ATPase is a member of the classical hexameric AAA+ superfamily. Native PAGE, EMSA, capillary electrophoresis, ATP titration, and binomial distribution assay show that the ATPase is a hexamer. Mutations in the known Walker motifs of the ATPase validated our previous assumptions that the protein exists as another member of this AAA+ superfamily. Our data also supports the finding that the phi29 DNA packaging motor uses a revolution mechanism without rotation or coiling (Schwartz et al., this issue).
Collapse
Affiliation(s)
| | | | | | - Peixuan Guo
- Nanobiotechnology Center, College of Pharmacy and Markey Cancer Center,
University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 2013; 443:28-39. [PMID: 23763768 PMCID: PMC3850062 DOI: 10.1016/j.virol.2013.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 01/28/2023]
Abstract
It has long been believed that the DNA-packaging motor of dsDNA viruses
utilizes a rotation mechanism. Here we report a revolution rather than rotation
mechanism for the bacteriophage phi29 DNA packaging motor. The phi29 motor
contains six copies of the ATPase (Schwartz et al., this issue); ATP binding to
one ATPase subunit stimulates the ATPase to adopt a conformation with a high
affinity for dsDNA. ATP hydrolysis induces a new conformation with a lower
affinity, thus transferring the dsDNA to an adjacent subunit by a power stroke.
DNA revolves unidirectionally along the hexameric channel wall of the ATPase,
but neither the dsDNA nor the ATPase itself rotates along its own axis. One ATP
is hydrolyzed in each transitional step, and six ATPs are consumed for one
helical turn of 360°. Transition of the same dsDNA chain along the
channel wall, but at a location 60° different from the last contact,
urges dsDNA to move forward 1.75 base pairs each step (10.5 bp per
turn/6ATP=1.75 bp per ATP). Each connector subunit tilts with a
left-handed orientation at a 30° angle in relation to its vertical axis
that runs anti-parallel to the right-handed dsDNA helix, facilitating the
one-way traffic of dsDNA. The connector channel has been shown to cause four
steps of transition due to four positively charged lysine rings that make direct
contact with the negatively charged DNA phosphate backbone. Translocation of
dsDNA into the procapsid by revolution avoids the difficulties during rotation
that are associated with DNA supercoiling. Since the revolution mechanism can
apply to any stoichiometry, this motor mechanism might reconcile the
stoichiometry discrepancy in many phage systems where the ATPase has been found
as a tetramer, hexamer, or nonamer.
Collapse
|
10
|
Zhao Z, Khisamutdinov E, Schwartz C, Guo P. Mechanism of one-way traffic of hexameric phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS NANO 2013; 7:4082-92. [PMID: 23510192 PMCID: PMC3667633 DOI: 10.1021/nn4002775] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 05/21/2023]
Abstract
The importance of nanomotors in nanotechnology is akin to that of mechanical engines to daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their hexagonal arrangement facilitates bottom-up assembly for stable structures. The bacteriophage phi29 DNA translocation motor contains three coaxial rings: a dodecamer channel, a hexameric ATPase ring, and a hexameric pRNA ring. The viral DNA packaging motor has been believed to be a rotational machine. However, we discovered a revolution mechanism without rotation. By analogy, the earth revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is facilitated by five factors: (1) ATPase changes its conformation to revolve dsDNA within a hexameric channel in one direction; (2) the 30° tilt of the channel subunits causes an antiparallel arrangement between two helices of dsDNA and channel wall to advance one-way translocation; (3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal; (4) 5'-3' single-direction movement of one DNA strand along the channel wall ensures single direction; and (5) four electropositive layers interact with one strand of the electronegative dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. The discovery of a riding system along one strand provides a motion nanosystem for cargo transportation and a tool for studying force generation without coiling, friction, and torque. The revolution of dsDNA among 12 subunits offers a series of recognition sites on the DNA backbone to provide additional spatial variables for nucleotide discrimination for sensing applications.
Collapse
|
11
|
Zhang H, Schwartz C, De Donatis GM, Guo P. "Push through one-way valve" mechanism of viral DNA packaging. Adv Virus Res 2012; 83:415-65. [PMID: 22748815 DOI: 10.1016/b978-0-12-394438-2.00009-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Double-stranded (ds)DNA viruses package their genomic DNA into a procapsid using a force-generating nanomotor powered by ATP hydrolysis. Viral DNA packaging motors are mainly composed of the connector channel and two DNA packaging enzymes. In 1998, it was proposed that viral DNA packaging motors exercise a mechanism similar to the action of AAA+ ATPases that assemble into ring-shaped oligomers, often hexamers, with a central channel (Guo et al. Molecular Cell, 2:149). This chapter focuses on the most recent findings in the bacteriophage ϕ29 DNA packaging nanomotor to address this intriguing notion. Almost all dsDNA viruses are composed entirely of protein, but in the unique case of ϕ29, packaging RNA (pRNA) plays an intermediate role in the packaging process. Evidence revealed that DNA packaging is accomplished via a "push through one-way valve" mechanism. The ATPase gp16 pushes dsDNA through the connector channel section by section into the procapsid. The dodecameric connector channel functions as a one-way valve that only allows dsDNA to enter but not exit the procapsid during DNA packaging. Although the roles of the ATPase gp16 and the motor connector channel are separate and independent, pRNA bridges these two components to ensure the coordination of an integrated motor. ATP induces a conformational change in gp16, leading to its stronger binding to dsDNA. Furthermore, ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action used to push dsDNA through the connector channel. It was found unexpectedly that by mutating the basic lysine rings of the connector channel or by changing the pH did not measurably impair DNA translocation or affect the one-way traffic property of the channel, suggesting that the positive charges in the lysine ring are not essential in gearing the dsDNA. The motor channel exercises three discrete, reversible, and controllable steps of gating, with each step altering the channel size by 31% to control the direction of translocation of dsDNA. Many DNA packaging models have been contingent upon the number of base pairs packaged per ATP relative to helical turns for B-type DNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five, or six discrete steps of DNA translocation. The "push through one-way valve" mechanism renews the perception of dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP. Application of the DNA packaging motor in nanotechnology and nanomedicine is also addressed. Comparison with nine other DNA packaging models revealed that the "push through one-way valve" is the most agreeable mechanism to interpret most of the findings that led to historical models. The application of viral DNA packaging motors is also discussed.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
12
|
Zhang X, Tung CS, Sowa GZ, Hatmal MM, Haworth IS, Qin PZ. Global structure of a three-way junction in a phi29 packaging RNA dimer determined using site-directed spin labeling. J Am Chem Soc 2012; 134:2644-52. [PMID: 22229766 DOI: 10.1021/ja2093647] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (H(T) and H(L)) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which H(T) and H(L) stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
13
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Cuervo A, Carrascosa JL. Viral connectors for DNA encapsulation. Curr Opin Biotechnol 2011; 23:529-36. [PMID: 22186221 DOI: 10.1016/j.copbio.2011.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 01/04/2023]
Abstract
Viral connectors are key components of the life cycle of bacteriophages and other viral systems. They participate in procapsid assembly, and they are instrumental in DNA packaging and release. Connector proteins build hollow cylindrical dodecamers that show an overall morphological similarity among different viral systems including a remarkable conserved domain in the central part of the protein. These domains build the wall of the channel forming a 24 α-helices stretch together with an α-β extension. A similar α-helical arrangement is found in other unspecific DNA translocating complexes, suggesting the existence of a common structural signature for channel formation. Preliminary experiments suggest that connectors might be ideal candidates as nanopores for synthetic applications in nanotechnology.
Collapse
Affiliation(s)
- Ana Cuervo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CNB-CSIC, c/Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
15
|
Schwartz C, Fang H, Huang L, Guo P. Sequential action of ATPase, ATP, ADP, Pi and dsDNA in procapsid-free system to enlighten mechanism in viral dsDNA packaging. Nucleic Acids Res 2011; 40:2577-86. [PMID: 22110031 PMCID: PMC3315319 DOI: 10.1093/nar/gkr841] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many cells and double-stranded DNA (dsDNA) viruses contain an AAA(+) ATPase that assembles into oligomers, often hexamers, with a central channel. The dsDNA packaging motor of bacteriophage phi29 also contains an ATPase to translocate dsDNA through a dodecameric channel. The motor ATPase has been investigated substantially in the context of the entire procapsid. Here, we report the sequential action between the ATPase and additional motor components. It is suggested that the contact of ATPase to ATP resulted in its conformational change to a higher binding affinity toward dsDNA. It was found that ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action that is speculated to push dsDNA to pass the connector channel. Our results suggest that dsDNA packaging goes through a combined effort of both the gp16 ATPase for pushing and the channel as a one-way valve to control the dsDNA translocation direction. Many packaging models have previously been proposed, and the packaging mechanism has been contingent upon the number of nucleotides packaged per ATP relative to the 10.5 bp per helical turn for B-type dsDNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five or six discrete steps of dsDNA translocation. Combination of the two distinct roles of gp16 and connector renews the perception of previous dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP.
Collapse
Affiliation(s)
- Chad Schwartz
- The School of Environmental, Energy, Biological, and Medical Engineering (SEEBME), Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
16
|
Lee TJ, Zhang H, Chang CL, Savran C, Guo P. Engineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2453-9. [PMID: 19743427 PMCID: PMC2837281 DOI: 10.1002/smll.200900467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The bacteriophage phi29 DNA packaging motor contains a protein core with a central channel comprising twelve copies of re-engineered gp10 protein geared by six copies of packaging RNA (pRNA) and a DNA packaging protein gp16 with unknown copies. Incorporation of this nanomotor into a nanodevice would be beneficial for many applications. To this end, extension and modification of the motor components are necessary for the linkage of this motor to other nanomachines. Here the re-engineering of the motor DNA packaging protein gp16 by extending its length and doubling its size using a fusion protein technique is reported. The modified motor integrated with the eGFP-gp16 maintains the ability to convert the chemical energy from adenosine triphosphate (ATP) hydrolysis to mechanical motion and package DNA. The resulting DNA-filled capsid is subsequently converted into an infectious virion. The extended part of the gp16 arm is a fluorescent protein eGFP, which serves as a marker for tracking the motor in single-molecule studies. The activity of the re-engineered motor with eGFP-gp16 is also observed directly with a bright-field microscope via its ability to transport a 2-microm-sized cargo bound to the DNA.
Collapse
Affiliation(s)
- Tae Jin Lee
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| | - Hui Zhang
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| | - Chun-Li Chang
- School of Electrical and Computer Engineering, School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (USA)
| | - Cagri Savran
- School of Electrical and Computer Engineering, School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (USA)
| | - Peixuan Guo
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| |
Collapse
|
17
|
Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann Biomed Eng 2009; 37:2064-81. [PMID: 19495981 DOI: 10.1007/s10439-009-9723-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/20/2009] [Indexed: 01/16/2023]
Abstract
Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications.
Collapse
|
18
|
Strand and nucleotide-dependent ATPase activity of gp16 of bacterial virus phi29 DNA packaging motor. Virology 2008; 380:69-74. [PMID: 18701124 DOI: 10.1016/j.virol.2008.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/06/2008] [Accepted: 07/06/2008] [Indexed: 11/20/2022]
Abstract
Similar to the assembly of other dsDNA viruses, bacterial virus phi29 uses a motor to translocate its DNA into a procapsid, with the aid of protein gp16 that binds to pRNA 5'/3' helical region. To investigate the mechanism of the motor action, the kinetics of the ATPase activity of gp16 was evaluated as a function of DNA structure (ss- or ds-stranded) or chemistry (purine or pyrimidine). The k(cat) and K(m) in the absence of DNA was 0.016 s(-1) and 351.0 microM, respectively, suggesting that gp16 itself is a slow-ATPase with a low affinity for substrate. The affinity of gp16 for ATP was greatly boosted by the presence of DNA or pRNA, but the ATPase rate was strongly affected by DNA structure and chemistry. The order of ATPase stimulation is poly d(pyrimidine)>dsDNA>poly d(purine), which agreed with the order of the DNA binding to gp16, as revealed by single molecule fluorescence microscopy. Interestingly, the stimulation degree by phi29 pRNA was similar to that of poly d(pyrimidine). The results suggest that pRNA accelerates gp16 ATPase activity more significantly than genomic dsDNA, albeit both pRNA and genomic DNA are involved in the contact with gp16 during DNA packaging.
Collapse
|
19
|
Poliakov A, Jardine P, Prevelige PE. Hydrogen/deuterium exchange on protein solutions containing nucleic acids: utility of protamine sulfate. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2423-2428. [PMID: 18634111 DOI: 10.1002/rcm.3627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Obtaining global hydrogen/deuterium (H/D) exchange data on proteins is an important first step in amide proton exchange experiments. Important information such as the mode of exchange, the cooperativity of folding/unfolding reactions, and the effects of ligand binding can be readily obtained in global exchange experiments. Many interesting biological systems are complexes containing both proteins and nucleic acids. The low pH conditions required to quench H/D exchange reactions result in the formation of stable protein/nucleic acid precipitates which interfere with the liquid chromatography step of the experiment and preclude obtaining mass spectrometric data. In this work we show that the precipitation of proteins and nucleic acids is electrostatic in nature and can be prevented by high ionic strength and by removing nucleic acids by protamine sulfate. Using protamine sulfate in quenching solution, we were able to obtain global H/D data with protein samples containing large amounts of DNA or RNA.
Collapse
Affiliation(s)
- Anton Poliakov
- Department of Microbiology, University of Alabama at Birmingham, 1900 University Boulevard, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
20
|
Koti JS, Morais MC, Rajagopal R, Owen BAL, McMurray CT, Anderson DL. DNA packaging motor assembly intermediate of bacteriophage phi29. J Mol Biol 2008; 381:1114-32. [PMID: 18674782 DOI: 10.1016/j.jmb.2008.04.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 12/30/2022]
Abstract
Unraveling the structure and assembly of the DNA packaging ATPases of the tailed double-stranded DNA bacteriophages is integral to understanding the mechanism of DNA translocation. Here, the bacteriophage phi29 packaging ATPase gene product 16 (gp16) was overexpressed in soluble form in Bacillus subtilis (pSAC), purified to near homogeneity, and assembled to the phi29 precursor capsid (prohead) to produce a packaging motor intermediate that was fully active in in vitro DNA packaging. The formation of higher oligomers of the gp16 from monomers was concentration dependent and was characterized by analytical ultracentrifugation, gel filtration, and electron microscopy. The binding of multiple copies of gp16 to the prohead was dependent on the presence of an oligomer of 174- or 120-base prohead RNA (pRNA) fixed to the head-tail connector at the unique portal vertex of the prohead. The use of mutant pRNAs demonstrated that gp16 bound specifically to the A-helix of pRNA, and ribonuclease footprinting of gp16 on pRNA showed that gp16 protected the CC residues of the CCA bulge (residues 18-20) of the A-helix. The binding of gp16 to the prohead/pRNA to constitute the complete and active packaging motor was confirmed by cryo-electron microscopy three-dimensional reconstruction of the prohead/pRNA/gp16 complex. The complex was capable of supercoiling DNA-gp3 as observed previously for gp16 alone; therefore, the binding of gp16 to the prohead, rather than first to DNA-gp3, represents an alternative packaging motor assembly pathway.
Collapse
Affiliation(s)
- Jaya S Koti
- Department of Diagnostic/Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lee TJ, Guo P. Interaction of gp16 with pRNA and DNA for Genome Packaging by the Motor of Bacterial Virus phi29. J Mol Biol 2006; 356:589-99. [PMID: 16376938 DOI: 10.1016/j.jmb.2005.10.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components have been well elucidated; however, studies on the role of gp16 have been seriously hampered by its hydrophobicity and self-aggregation. Such problems caused by insolubility also occur in the study of other viral DNA-packaging motors. Contradictory data have been published regarding the role and stoichiometry of gp16, which has been reported to bind every motor component, including pRNA, DNA, gp3, DNA-gp3, connector, pRNA-free procapsid, and procapsid/pRNA complex. Such conflicting data from a binding assay could be due to the self-aggregation of gp16. Our recent advance to produce soluble and highly active gp16 has enabled further studies on gp16. It was demonstrated in this report that gp16 bound to DNA non-specifically. gp16 bound to the pRNA-containing procapsid much more strongly than to the pRNA-free procapsid. The domain of pRNA for gp16 interaction was the 5'/3' paired helical region. The C18C19A20 bulge that is essential for DNA packaging was found to be dispensable for gp16 binding. This result confirms the published model that pRNA binds to the procapsid with its central domain and extends its 5'/3' DNA-packaging domain for gp16 binding. It suggests that gp16 serves as a linkage between pRNA and DNA, and as an essential DNA-contacting component during DNA translocation. The data also imply that, with the exception of the C18C19A20 bulge, the main role of the 5'/3' helical double-stranded region of pRNA is not for procapsid binding but for binding to gp16.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Pathobiology, Weldon School of Biomedical Engineering, and Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
22
|
Agirrezabala X, Martín-Benito J, Valle M, González JM, Valencia A, Valpuesta JM, Carrascosa JL. Structure of the connector of bacteriophage T7 at 8A resolution: structural homologies of a basic component of a DNA translocating machinery. J Mol Biol 2005; 347:895-902. [PMID: 15784250 DOI: 10.1016/j.jmb.2005.02.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/21/2005] [Accepted: 02/03/2005] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of the bacteriophage T7 head-to-tail connector has been obtained at 8A resolution using cryo-electron microscopy and single-particle analysis from purified recombinant connectors. The general morphology of the T7 connector is that of a 12-folded toroidal homopolymer with a channel that runs along the longitudinal axis of the particle. The structure of the T7 connector reveals many structural similarities with the connectors from other bacteriophages. Docking of the atomic structure of the varphi29 connector into the three-dimensional reconstruction of T7 connector reveals that the narrow, distal region of the two oligomers are almost identical. This region of the varphi29 connector has been suggested to be involved in DNA translocation, and is composed of an alpha-beta-alpha-beta-beta-alpha motif. A search for alpha-helices in the same region of the T7 three-dimensional map has located three alpha-helices in approximately the same position as those of the varphi29 connector. A comparison of the predicted secondary structure of several bacteriophage connectors, including among others T7, varphi29, P22 and SPP1, reveals that, despite the lack of sequence homology, they seem to contain the same alpha-beta-alpha-beta-beta-alpha motif as that present in the varphi29 connector. These results allow us to suggest a common architecture related to a basic component of the DNA translocating machinery for several viruses.
Collapse
Affiliation(s)
- Xabier Agirrezabala
- Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Beard PM, Duffy C, Baines JD. Quantification of the DNA cleavage and packaging proteins U(L)15 and U(L)28 in A and B capsids of herpes simplex virus type 1. J Virol 2004; 78:1367-74. [PMID: 14722291 PMCID: PMC321391 DOI: 10.1128/jvi.78.3.1367-1374.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The proteins produced by the herpes simplex virus type 1 (HSV-1) genes U(L)15 and U(L)28 are believed to form part of the terminase enzyme, a protein complex essential for the cleavage of newly synthesized, concatameric herpesvirus DNA and the packaging of the resultant genome lengths into preformed capsids. This work describes the purification of recombinant forms of pU(L)15 and pU(L)28, which allowed the calculation of the average number of copies of each protein in A and B capsids and in capsids lacking the putative portal encoded by U(L)6. On average, 1.0 (+/-0.29 [standard deviation]) copies of pU(L)15 and 2.4 (+/-0.97) copies of pU(L)28 were present in B capsids, 1.2 (+/-0.72) copies of pU(L)15 and 1.5 (+/-0.86) copies of pU(L)28 were found in mutant capsids lacking the putative portal protein pU(L)6, and approximately 12.0 (+/-5.63) copies of pU(L)15 and 0.6 (+/-0.32) copies of pU(L)28 were present in each A capsid. These results suggest that the packaging machine is partly comprised of approximately 12 copies of pU(L)15, as found in A capsids, with wild-type B and mutant U(L)6(-) capsids containing an incomplete complement of cleavage and packaging proteins. These results are consistent with observations that B capsids form by default in the absence of packaging machinery in vitro and in vivo. In contrast, A capsids may be the result of initiated but aborted attempts at DNA packaging, resulting in the retention of at least part of the DNA packaging machinery.
Collapse
Affiliation(s)
- Philippa M Beard
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
24
|
Kainov DE, Pirttimaa M, Tuma R, Butcher SJ, Thomas GJ, Bamford DH, Makeyev EV. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J Biol Chem 2003; 278:48084-91. [PMID: 12966097 DOI: 10.1074/jbc.m306928200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature of packaging motors. In the case of the double-stranded RNA bacteriophage phi 6 from the Cystoviridae family, packaging of single-stranded genomic precursors requires a hexameric NTPase, P4. In the present study, the purified P4 proteins from two other cystoviruses, phi 8 and phi 13, were characterized and compared with phi 6 P4. All three proteins are hexameric, single-stranded RNA-stimulated NTPases with alpha/beta folds. Using a direct motor assay, we found that phi 8 and phi 13 P4 hexamers translocate 5' to 3' along ssRNA, whereas the analogous activity of phi 6 P4 requires association with the procapsid. This difference is explained by the intrinsically high affinity of phi 8 and phi 13 P4s for nucleic acids. The unidirectional translocation results in RNA helicase activity. Thus, P4 proteins of Cystoviridae exhibit extensive similarity to hexameric helicases and are simple models for studying viral packaging motor mechanisms.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Biosciences and Institute of Biotechnology, FIN-00014, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
25
|
Lísal J, Kainov DE, Bamford DH, Thomas GJ, Tuma R. Enzymatic mechanism of RNA translocation in double-stranded RNA bacteriophages. J Biol Chem 2003; 279:1343-50. [PMID: 14530266 DOI: 10.1074/jbc.m309587200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many complex viruses acquire their genome by active packaging into a viral precursor particle called a procapsid. Packaging is performed by a viral portal complex, which couples ATP hydrolysis to translocation of nucleic acid into the procapsid. The packaging process has been studied for a variety of viruses, but the mechanism of the associated ATPase remains elusive. In this study, the mechanism of RNA translocation in double-stranded RNA bacteriophages is characterized using rapid kinetic analyses. The portal complex of bacteriophage 8 is a hexamer of protein P4, which exhibits nucleotide triphosphatase activity. The kinetics of ATP binding reveals a two-step process: an initial, fast, second-order association, followed by a slower, first-order phase. The slower phase exhibits a high activation energy and has been assigned to a conformational change. ATP binding becomes cooperative in the presence of RNA. Steady-state kinetics of ATP hydrolysis, which proceeds only in the presence of RNA, also exhibits cooperativity. On the other hand, ADP release is fast and RNA-independent. The steady-state rate of hydrolysis increases with the length of the RNA substrate indicating processive translocation. Raman spectroscopy reveals that RNA binds to P4 via the phosphate backbone. The ATP-induced conformational change affects the backbone of the bound RNA but leaves the protein secondary structure unchanged. This is consistent with a model in which cooperativity is induced by an RNA link between subunits of the hexamers and translocation is effected by an axial movement of the subunits relative to one another upon ATP binding.
Collapse
Affiliation(s)
- Jíri Lísal
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, 00014 Finland
| | | | | | | | | |
Collapse
|
26
|
Huang LP, Guo P. Use of acetone to attain highly active and soluble DNA packaging protein Gp16 of Phi29 for ATPase assay. Virology 2003; 312:449-57. [PMID: 12919749 DOI: 10.1016/s0042-6822(03)00241-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
All the well-defined DNA-packaging motors of the dsDNA viruses contain one pair of nonstructural DNA-packaging enzymes. Studies on the mechanism of virus DNA packaging have been seriously hampered by their insolubility. Phi29's DNA-packaging enzyme, gp16, is also hydrophobic, insoluble, and self-aggregating. This article describes approaches to obtain affinity-purified, soluble, and highly active native gp16 with the aid of polyethylene glycol or acetone. The specific activity of this native gp16 was increased 3400-fold when compared with the traditional method. This unique approach made the ATP-gp16 interaction study feasible. Gp16 binds strongly to ATP, binds to ADP with a lower efficiency, and binds very weakly to AMP. The order of gp16-binding efficiency to the four ribonucleotides is, from high to low, ATP, GTP, CTP, and UTP. The ATP concentration level required to produce 50% of maximum virus yield exhibited during in vitro phi29 assembly is around 45 microM, which is close to the gp16 and ATP dissociation constant of 65 microM. Mutation studies revealed that changing only one conserved amino acid, whether R(17), G(24), G(27), G(29), K(30), or I(39), in the predicted Walker-A ATP motif of gp16 caused ATP hydrolysis and viral assembly to cease, while such mutation did not affect gp16's binding to ATP. However, mutation on amino acids G(248) and D(256) did not affect the function of gp16 in DNA packaging.
Collapse
Affiliation(s)
- Lisa P Huang
- Department of Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
27
|
Huang LP, Guo P. Use of PEG to acquire highly soluble DNA-packaging enzyme gp16 of bacterial virus phi29 for stoichiometry quantification. J Virol Methods 2003; 109:235-44. [PMID: 12711068 DOI: 10.1016/s0166-0934(03)00077-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All linear dsDNA viruses package their genome into a preformed procapsid via a ATP-driving motor involving two nonstructural enzymes or ATPase. This essential viral replication step has been investigated in the quest for new antiviral drugs. These DNA-packaging motors could be potential parts in nanotechnology. But both the low solubility and self-aggregation of all nonstructural enzymes have seriously hampered studies on these motors. Bacterial virus phi29 DNA-packaging motor has been well characterized. But the role of the nonstructural ATPase gp16 has not been well defined due to its hydrophobicity, low solubility, and self-aggregation. Here we report a novel approach to obtain affinity-purified, soluble, and highly active native gp16 with the aid of polyethylene glycol (PEG) or acetone. With several thousand-fold increase in specific activity in comparison to the traditional method, this unique approach has made the quantification of gp16 feasible. The basic functional unit of gp16 in solution was found to be a monomer, as determined by sedimentation and size exclusion chromatography. This result leads to a subsequent finding that the stoichiometry of gp16 for phi29 DNA-packaging was about 11+/-2. These findings will facilitate the study on this novel motor that involves three pRNA dimers and a 12-subunit connector.
Collapse
Affiliation(s)
- Lisa P Huang
- Department of Pathobiology, Purdue Cancer Research Center, Purdue University, Hansen Life Science Research Building B-36, West Lafayette, IN 47907, USA
| | | |
Collapse
|
28
|
Shu D, Guo P. Only one pRNA hexamer but multiple copies of the DNA-packaging protein gp16 are needed for the motor to package bacterial virus phi29 genomic DNA. Virology 2003; 309:108-13. [PMID: 12726731 DOI: 10.1016/s0042-6822(03)00011-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A common feature in the maturation of linear dsDNA viruses is that the lengthy viral genome is translocated with remarkable velocity into a limited space within a preformed protein shell using ATP as motor energy. Most biomotors, such as myosin, kinesin, DNA-helicase, and RNA polymerase, contain one ATP-binding component that acts processively. An examination of the well-studied dsDNA viruses reveals that DNA packaging motors involve two nonstructural components. Which component of the motor is the integrated processive factor to turn the motor has not been identified. In bacterial virus phi 29, these two components consist of a gp16 protein and an RNA molecule called pRNA. We have previously predicted and recently confirmed that gp16 binds ATP. It is generally believed that gp16 serves as an ATP-binding and processive component to drive the motor. In this article, phi 29 DNA-packaging intermediates were purified in quantity and examined to differentiate the role between gp16 and pRNA. It was found that the pRNA hexamer is an integral motor component, while gp16 is not stably bound. Only one pRNA hexamer, but multiple copies of gp16, were needed to accomplish DNA packaging. pRNA functions continuously during the entire DNA translocation process, suggesting that pRNA is a vital part of the DNA packaging motor.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pathobiology and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
29
|
Shu D, Guo P. A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. J Biol Chem 2003; 278:7119-25. [PMID: 12444088 DOI: 10.1074/jbc.m209895200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intriguing process of free energy conversion, ubiquitous in all living organisms, is manifested in ATP binding and hydrolysis. ATPase activity has long been recognized to be a capability limited to proteins. However, the presence of an astonishing variety of unknown RNA species in cells and the finding that RNA has catalytic activity have bred the notion that RNA might not be excluded from the group of ATPases. All DNA-packaging motors of double-stranded DNA phages involve two nonstructural components with certain characteristics typical of ATPases. In bacterial virus phi29, one of these two components is an RNA (pRNA). Here we report that this pRNA is able to bind ATP. A comparison between the chemically selected ATP-binding RNA aptamer and the central region of pRNA reveals similarity in sequence and structure. The replacement of the central region of pRNA with the sequence from ATP-binding RNA aptamer produced chimeric aptRNA that is able to both bind ATP and assemble infectious viruses in the presence of ATP. RNA mutation studies revealed that changing only one base essential for ATP binding caused both ATP binding and viral assembly to cease, suggesting that the ATP binding motif is the vital part of the pRNA that forms a hexamer to drive the phi29 DNA-packaging motor. This is the first demonstration of a natural RNA molecule that binds ATP and the first case to report the presence of a SELEX-derived RNA aptamer in living organisms.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pathobiology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
30
|
Baumann RG, Black LW. Isolation and characterization of T4 bacteriophage gp17 terminase, a large subunit multimer with enhanced ATPase activity. J Biol Chem 2003; 278:4618-27. [PMID: 12466275 DOI: 10.1074/jbc.m208574200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phage T4 terminase is a two-subunit enzyme that binds to the prohead portal protein and cuts and packages a headful of concatameric DNA. To characterize the T4 terminase large subunit, gp17 (70 kDa), gene 17 was cloned and expressed as a chitin-binding fusion protein. Following cleavage and release of gp17 from chitin, two additional column steps completed purification. The purification yielded (i) homogeneous soluble gp17 highly active in in vitro DNA packaging ( approximately 10% efficiency, >10(8) phage/ml of extract); (ii) gp17 lacking endonuclease and contaminating protease activities; and (iii) a DNA-independent ATPase activity stimulated >100-fold by the terminase small subunit, gp16 (18 kDa), and modestly by portal gp20 and single-stranded binding protein gp32 multimers. Analyses revealed a preparation of highly active and slightly active gp17 forms, and the latter could be removed by immunoprecipitation using antiserum raised against a denatured form of the gp17 protein, leaving a terminase with the increased specific activity (approximately 400 ATPs/gp17 monomer/min) required for DNA packaging. Analysis of gp17 complexes separated from gp16 on glycerol gradients showed that a prolonged enhanced ATPase activity persisted after exposure to gp16, suggesting that constant interaction of the two proteins may not be required during packaging.
Collapse
Affiliation(s)
- Richard G Baumann
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland 21201-1503, USA
| | | |
Collapse
|
31
|
Lee KH, Kim HS, Jeong HS, Lee YS. Chaperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coli. Biochem Biophys Res Commun 2002; 298:216-24. [PMID: 12387818 DOI: 10.1016/s0006-291x(02)02423-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An efficient bacterial expression system for the human mitochondrial aldehyde dehydrogenase (ALDH2) was developed using co-overexpression of heat shock chaperone gene GroESL. On the basis of the ALDH2 amino acid sequence and cDNA sequences a full-length cDNA encoding wild-type ALDH2 was cloned from a human liver library. A mutant-type ALDH2 (ALDH2(2)) was developed using site-directed mutagenesis of the ALDH2 cDNA and also cloned. Both types of ALDH2 cDNA were subcloned for expression in Escherichia coli (E. coli), recombinant ALDH2 and ALDH2(2) were successfully expressed as soluble active enzymes following co-expression with a second plasmid construct producing GroES and GroEL, E. coli chaperonin proteins. Purified wild-type ALDH2 and mutant ALDH2(2) had a K(m) for acetaldehyde of 0.65 and 25.73 microM, respectively. Co-expression of ALDH2 with ALDH2(2) in the presence of E. coli chaperonins produced a soluble enzyme with a K(m) for acetaldehyde of 8.79 microM, suggesting that the product was a heteromer. Mitochondrial matrix hsp60 and hsp10 chaperonins are then thought to act on imported ALDH2 and are essential for accurate protein folding and multisubunit formation. Protein-protein interactions between ALDH2s and various chaperones were investigated using the yeast two-hybrid system. The wild-type and mutant-type enzymes strongly interacted with each other and GroEL and ALDH2s also interacted but only weakly. Chaperone hsp10 also interacted with hsp60 and ALDH2(1) and ALDH2(2), but again the interactions were weak ones.
Collapse
Affiliation(s)
- Ki-Hwan Lee
- Department of Biochemistry, College of Medicine, Hanyang University, 17 Haengdang-dong, Seongdong-Gu, Seoul 133-791, Republic of Korea.
| | | | | | | |
Collapse
|