1
|
Tsai YL, Wolf EJ, Fluke KA, Fuchs RT, Dai N, Johnson SR, Sun Z, Elkins L, Burkhart BW, Santangelo TJ, Corrêa IR. Comprehensive nucleoside analysis of archaeal RNA modification profiles reveals an m 7G in the conserved P loop of 23S rRNA. Cell Rep 2025; 44:115471. [PMID: 40131932 DOI: 10.1016/j.celrep.2025.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Extremophilic Archaea employ diverse RNA modifications for survival. Our understanding of the modified nucleosides and their functions in Archaea is far from complete. Here, we establish an extensive profile of nucleoside modifications in thermophilic and mesophilic Archaea. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS) and rigorous non-coding RNA depletion, we identify four previously unannotated modifications in archaeal mRNA. Nucleoside analysis conducted on total, large, small, and mRNA-enriched subfractions of hyperthermophile Thermococcus kodakarensis reveals modifications whose relative abundance is dynamically responsive to growth temperatures. To predict archaeal RNA-modifying enzymes, we leverage open-access databases to compare putative functional domains with previously annotated enzymes. Our approach leads to the discovery of a methyltransferase responsible for the installation of m7G in the P loop of 23S rRNA peptidyl transferase center in T. kodakarensis. The methyltransferase activity is confirmed in vitro with synthetic substrates and in vivo by assessing the presence of the m7G modification in a genetic deletion strain.
Collapse
MESH Headings
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Archaeal/metabolism
- RNA, Archaeal/genetics
- RNA, Archaeal/chemistry
- Thermococcus/genetics
- Thermococcus/metabolism
- Nucleosides/metabolism
- Methyltransferases/metabolism
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
| | - Eric J Wolf
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Kristin A Fluke
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan T Fuchs
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Nan Dai
- New England Biolabs Inc., Beverly, MA 01915, USA
| | | | - Zhiyi Sun
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Liam Elkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
2
|
Lee BST, Sinha A, Dedon P, Preiser P. Charting new territory: The Plasmodium falciparum tRNA modification landscape. Biomed J 2024; 48:100745. [PMID: 38734409 PMCID: PMC12002611 DOI: 10.1016/j.bj.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonucleoside modifications comprising the epitranscriptome are present in all organisms and all forms of RNA, including mRNA, rRNA and tRNA, the three major RNA components of the translational machinery. Of these, tRNA is the most heavily modified and the tRNA epitranscriptome has the greatest diversity of modifications. In addition to their roles in tRNA biogenesis, quality control, structure, cleavage, and codon recognition, tRNA modifications have been shown to regulate gene expression post-transcriptionally in prokaryotes and eukaryotes, including humans. However, studies investigating the impact of tRNA modifications on gene expression in the malaria parasite Plasmodium falciparum are currently scarce. Current evidence shows that the parasite has a limited capacity for transcriptional control, which points to a heavier reliance on strategies for posttranscriptional regulation, such as tRNA epitranscriptome reprogramming. This review addresses the known functions of tRNA modifications in the biology of P. falciparum while highlighting the potential therapeutic opportunities and the value of using P. falciparum as a model organism for addressing several open questions related to the tRNA epitranscriptome.
Collapse
Affiliation(s)
- Benjamin Sian Teck Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Peter Preiser
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
3
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Sci Rep 2023; 13:5351. [PMID: 37005440 PMCID: PMC10067955 DOI: 10.1038/s41598-023-32423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, 38000, Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marine Lénon
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France.
| |
Collapse
|
6
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
7
|
Boutoual R, Jo H, Heckenbach I, Tiwari R, Kasler H, Lerner CA, Shah S, Schilling B, Calvanese V, Rardin MJ, Scheibye-Knudsen M, Verdin E. A novel splice variant of Elp3/Kat9 regulates mitochondrial tRNA modification and function. Sci Rep 2022; 12:14804. [PMID: 36045139 PMCID: PMC9433433 DOI: 10.1038/s41598-022-18114-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.
Collapse
Affiliation(s)
- Rachid Boutoual
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| | - Hyunsun Jo
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Indra Heckenbach
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Herbert Kasler
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Chad A Lerner
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | | | - Vincenzo Calvanese
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA
| | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA. .,Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
8
|
Boswinkle K, McKinney J, Allen KD. Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea. J Bacteriol 2022; 204:e0019722. [PMID: 35880875 PMCID: PMC9380564 DOI: 10.1128/jb.00197-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed.
Collapse
Affiliation(s)
- Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Justin McKinney
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Kelley M, Paulines MJ, Yoshida G, Myers R, Jora M, Levoy JP, Addepalli B, Benoit JB, Limbach PA. Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs. PLoS One 2022; 17:e0266239. [PMID: 35349591 PMCID: PMC8963569 DOI: 10.1371/journal.pone.0266239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mellie June Paulines
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ryan Myers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joel P. Levoy
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gameiro PA, Encheva V, Dos Santos MS, MacRae JI, Ule J. Metabolic turnover and dynamics of modified ribonucleosides by 13C labeling. J Biol Chem 2021; 297:101294. [PMID: 34634303 PMCID: PMC8567201 DOI: 10.1016/j.jbc.2021.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.
Collapse
Affiliation(s)
- Paulo A Gameiro
- RNA Networks Laboratory, Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| | - Vesela Encheva
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, UK
| | | | - James I MacRae
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, UK
| | - Jernej Ule
- RNA Networks Laboratory, Francis Crick Institute, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
12
|
Urbonavičius J, Tauraitė D. Biochemical Pathways Leading to the Formation of Wyosine Derivatives in tRNA of Archaea. Biomolecules 2020; 10:E1627. [PMID: 33276555 PMCID: PMC7761594 DOI: 10.3390/biom10121627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Tricyclic wyosine derivatives are present at position 37 in tRNAPhe of both eukaryotes and archaea. In eukaryotes, five different enzymes are needed to form a final product, wybutosine (yW). In archaea, 4-demethylwyosine (imG-14) is an intermediate for the formation of three different wyosine derivatives, yW-72, imG, and mimG. In this review, current knowledge regarding the archaeal enzymes involved in this process and their reaction mechanisms are summarized. The experiments aimed to elucidate missing steps in biosynthesis pathways leading to the formation of wyosine derivatives are suggested. In addition, the chemical synthesis pathways of archaeal wyosine nucleosides are discussed, and the scheme for the formation of yW-86 and yW-72 is proposed. Recent data demonstrating that wyosine derivatives are present in the other tRNA species than those specific for phenylalanine are discussed.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | |
Collapse
|
13
|
Wolff P, Villette C, Zumsteg J, Heintz D, Antoine L, Chane-Woon-Ming B, Droogmans L, Grosjean H, Westhof E. Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea. RNA (NEW YORK, N.Y.) 2020; 26:1957-1975. [PMID: 32994183 PMCID: PMC7668247 DOI: 10.1261/rna.077537.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 05/22/2023]
Abstract
To improve and complete our knowledge of archaeal tRNA modification patterns, we have identified and compared the modification pattern (type and location) in tRNAs of three very different archaeal species, Methanococcus maripaludis (a mesophilic methanogen), Pyrococcus furiosus (a hyperthermophile thermococcale), and Sulfolobus acidocaldarius (an acidophilic thermophilic sulfolobale). Most abundant isoacceptor tRNAs (79 in total) for each of the 20 amino acids were isolated by two-dimensional gel electrophoresis followed by in-gel RNase digestions. The resulting oligonucleotide fragments were separated by nanoLC and their nucleotide content analyzed by mass spectrometry (MS/MS). Analysis of total modified nucleosides obtained from complete digestion of bulk tRNAs was also performed. Distinct base- and/or ribose-methylations, cytidine acetylations, and thiolated pyrimidines were identified, some at new positions in tRNAs. Novel, some tentatively identified, modifications were also found. The least diversified modification landscape is observed in the mesophilic Methanococcus maripaludis and the most complex one in Sulfolobus acidocaldarius Notable observations are the frequent occurrence of ac4C nucleotides in thermophilic archaeal tRNAs, the presence of m7G at positions 1 and 10 in Pyrococcus furiosus tRNAs, and the use of wyosine derivatives at position 37 of tRNAs, especially those decoding U1- and C1-starting codons. These results complete those already obtained by others with sets of archaeal tRNAs from Methanocaldococcus jannaschii and Haloferax volcanii.
Collapse
Affiliation(s)
- Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Laura Antoine
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles, Institut Labiris, B-1070, Belgium
| | - Henri Grosjean
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles, Institut Labiris, B-1070, Belgium
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
14
|
Edwards AM, Addo MA, Dos Santos PC. Extracurricular Functions of tRNA Modifications in Microorganisms. Genes (Basel) 2020; 11:genes11080907. [PMID: 32784710 PMCID: PMC7466049 DOI: 10.3390/genes11080907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands.
Collapse
|
15
|
A Structural Basis for Restricted Codon Recognition Mediated by 2-thiocytidine in tRNA Containing a Wobble Position Inosine. J Mol Biol 2020; 432:913-929. [PMID: 31945376 DOI: 10.1016/j.jmb.2019.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.
Collapse
|
16
|
Berg MD, Zhu Y, Genereaux J, Ruiz BY, Rodriguez-Mias RA, Allan T, Bahcheli A, Villén J, Brandl CJ. Modulating Mistranslation Potential of tRNA Ser in Saccharomyces cerevisiae. Genetics 2019; 213:849-863. [PMID: 31484688 PMCID: PMC6827378 DOI: 10.1534/genetics.119.302525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | | | - Tyler Allan
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander Bahcheli
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
17
|
Distinct Modified Nucleosides in tRNA Trp from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m 2G10/m 2 2G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. J Bacteriol 2019; 201:JB.00448-19. [PMID: 31405913 DOI: 10.1128/jb.00448-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
tRNA m2G10/m2 2G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N 2,N 2-dimethylguanosine (m2 2G10) via N 2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m2 2G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m2 2G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.
Collapse
|
18
|
Li J, Li H, Long T, Dong H, Wang ED, Liu RJ. Archaeal NSUN6 catalyzes m5C72 modification on a wide-range of specific tRNAs. Nucleic Acids Res 2019; 47:2041-2055. [PMID: 30541086 PMCID: PMC6393295 DOI: 10.1093/nar/gky1236] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Human NOL1/NOP2/Sun RNA methyltransferase family member 6 (hNSun6) generates 5-methylcytosine (m5C) at C72 of four specific tRNAs, and its homologs are present only in higher eukaryotes and hyperthermophilic archaea. Archaeal NSun6 homologs possess conserved catalytic residues, but have distinct differences in their RNA recognition motifs from eukaryotic NSun6s. Until now, the biochemical properties and functions of archaeal NSun6 homologs were unknown. In archaeon Pyrococcus horikoshii OT3, the gene encoding the NSun6 homolog is PH1991. We demonstrated that the PH1991 protein could catalyze m5C72 formation on some specific PhtRNAs in vitro and was thus named as PhNSun6. Remarkably, PhNSun6 has a much wider range of tRNA substrates than hNSun6, which was attributed to its tRNA substrate specificity. The mechanism was further elucidated using biochemical and crystallographic experiments. Structurally, the binding pocket for nucleotide 73 in PhNSun6 is specific to accommodate U73 or G73-containing PhtRNAs. Furthermore, PhNSun6 lacks the eukaryotic NSun6-specific Lys-rich loop, resulting in the non-recognition of D-stem region by PhNSun6. Functionally, the m5C72 modification could slightly promote the thermal stability of PhtRNAs, but did not affect the amino acid accepting activity of PhtRNAs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| | - Hao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| | - Tao Long
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| | - Han Dong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, P.R. China
| | - Ru-Juan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China
| |
Collapse
|
19
|
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. J Bacteriol 2019; 201:JB.00690-18. [PMID: 30745370 DOI: 10.1128/jb.00690-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
tRNAs play a critical role in mRNA decoding, and posttranscriptional modifications within tRNAs drive decoding efficiency and accuracy. The types and positions of tRNA modifications in model bacteria have been extensively studied, and tRNA modifications in a few eukaryotic organisms have also been characterized and localized to particular tRNA sequences. However, far less is known regarding tRNA modifications in archaea. While the identities of modifications have been determined for multiple archaeal organisms, Haloferax volcanii is the only organism for which modifications have been extensively localized to specific tRNA sequences. To improve our understanding of archaeal tRNA modification patterns and codon-decoding strategies, we have used liquid chromatography and tandem mass spectrometry to characterize and then map posttranscriptional modifications on 34 of the 35 unique tRNA sequences of Methanocaldococcus jannaschii A new posttranscriptionally modified nucleoside, 5-cyanomethyl-2-thiouridine (cnm5s2U), was discovered and localized to position 34. Moreover, data consistent with wyosine pathway modifications were obtained beyond the canonical tRNAPhe as is typical for eukaryotes. The high-quality mapping of tRNA anticodon loops enriches our understanding of archaeal tRNA modification profiles and decoding strategies.IMPORTANCE While many posttranscriptional modifications in M. jannaschii tRNAs are also found in bacteria and eukaryotes, several that are unique to archaea were identified. By RNA modification mapping, the modification profiles of M. jannaschii tRNA anticodon loops were characterized, allowing a comparative analysis with H. volcanii modification profiles as well as a general comparison with bacterial and eukaryotic decoding strategies. This general comparison reveals that M. jannaschii, like H. volcanii, follows codon-decoding strategies similar to those used by bacteria, although position 37 appears to be modified to a greater extent than seen in H. volcanii.
Collapse
|
20
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
21
|
Ng CS, Sinha A, Aniweh Y, Nah Q, Babu IR, Gu C, Chionh YH, Dedon PC, Preiser PR. tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum. Mol Syst Biol 2018; 14:e8009. [PMID: 30287681 PMCID: PMC6171970 DOI: 10.15252/msb.20178009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
Among components of the translational machinery, ribonucleoside modifications on tRNAs are emerging as critical regulators of cell physiology and stress response. Here, we demonstrate highly coordinated behavior of the repertoire of tRNA modifications of Plasmodium falciparum throughout the intra-erythrocytic developmental cycle (IDC). We observed both a synchronized increase in 22 of 28 modifications from ring to trophozoite stage, consistent with tRNA maturation during translational up-regulation, and asynchronous changes in six modifications. Quantitative analysis of ~2,100 proteins across the IDC revealed that up- and down-regulated proteins in late but not early stages have a marked codon bias that directly correlates with parallel changes in tRNA modifications and enhanced translational efficiency. We thus propose a model in which tRNA modifications modulate the abundance of stage-specific proteins by enhancing translation efficiency of codon-biased transcripts for critical genes. These findings reveal novel epitranscriptomic and translational control mechanisms in the development and pathogenesis of Plasmodium parasites.
Collapse
Affiliation(s)
- Chee Sheng Ng
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaw Aniweh
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Qianhui Nah
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
| | - Indrakanti Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Microbiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
22
|
Jora M, Burns AP, Ross RL, Lobue PA, Zhao R, Palumbo CM, Beal PA, Addepalli B, Limbach PA. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1745-1756. [PMID: 29949056 PMCID: PMC6062210 DOI: 10.1007/s13361-018-1999-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/03/2023]
Abstract
The analytical identification of positional isomers (e.g., 3-, N4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2+) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew P Burns
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Peter A Lobue
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
23
|
Grell TJ, Young AP, Drennan CL, Bandarian V. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. J Am Chem Soc 2018; 140:6842-6852. [PMID: 29792696 PMCID: PMC5994729 DOI: 10.1021/jacs.8b01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/03/2022]
Abstract
TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine to form the posttranscriptional modification, 4-demethylwyosine, in situ on transfer RNA (tRNA). Two mechanisms have been proposed for this transformation, with one of the possible mechanisms invoking a Schiff base intermediate formed between a conserved lysine residue and pyruvate. Utilizing a combination of mass spectrometry and X-ray crystallography, we have obtained evidence to support the formation of a Schiff base lysine adduct in TYW1. When 13C labeled pyruvate is used, the mass shift of the adduct matches that of the labeled pyruvate, indicating that pyruvate is the source of the adduct. Furthermore, a crystal structure of TYW1 provides visualization of the Schiff base lysine-pyruvate adduct, which is positioned directly adjacent to the auxiliary [4Fe-4S] cluster. The adduct coordinates the unique iron of the auxiliary cluster through the lysine nitrogen and a carboxylate oxygen, reminiscent of how the radical SAM [4Fe-4S] cluster is coordinated by SAM. The structure provides insight into the binding site for tRNA and further suggests how radical SAM chemistry can be combined with Schiff base chemistry for RNA modification.
Collapse
Affiliation(s)
- Tsehai
A. J. Grell
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony P. Young
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vahe Bandarian
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
Aučynaitė A, Rutkienė R, Gasparavičiūtė R, Meškys R, Urbonavičius J. A gene encoding a DUF523 domain protein is involved in the conversion of 2-thiouracil into uracil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:49-56. [PMID: 29194984 DOI: 10.1111/1758-2229.12605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Modified nucleotides are present in many RNA species in all Domains of Life. While the biosynthetic pathways of such nucleotides are well studied, much less is known about the degradation of RNAs and the return to the metabolism of modified nucleotides, their respective nucleosides or heterocyclic bases. Using an E. coli uracil auxotroph, we screened the metagenomic libraries for genes, which would allow the conversion of 2-thiouracil to uracil and thereby lead to the growth on a defined synthetic medium. We show that a gene encoding a protein consisting of previously uncharacterized Domain of Unknown Function 523 (DUF523) is responsible for such phenotype. We have purified this recombinant protein and demonstrated that it contains a FeS cluster. The substitution of cysteines, which have been predicted to form such clusters, with alanines abolished the growth phenotype. We conclude that DUF523 is involved in the conversion of 2-thiouracil into uracil in vivo.
Collapse
Affiliation(s)
- Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
25
|
Agris PF, Eruysal ER, Narendran A, Väre VYP, Vangaveti S, Ranganathan SV. Celebrating wobble decoding: Half a century and still much is new. RNA Biol 2017; 15:537-553. [PMID: 28812932 PMCID: PMC6103715 DOI: 10.1080/15476286.2017.1356562] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022] Open
Abstract
A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.
Collapse
Affiliation(s)
- Paul F. Agris
- The RNA Institute, State University of New York, Albany, NY, USA
- Department of Biology, State University of New York, Albany, NY, USA
- Department of Chemistry, State University of New York, Albany, NY, USA
| | - Emily R. Eruysal
- Department of Biology, State University of New York, Albany, NY, USA
| | - Amithi Narendran
- Department of Biology, State University of New York, Albany, NY, USA
| | - Ville Y. P. Väre
- Department of Biology, State University of New York, Albany, NY, USA
| | - Sweta Vangaveti
- The RNA Institute, State University of New York, Albany, NY, USA
| | | |
Collapse
|
26
|
Lorenz C, Lünse CE, Mörl M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules 2017; 7:E35. [PMID: 28375166 PMCID: PMC5485724 DOI: 10.3390/biom7020035] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Transfer RNAs (tRNAs) are central players in translation, functioning as adapter molecules between the informational level of nucleic acids and the functional level of proteins. They show a highly conserved secondary and tertiary structure and the highest density of post-transcriptional modifications among all RNAs. These modifications concentrate in two hotspots-the anticodon loop and the tRNA core region, where the D- and T-loop interact with each other, stabilizing the overall structure of the molecule. These modifications can cause large rearrangements as well as local fine-tuning in the 3D structure of a tRNA. The highly conserved tRNA shape is crucial for the interaction with a variety of proteins and other RNA molecules, but also needs a certain flexibility for a correct interplay. In this context, it was shown that tRNA modifications are important for temperature adaptation in thermophilic as well as psychrophilic organisms, as they modulate rigidity and flexibility of the transcripts, respectively. Here, we give an overview on the impact of modifications on tRNA structure and their importance in thermal adaptation.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Christina E Lünse
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
27
|
Zheng C, Black KA, Dos Santos PC. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions. Biomolecules 2017; 7:biom7010033. [PMID: 28327539 PMCID: PMC5372745 DOI: 10.3390/biom7010033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27101, USA.
| | | | | |
Collapse
|
28
|
Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways. Biomolecules 2017; 7:biom7010027. [PMID: 28287455 PMCID: PMC5372739 DOI: 10.3390/biom7010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023] Open
Abstract
Post-translational tRNA modifications have very broad diversity and are present in all domains of life. They are important for proper tRNA functions. In this review, we emphasize the recent advances on the biosynthesis of sulfur-containing tRNA nucleosides including the 2-thiouridine (s2U) derivatives, 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Their biosynthetic pathways have two major types depending on the requirement of iron–sulfur (Fe–S) clusters. In all cases, the first step in bacteria and eukaryotes is to activate the sulfur atom of free l-cysteine by cysteine desulfurases, generating a persulfide (R-S-SH) group. In some archaea, a cysteine desulfurase is missing. The following steps of the bacterial s2U and s4U formation are Fe–S cluster independent, and the activated sulfur is transferred by persulfide-carrier proteins. By contrast, the biosynthesis of bacterial s2C and ms2A require Fe–S cluster dependent enzymes. A recent study shows that the archaeal s4U synthetase (ThiI) and the eukaryotic cytosolic 2-thiouridine synthetase (Ncs6) are Fe–S enzymes; this expands the role of Fe–S enzymes in tRNA thiolation to the Archaea and Eukarya domains. The detailed reaction mechanisms of Fe–S cluster depend s2U and s4U formation await further investigations.
Collapse
|
29
|
Currie MA, Brown G, Wong A, Ohira T, Sugiyama K, Suzuki T, Yakunin AF, Jia Z. Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases. RNA (NEW YORK, N.Y.) 2017; 23:346-354. [PMID: 27932585 PMCID: PMC5311493 DOI: 10.1261/rna.057943.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/25/2016] [Indexed: 06/01/2023]
Abstract
S-adenosylmethionine (SAM)-dependent methyltransferases regulate a wide range of biological processes through the modification of proteins, nucleic acids, polysaccharides, as well as various metabolites. TYW3/Taw3 is a SAM-dependent methyltransferase responsible for the formation of a tRNA modification known as wybutosine and its derivatives that are required for accurate decoding in protein synthesis. Here, we report the crystal structure of Taw3, a homolog of TYW3 from Sulfolobus solfataricus, which revealed a novel α/β fold. The sequence motif (S/T)xSSCxGR and invariant aspartate and histidine, conserved in TYW3/Taw3, cluster to form the catalytic center. These structural and sequence features indicate that TYW3/Taw3 proteins constitute a distinct class of SAM-dependent methyltransferases. Using site-directed mutagenesis along with in vivo complementation assays combined with mass spectrometry as well as ligand docking and cofactor binding assays, we have identified the active site of TYW3 and residues essential for cofactor binding and methyltransferase activity.
Collapse
Affiliation(s)
- Mark A Currie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrew Wong
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kei Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Kolaj-Robin O, Séraphin B. Structures and Activities of the Elongator Complex and Its Cofactors. RNA MODIFICATION 2017; 41:117-149. [DOI: 10.1016/bs.enz.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Nwokeoji AO, Kung AW, Kilby PM, Portwood DE, Dickman MJ. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry. J Chromatogr A 2016; 1484:14-25. [PMID: 28088361 PMCID: PMC5267946 DOI: 10.1016/j.chroma.2016.12.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022]
Abstract
rapid purification of dsRNA in a single step protocol. high throughput purification and analysis of a wide range of dsRNAs. developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. developed a novel method utilising RNase T1 for RNase mass mapping of dsRNA.
RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficial insects. The potential to synthesise large quantities of dsRNA by in-vitro transcription or in bacterial systems for RNA interference applications has generated significant demand for the development and application of high throughput analytical tools for the rapid extraction, purification and analysis of dsRNA. Here we have developed analytical methods that enable the rapid purification of dsRNA from associated impurities from bacterial cells in conjunction with downstream analyses. We have optimised TRIzol extractions in conjunction with a single step protocol to remove contaminating DNA and ssRNA, using RNase T1/DNase I digestion under high-salt conditions in combination with solid phase extraction to purify the dsRNA. In addition, we have utilised and developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. Furthermore, we have optimised base-specific cleavage of dsRNA by RNase A and developed a novel method utilising RNase T1 for RNase mass mapping approaches to further characterise the dsRNA using liquid chromatography interfaced with mass spectrometry.
Collapse
Affiliation(s)
- Alison O Nwokeoji
- Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK
| | - An-Wen Kung
- Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK
| | - Peter M Kilby
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - David E Portwood
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK.
| |
Collapse
|
32
|
Urbonavičius J, Rutkienė R, Lopato A, Tauraitė D, Stankevičiūtė J, Aučynaitė A, Kaliniene L, van Tilbeurgh H, Meškys R. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. RNA (NEW YORK, N.Y.) 2016; 22:1871-1883. [PMID: 27852927 PMCID: PMC5113207 DOI: 10.1261/rna.057059.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. We have suggested previously that a peculiar methyltransferase (aTrm5a/Taw22) likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G; and C7-methylation of imG-14 to yield imG2. Here we show that the recombinant aTrm5a/Taw22-like enzymes from both Pyrococcus abyssi and Nanoarchaeum equitans indeed possess such dual specificity. We also show that substitutions of individual conservative amino acids of P. abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37. We further demonstrate that aTrm5a-type enzyme SSO2439 from Sulfolobus solfataricus, which has no N1-methyltransferase activity, exhibits C7-methyltransferase activity, thereby producing imG2 from imG-14. We thus suggest renaming such aTrm5a methyltransferases as Taw21 to distinguish between monofunctional and bifunctional aTrm5a enzymes.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius 10223, Lithuania
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Anželika Lopato
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius 10223, Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Jonita Stankevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| | - Herman van Tilbeurgh
- Institut de Biologie Intégrative de la Cellule, I2BC, CNRS Université Paris-Sud UMR9198, Orsay, France
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius 10222, Lithuania
| |
Collapse
|
33
|
Pollo SM, Zhaxybayeva O, Nesbø CL. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol 2015. [DOI: 10.1139/cjm-2015-0073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
Collapse
Affiliation(s)
- Stephen M.J. Pollo
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences and Department of Computer Science, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Camilla L. Nesbø
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
34
|
Structural significance of modified nucleoside 5-taurinomethyl-2-thiouridine, τm5s2U, found at ‘wobble’ position in anticodon loop of human mitochondrial tRNALys. Struct Chem 2015. [DOI: 10.1007/s11224-015-0642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Abstract
Recent findings have elucidated numerous novel biological functions for oligonucleotides. Current standard methods for the study of oligonucleotides (i.e., hybridization and PCR) are not fully equipped to deal with the experimental needs arising from these new discoveries. More importantly, as the intracellular capacity of oligonucleotides is being harnessed for biomedical applications, alternative bioanalytical techniques become indispensable in order to comply with ever-increasing regulatory requirements. Owing to its ability to detect oligonucleotides independent of their sequence, LC-MS is emerging as the analytical method of choice for oligonucleotides. In this article, the current applications of LC-MS in the analysis of oligonucleotides, with an emphasis on RNA therapeutics and biomarkers, will be examined. In addition, the theoretical framework of oligonucleotide ESI is carefully inspected with the purpose of identifying the contributing factors to MS signal intensity.
Collapse
|
36
|
Yang J, Sharma S, Kötter P, Entian KD. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Res 2015; 43:2342-52. [PMID: 25653162 PMCID: PMC4344503 DOI: 10.1093/nar/gkv058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 11/18/2022] Open
Abstract
Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.
Collapse
Affiliation(s)
- Jun Yang
- Institute of Molecular and Cellular Microbiology, Goethe University, Frankfurt am Main, Germany 60438
| | - Sunny Sharma
- Institute of Molecular and Cellular Microbiology, Goethe University, Frankfurt am Main, Germany 60438
| | - Peter Kötter
- Institute of Molecular and Cellular Microbiology, Goethe University, Frankfurt am Main, Germany 60438
| | - Karl-Dieter Entian
- Institute of Molecular and Cellular Microbiology, Goethe University, Frankfurt am Main, Germany 60438
| |
Collapse
|
37
|
The place of RNA in the origin and early evolution of the genetic machinery. Life (Basel) 2014; 4:1050-91. [PMID: 25532530 PMCID: PMC4284482 DOI: 10.3390/life4041050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.
Collapse
|
38
|
Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat Chem Biol 2014; 10:810-2. [PMID: 25151136 DOI: 10.1038/nchembio.1610] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/24/2014] [Indexed: 11/09/2022]
Abstract
Approximately 25% of cytoplasmic tRNAs in eukaryotic organisms have the wobble uridine (U34) modified at C5 through a process that, according to genetic studies, is carried out by the eukaryotic Elongator complex. Here we show that a single archaeal protein, the homolog of the third subunit of the eukaryotic Elongator complex (Elp3), is able to catalyze the same reaction. The mechanism of action by Elp3 described here represents unprecedented chemistry performed on acetyl-CoA.
Collapse
|
39
|
Chavarria NE, Hwang S, Cao S, Fu X, Holman M, Elbanna D, Rodriguez S, Arrington D, Englert M, Uthandi S, Söll D, Maupin-Furlow JA. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs. PLoS One 2014; 9:e99104. [PMID: 24906001 PMCID: PMC4048286 DOI: 10.1371/journal.pone.0099104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/11/2014] [Indexed: 11/29/2022] Open
Abstract
While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNALysUUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNALysUUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.
Collapse
Affiliation(s)
- Nikita E. Chavarria
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Sungmin Hwang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Shiyun Cao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Xian Fu
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Mary Holman
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Dina Elbanna
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Suzanne Rodriguez
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Deanna Arrington
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Sivakumar Uthandi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Urbonavičius J, Meškys R, Grosjean H. Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase. RNA (NEW YORK, N.Y.) 2014; 20:747-753. [PMID: 24837075 PMCID: PMC4024628 DOI: 10.1261/rna.043315.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The presence of tricyclic wyosine derivatives 3'-adjacent to anticodon is a hallmark of tRNA(Phe) in eukaryotes and archaea. In yeast, formation of wybutosine (yW) results from five enzymes acting in a strict sequential order. In archaea, the intermediate compound imG-14 (4-demethylwyosine) is a target of three different enzymes, leading to the formation of distinct wyosine derivatives (yW-86, imG, and imG2). We focus here on a peculiar methyltransferase (aTrm5a) that catalyzes two distinct reactions: N(1)-methylation of guanosine and C(7)-methylation of imG-14, whose function is to allow the production of isowyosine (imG2), an intermediate of the 7-methylwyosine (mimG) biosynthetic pathway. Based on the formation of mesomeric forms of imG-14, a rationale for such dual enzymatic activities is proposed. This bifunctional tRNA:m(1)G/imG2 methyltransferase, acting on two chemically distinct guanosine derivatives located at the same position of tRNA(Phe), is unique to certain archaea and has no homologs in eukaryotes. This enzyme here referred to as Taw22, probably played an important role in the emergence of the multistep biosynthetic pathway of wyosine derivatives in archaea and eukaryotes.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania
| | - Henri Grosjean
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Associée à l'Université Paris-Sud 11, FRC 3115, 91190 Gif-sur-Yvette, France
| |
Collapse
|
41
|
Russell SP, Limbach PA. Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC-UV-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 923-924:74-82. [PMID: 23500350 DOI: 10.1016/j.jchromb.2013.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/26/2022]
Abstract
Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized. These modifications are present at very low levels and isolation of individual nucleosides for analysis requires a complex multi-step approach. The focus of this study is to characterize the reproducibility of a liquid chromatography method used to isolate and quantitatively characterize modified nucleosides in tRNA and rRNA when nucleoside detection is performed using ultraviolet and mass spectrometric detection (UV and MS, respectively). Despite the analytical challenges of sample isolation and dynamic range, quantitative profiling of modified nucleosides obtained from bacterial tRNAs and rRNAs is feasible at relative standard deviations of 5% RSD or less.
Collapse
Affiliation(s)
- Susan P Russell
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | | |
Collapse
|
42
|
Radical mediated ring formation in the biosynthesis of the hypermodified tRNA base wybutosine. Curr Opin Chem Biol 2013; 17:613-8. [PMID: 23856057 DOI: 10.1016/j.cbpa.2013.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 01/24/2023]
Abstract
Wyosine and its derivatives are highly modified, acid labile tricyclic bases found at position 37 of tRNA(Phe) in archaea and eukarya. The formation of the common 4-demethylwyosine structural feature entails condensation of pyruvate and N-methylguanosine catalyzed by TYW1. This review will focus on the mechanism of this complex radical mediated transformation.
Collapse
|
43
|
Jackman JE, Alfonzo JD. Transfer RNA modifications: nature's combinatorial chemistry playground. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:35-48. [PMID: 23139145 DOI: 10.1002/wrna.1144] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following synthesis, tRNAs are peppered by numerous chemical modifications which may differentially affect a tRNA's structure and function. Although modifications affecting the business ends of a tRNA are predictably important for cell viability, a majority of modifications play more subtle structural roles that can affect tRNA stability and folding. The current trend is that modifications act in concert and it is in the context of the specific sequence of a given tRNA that they impart their differing effects. Recent developments in the modification field have highlighted the diversity of modifications in tRNA. From these, the combinatorial nature of modifications in explaining previously described phenotypes derived from their absence has emerged as a growing theme.
Collapse
Affiliation(s)
- Jane E Jackman
- The Ohio State Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
44
|
Liu Y, Zhu X, Nakamura A, Orlando R, Söll D, Whitman WB. Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon Methanococcus maripaludis. J Biol Chem 2012; 287:36683-92. [PMID: 22904325 DOI: 10.1074/jbc.m112.405688] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4-Thiouridine (s(4)U) is a conserved modified nucleotide at position 8 of bacterial and archaeal tRNAs and plays a role in protecting cells from near-UV killing. Escherichia coli employs the following two enzymes for its synthesis: the cysteine desulfurase IscS, which forms a Cys persulfide enzyme adduct from free Cys; and ThiI, which adenylates U8 and transfers sulfur from IscS to form s(4)U. The C-terminal rhodanese-like domain (RLD) of ThiI is responsible for the sulfurtransferase activity. The mechanism of s(4)U biosynthesis in archaea is not known as many archaea lack cysteine desulfurase and an RLD of the putative ThiI. Using the methanogenic archaeon Methanococcus maripaludis, we show that deletion of ThiI (MMP1354) abolished the biosynthesis of s(4)U but not of thiamine. MMP1354 complements an Escherichia coli ΔthiI mutant for s(4)U formation, indicating that MMP1354 is sufficient for sulfur incorporation into s(4)U. In the absence of an RLD, MMP1354 uses Cys(265) and Cys(268) located in the PP-loop pyrophosphatase domain to generate persulfide and disulfide intermediates for sulfur transfer. In vitro assays suggest that S(2-) is a physiologically relevant sulfur donor for s(4)U formation catalyzed by MMP1354 (K(m) for Na(2)S is ∼1 mm). Thus, methanogenic archaea developed a strategy for sulfur incorporation into s(4)U that differs from bacteria; this may be an adaptation to life in sulfide-rich environments.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
45
|
Su D, Ojo TT, Söll D, Hohn MJ. Selenomodification of tRNA in archaea requires a bipartite rhodanese enzyme. FEBS Lett 2012; 586:717-21. [PMID: 22293502 PMCID: PMC3309168 DOI: 10.1016/j.febslet.2012.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
5-Methylaminomethyl-2-selenouridine (mnm(5)Se(2)U) is found in the first position of the anticodon in certain tRNAs from bacteria, archaea and eukaryotes. This selenonucleoside is formed in Escherichia coli from the corresponding thionucleoside mnm(5)S(2)U by the monomeric enzyme YbbB. This nucleoside is present in the tRNA of Methanococcales, yet the corresponding 2-selenouridine synthase is unknown in archaea and eukaryotes. Here we report that a bipartite ybbB ortholog is present in all members of the Methanococcales. Gene deletions in Methanococcus maripaludis and in vitro activity assays confirm that the two proteins act in trans to form in tRNA a selenonucleoside, presumably mnm(5)Se(2)U. Phylogenetic data suggest a primal origin of seleno-modified tRNAs.
Collapse
Affiliation(s)
- Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Temitope T. Ojo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Michael J. Hohn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
46
|
Liu Y, Wang R, Ding L, Sha R, Seeman NC, Canary JW. Templated synthesis of nylon nucleic acids and characterization by nuclease digestion. Chem Sci 2012; 3:1930-1937. [PMID: 23125913 PMCID: PMC3486707 DOI: 10.1039/c2sc20129a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nylon nucleic acids containing oligouridine nucleotides with pendent polyamide linkers and flanked by unmodified heteronucleotide sequences were prepared by DNA templated synthesis. Templation was more efficient than the single-stranded synthesis: Coupling step yields were as high as 99.2%, with up to 7 amide linkages formed in the synthesis of a molecule containing 8 modified nucleotides. Controlled digestion by calf spleen phosphodiesterase enabled the mapping of modified nucleotides in the sequences. A combination of complete degradation of nylon nucleic acids by snake venom phosphodiesterase and dephosphorylation of the resulting nucleotide fragments by bacterial alkaline phosphatase, followed by LCMS analysis, clarified the linear structure of the oligo-amide linkages. The templated synthesis strategy afforded nylon nucleic acids in the target structure and was compatible with the presence heteronucleotides. The complete digestion procedure produced a new species of DNA analogues, nylon ribonucleosides, which display nucleosides attached via a 2'-alkylthio linkage to each diamine and dicarboxylate repeat unit of the original nylon nucleic acids. The binding affinity of a nylon ribonucleoside octamer to the complementary DNA was evaluated by thermal denaturing experiments. The octamer was found to form stable duplexes with an inverse dependence on salt concentration, in contrast to the salt-dependent DNA control.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, New York University, New York, NY 10003, USA, Fax: +1 212 995 4367; Tel: +1 212998 8422
| | - Risheng Wang
- Department of Chemistry, New York University, New York, NY 10003, USA, Fax: +1 212 995 4367; Tel: +1 212998 8422
| | - Liang Ding
- Department of Chemistry, New York University, New York, NY 10003, USA, Fax: +1 212 995 4367; Tel: +1 212998 8422
| | - Roujie Sha
- Department of Chemistry, New York University, New York, NY 10003, USA, Fax: +1 212 995 4367; Tel: +1 212998 8422
| | - Nadrian C. Seeman
- Department of Chemistry, New York University, New York, NY 10003, USA, Fax: +1 212 995 4367; Tel: +1 212998 8422
| | - James W. Canary
- Department of Chemistry, New York University, New York, NY 10003, USA, Fax: +1 212 995 4367; Tel: +1 212998 8422
| |
Collapse
|
47
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
48
|
Menezes S, Gaston KW, Krivos KL, Apolinario EE, Reich NO, Sowers KR, Limbach PA, Perona JJ. Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14. Nucleic Acids Res 2011; 39:7641-55. [PMID: 21693558 PMCID: PMC3177210 DOI: 10.1093/nar/gkr475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/22/2011] [Accepted: 05/23/2011] [Indexed: 11/30/2022] Open
Abstract
The modified nucleosides N(2)-methylguanosine and N(2)(2)-dimethylguanosine in transfer RNA occur at five positions in the D and anticodon arms, and at positions G6 and G7 in the acceptor stem. Trm1 and Trm11 enzymes are known to be responsible for several of the D/anticodon arm modifications, but methylases catalyzing post-transcriptional m(2)G synthesis in the acceptor stem are uncharacterized. Here, we report that the MJ0438 gene from Methanocaldococcus jannaschii encodes a novel S-adenosylmethionine-dependent methyltransferase, now identified as Trm14, which generates m(2)G at position 6 in tRNA(Cys). The 381 amino acid Trm14 protein possesses a canonical RNA recognition THUMP domain at the amino terminus, followed by a γ-class Rossmann fold amino-methyltransferase catalytic domain featuring the signature NPPY active site motif. Trm14 is associated with cluster of orthologous groups (COG) 0116, and most closely resembles the m(2)G10 tRNA methylase Trm11. Phylogenetic analysis reveals a canonical archaeal/bacterial evolutionary separation with 20-30% sequence identities between the two branches, but it is likely that the detailed functions of COG 0116 enzymes differ between the archaeal and bacterial domains. In the archaeal branch, the protein is found exclusively in thermophiles. More distantly related Trm14 homologs were also identified in eukaryotes known to possess the m(2)G6 tRNA modification.
Collapse
Affiliation(s)
- Sheena Menezes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Kirk W. Gaston
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Kady L. Krivos
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Ethel E. Apolinario
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Kevin R. Sowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - Patrick A. Limbach
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | - John J. Perona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
49
|
Waghmare SP, Dickman MJ. Characterization and quantification of RNA post-transcriptional modifications using stable isotope labeling of RNA in conjunction with mass spectrometry analysis. Anal Chem 2011; 83:4894-901. [PMID: 21539333 DOI: 10.1021/ac200547y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry has emerged as an increasingly powerful tool for the identification and characterization of nucleic acids, in particular RNA post-transcriptional modifications. High mass accuracy instrumentation is often required to discriminate between compositional isomers of oligonucleotides. We have used stable isotope labeling ((15)N) of E. coli RNA in conjunction with mass spectrometry analysis of the combined heavy- and light-labeled RNA for the identification and quantification of oligoribonucleotides and post-transcriptional modifications. The number of nitrogen atoms in the oligoribonucleotide and fragment ions can readily be determined using this approach, enabling the discrimination between potential compositional isomers without the requirement of high mass accuracy mass spectrometers. In addition, the identification of specific fragment ions in both the unlabeled and labeled oligoribonucleotides can be used to gain further confidence in the assignment of RNA post-transcriptional modifications. Using this approach we have identified a range of post-transcriptional modifications of E. coli 16S rRNA. Furthermore, this method facilitates the rapid and accurate quantification of oligoribonucleotides, including cyclic phosphate intermediates and missed cleavages often generated from RNase digestions.
Collapse
Affiliation(s)
- Sakharam P Waghmare
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S3 1JD, UK
| | | |
Collapse
|
50
|
Pearson D, Carell T. Assay of both activities of the bifunctional tRNA-modifying enzyme MnmC reveals a kinetic basis for selective full modification of cmnm5s2U to mnm5s2U. Nucleic Acids Res 2011; 39:4818-26. [PMID: 21306992 PMCID: PMC3113582 DOI: 10.1093/nar/gkr071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transfer RNA (tRNA) contains a number of complex ‘hypermodified’ nucleosides that are essential for a number of genetic processes. Intermediate forms of these nucleosides are rarely found in tRNA despite the fact that modification is not generally a complete process. We propose that the modification machinery is tuned into an efficient ‘assembly line’ that performs the modification steps at similar, or sequentially increasing, rates to avoid build-up of possibly deleterious intermediates. To investigate this concept, we measured steady-state kinetics for the final two steps of the biosynthesis of the mnm5s2U nucleoside in Escherichia coli tRNAGlu, which are both catalysed by the bifunctional MnmC enzyme. High-performance liquid chromatography-based assays using selectively under-modified tRNA substrates gave a Km value of 600 nM and kcat 0.34 s−1 for the first step, and Km 70 nM and kcat 0.31 s−1 for the second step. These values show that the second reaction occurs faster than the first reaction, or at a similar rate at very high substrate concentrations. This result indicates that the enzyme is kinetically tuned to produce fully modified mnm5(s2)U while avoiding build-up of the nm5(s2)U intermediate. The assay method developed here represents a general approach for the comparative analysis of tRNA-modifying enzymes.
Collapse
Affiliation(s)
- David Pearson
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, LMU Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | |
Collapse
|