1
|
Windle ST, Neal ML, Mast FD, Kappe SHI, Aitchison JD. A Conditional Cas9 System for Stage-Specific Gene Editing in P. falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642268. [PMID: 40161752 PMCID: PMC11952345 DOI: 10.1101/2025.03.09.642268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The malaria parasite has a complex lifecycle involving various host cell environments in both human and mosquito hosts. The parasite must tightly regulate gene expression at each stage in order to adapt to its current environment while continuing development. However, it is challenging to study gene function and regulation of essential genes across the parasite's multi-host lifecycle. Thus, we adapted a recently developed a single-plasmid dimerizable Cre recombinase system for rapamycin-controllable expression of Cas9, allowing for conditional introduction of mutations. We explored rates of gene deletion using varying repair template lengths, showing functionality of donor templates under 250bp for homology-directed repair. As a proof of concept, we conditionally disrupted two uncharacterized genes in blood and gametocyte stages, identifying new stage-specific phenotypes. Importance As progress towards eliminating malaria has stalled, there is a pressing need for new antimalarials and vaccines. Genes essential to multiple stages of development represent ideal candidates for both antimalarials and vaccines. However, much of the parasite genome remains uncharacterized. Conditional gene perturbation approaches are needed in order to study gene function across the lifecycle. Currently available tools are limited in their ability to perturb genes at the scale required for large screens. We describe a tool that allows for conditional introduction of desired mutations by controlling Cas9 with the DiCre-loxP system. We demonstrate the accessibility of this approach by designing gRNA-donor pairs that can be commercially synthesized. This toolkit provides a scalable system for identifying new drug and vaccine candidates targeting multiple stages of the parasite lifecycle.
Collapse
Affiliation(s)
- Sean T. Windle
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stefan H. I. Kappe
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - John D. Aitchison
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
McDaniels JM, Huckaby AC, Carter SA, Lingeman S, Francis A, Congdon M, Santos W, Rathod PK, Guler JL. Extrachromosomal DNA amplicons in antimalarial-resistant Plasmodium falciparum. Mol Microbiol 2021; 115:574-590. [PMID: 33053232 PMCID: PMC8246734 DOI: 10.1111/mmi.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022]
Abstract
Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.
Collapse
Affiliation(s)
| | - Adam C. Huckaby
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | | | | | - Audrey Francis
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | | | | | | | - Jennifer L. Guler
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
- Division of Infectious Diseases and International HealthDepartment of MedicineUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
3
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
4
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Balabaskaran-Nina P, Desai SA. Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB. Parasit Vectors 2018; 11:548. [PMID: 30333047 PMCID: PMC6192176 DOI: 10.1186/s13071-018-3129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
Genetic manipulation of the human malaria parasite Plasmodium falciparum is needed to explore pathogen biology and evaluate antimalarial targets. It is, however, aggravated by a low transfection efficiency, a paucity of selectable markers and a biased A/T-rich genome. While various enabling technologies have been introduced over the past two decades, facile and broad-range modification of essential genes remains challenging. We recently devised a new application of the Bxb1 integrase strategy to meet this need through an intronic attB sequence within the gene of interest. Although this attB is silent and without effect on intron splicing or protein translation and function, it allows efficient gene modification with minimal risk of unwanted changes at other genomic sites. We describe the range of applications for this new method as well as specific cases where it is preferred over CRISPR-Cas9 and other technologies. The advantages and limitations of various strategies for endogenous gene editing are also discussed.
Collapse
Affiliation(s)
- Praveen Balabaskaran-Nina
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.,Present Address: Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India
| | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
6
|
Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog 2017; 13:e1006453. [PMID: 28683142 PMCID: PMC5500368 DOI: 10.1371/journal.ppat.1006453] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. Malaria, a disease that kills hundreds of thousands of people each year, is caused by a single-celled parasite that grows in red blood cells of infected individuals. Following each round of parasite multiplication, the infected red cells are actively ruptured in a process called egress, releasing a new generation of parasites. Egress is essential for progression to clinical disease, but little is known about how it is controlled. In this work we set out to address the function in egress of a Plasmodium falciparum protein called SERA5, an abundant component of the vacuole in which the parasite grows. We show that parasites lacking SERA5 (or lacking both SERA5 and a closely-related protein called SERA4) undergo accelerated but defective egress in which the bounding vacuole and red cell membranes do not rupture properly. This impedes the escape and subsequent replication of the newly-developed parasites. We also show that modification of SERA5 by parasites proteases just prior to egress is important for SERA5 function. Our results show that SERA5 is a ‘negative regulator’ of egress, controlling the speed of the pathway that leads to disruption of the membranes surrounding the intracellular parasite. Our findings increase our understanding of the molecular mechanisms underlying malarial egress and show that efficient egress requires tight control of the timing of membrane rupture.
Collapse
Affiliation(s)
- Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jonathan Atid
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Brancucci NMB, Witmer K, Schmid C, Voss TS. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum. PLoS One 2014; 9:e100183. [PMID: 24937593 PMCID: PMC4061111 DOI: 10.1371/journal.pone.0100183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/23/2014] [Indexed: 01/14/2023] Open
Abstract
Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is encoded by the multicopy var gene family and only a single variant is expressed in individual parasites, a concept known as mutual exclusion or singular gene choice. var gene activation occurs in situ and is achieved through the escape of one locus from epigenetic silencing. Singular gene choice is controlled at the level of transcription initiation and var 5' upstream (ups) sequences harbour regulatory information essential for mutually exclusive transcription as well as for the trans-generational inheritance of the var activity profile. An additional level of control has recently been identified for the var2csa gene, where an mRNA element in the 5' untranslated region (5' UTR) is involved in the reversible inhibition of translation of var2csa transcripts. Here, we extend the knowledge on post-transcriptional var gene regulation to the common upsC type. We identified a 5' UTR sequence that inhibits translation of upsC-derived mRNAs. Importantly, this 5' UTR element efficiently inhibits translation even in the context of a heterologous upstream region. Further, we found var 5' UTRs to be significantly enriched in uAUGs which are known to impair the efficiency of protein translation in other eukaryotes. Our findings suggest that regulation at the post-transcriptional level is a common feature in the control of PfEMP1 expression in P. falciparum.
Collapse
Affiliation(s)
- Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kathrin Witmer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Schmid
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Gopalakrishnan AM, Kundu AK, Mandal TK, Kumar N. Novel nanosomes for gene delivery to Plasmodium falciparum-infected red blood cells. Sci Rep 2013; 3:1534. [PMID: 23525038 PMCID: PMC3607119 DOI: 10.1038/srep01534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/08/2013] [Indexed: 11/09/2022] Open
Abstract
Malaria threatens millions of people annually and is a burden to human health and economic development. Unfortunately in terms of disease control, no effective vaccines are available and the efficacy of treatment is limited by drug resistance. Genetic manipulation in Plasmodium falciparum is hampered due to the absence of robust methods for genetic analyses. Electroporation-based transfection methods have allowed the study of gene function in P. falciparum, with low efficiency. A lipid nanoparticle was developed that allowed nuclear targeting of pDNA with increased efficiency in reporter assay, compared to traditional electroporation method. This method has for the first time, facilitated transfection using both circular and linear DNA in P. falciparum thereby serving as an alternative to electroporation with an increase in transfection efficiency. Availability of a robust method for functional genomic studies in these organisms may be a catalyst for discovery of novel targets for developing drugs and vaccines.
Collapse
Affiliation(s)
- Anusha M Gopalakrishnan
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, 1440 Canal street, SL-17, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
9
|
Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of Malaria hypnozoite-forms. PLoS One 2013; 8:e54888. [PMID: 23359816 PMCID: PMC3554669 DOI: 10.1371/journal.pone.0054888] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/17/2012] [Indexed: 01/29/2023] Open
Abstract
A major challenge for strategies to combat the human malaria parasite Plasmodium vivax is the presence of hypnozoites in the liver. These dormant forms can cause renewed clinical disease after reactivation through unknown mechanisms. The closely related non-human primate malaria P. cynomolgi is a frequently used model for studying hypnozoite-induced relapses. Here we report the generation of the first transgenic P. cynomolgi parasites that stably express fluorescent markers in liver stages by transfection with novel DNA-constructs containing a P. cynomolgi centromere. Analysis of fluorescent liver stages in culture identified, in addition to developing liver-schizonts, uninucleate persisting parasites that were atovaquone resistant but primaquine sensitive, features associated with hypnozoites. We demonstrate that these hypnozoite-forms could be isolated by fluorescence-activated cell sorting. The fluorescently-tagged parasites in combination with FACS-purification open new avenues for a wide range of studies for analysing hypnozoite biology and reactivation.
Collapse
|
10
|
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol 2012; 43:125-32. [PMID: 23068911 DOI: 10.1016/j.ijpara.2012.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Bovine babesiosis caused by the protozoan parasite, Babesia bovis, remains a significant cause of avoidable economic losses to the livestock industry in many countries throughout the world. The molecular mechanisms underlying the pathophysiology of severe disease in susceptible cattle are not well understood and the tools available to study the biology of the parasite, including technologies for genetic manipulation, have only recently been developed. Recent availability of multiple parasite genomes and bioinformatic tools, in combination with the development of new biological reagents, will facilitate our better understanding of the parasite. This will ultimately assist in the identification of novel targets for the development of new therapeutics and vaccines. Here we describe some recent advances in Babesia research and highlight some important challenges for the future.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
11
|
Balu B. Moving "Forward" in Plasmodium Genetics through a Transposon-Based Approach. J Trop Med 2012; 2012:829210. [PMID: 22649460 PMCID: PMC3356940 DOI: 10.1155/2012/829210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 01/07/2023] Open
Abstract
The genome sequence of the human malaria parasite, Plasmodium falciparum, was released almost a decade ago. A majority of the Plasmodium genome, however, remains annotated to code for hypothetical proteins with unknown functions. The introduction of forward genetics has provided novel means to gain a better understanding of gene functions and their associated phenotypes in Plasmodium. Even with certain limitations, the technique has already shown significant promise to increase our understanding of parasite biology needed for rationalized drug and vaccine design. Further improvements to the mutagenesis technique and the design of novel genetic screens should lead us to some exciting discoveries about the critical weaknesses of Plasmodium, and greatly aid in the development of new disease intervention strategies.
Collapse
Affiliation(s)
- Bharath Balu
- Tropical Disease Research Program, Center for Infectious Disease and Biodefense Research, SRI International, Harrisonburg, VA 22802, USA
| |
Collapse
|
12
|
Iwanaga S, Kato T, Kaneko I, Yuda M. Centromere plasmid: a new genetic tool for the study of Plasmodium falciparum. PLoS One 2012; 7:e33326. [PMID: 22479383 PMCID: PMC3316556 DOI: 10.1371/journal.pone.0033326] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
The introduction of transgenes into Plasmodium falciparum, a highly virulent human malaria parasite, has been conducted either by single crossover recombination or by using episomal plasmids. However, these techniques remain insufficient because of the low transfection efficiency and the low frequency of recombination. To improve the genetic manipulation of P. falciparum, we developed the centromere plasmid as a new genetic tool. First, we attempted to clone all of the predicted centromeres from P. falciparum into E. coli cells but failed because of the high A/T contents of these sequences. To overcome this difficulty, we identified the common sequence features of the centromere of Plasmodium spp. and designed a small centromere that retained those features. The centromere plasmid constructed with the small centromere sequence, pFCEN, segregated into daughter parasites with approximately 99% efficiency, resulting in the stable maintenance of this plasmid in P. falciparum even in the absence of drug selection. This result demonstrated that the small centromere sequence harboured in pFCEN could function as an actual centromere in P. falciparum. In addition, transgenic parasites were more rapidly generated when using pFCEN than when using the control plasmid, which did not contain the centromere sequence. Furthermore, in contrast to the control plasmid, pFCEN did not form concatemers and, thus, was maintained as a single copy over multiple cell divisions. These unique properties of the pFCEN plasmid will solve the current technical limitations of the genetic manipulation of P. falciparum, and thus, this plasmid will become a standard genetic tool for the study of this parasite.
Collapse
Affiliation(s)
- Shiroh Iwanaga
- Mie University, School of Medicine, Tsu, Japan
- * E-mail: (SI); (MY)
| | | | | | - Masao Yuda
- Mie University, School of Medicine, Tsu, Japan
- * E-mail: (SI); (MY)
| |
Collapse
|
13
|
Hasenkamp S, Wong EH, Horrocks P. An improved single-step lysis protocol to measure luciferase bioluminescence in Plasmodium falciparum. Malar J 2012; 11:42. [PMID: 22325061 PMCID: PMC3293040 DOI: 10.1186/1475-2875-11-42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/10/2012] [Indexed: 11/16/2022] Open
Abstract
This report describes the optimization and evaluation of a simple single-step lysis protocol to measure luciferase bioluminescence from genetically modified Plasmodium falciparum. This protocol utilizes a modified commercial buffer to improve speed of assay and consistency in the bioluminescence signal measured by reducing the manipulation steps required to release the cytoplasmic fraction. The utility of this improved assay protocol is demonstrated in typical assays that explore absolute and temporal gene expression activity.
Collapse
Affiliation(s)
- Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Eleanor H Wong
- Infection and Immunity and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8QQ, UK
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
14
|
Abstract
Gene manipulation is an invaluable tool to investigate and understand the biology of an organism. Although this technology has been applied to both the human and rodent malarial parasites (RMP), Plasmodium berghei in particular offers a more robust system due to a higher and more efficient transformation rate. Here, we describe a comprehensive transfection and selection protocol using P. berghei including a variant negative selection protocol administering 5-fluorocytosine to the animals in drinking water. Additionally, we discuss and assess the latest advances in gene manipulation technologies developed in RMP to gain a better understanding of Plasmodium biology.
Collapse
|
15
|
Khan SM, Kroeze H, Franke-Fayard B, Janse CJ. Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database. Methods Mol Biol 2012; 923:139-50. [PMID: 22990775 DOI: 10.1007/978-1-62703-026-7_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetically modified Plasmodium parasites are central gene function reagents in malaria research. The Rodent Malaria genetically modified DataBase (RMgmDB) ( www.pberghei.eu ) is a manually curated Web - based repository that contains information on genetically modified rodent malaria parasites. It provides easy and rapid access to information on the genotype and phenotype of genetically modified mutant and reporter parasites. Here, we provide guidelines for generating and describing rodent malaria parasite mutants. Standardization in describing mutant genotypes and phenotypes is important not only to enhance publication quality but also to facilitate cross-linking and mining data from multiple sources, and should permit information derived from mutant parasites to be used in integrative system biology approaches. We also provide guidelines on how to submit information to RMgmDB on non-published mutants, mutants that do not exhibit a clear phenotype, as well as negative attempts to disrupt/mutate genes. Such information helps to prevent unnecessary duplication of experiments in different laboratories, and can provide indirect evidence that these genes are essential for blood-stage development.
Collapse
Affiliation(s)
- Shahid M Khan
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
17
|
Plasmodium falciparum var gene silencing is determined by cis DNA elements that form stable and heritable interactions. EUKARYOTIC CELL 2011; 10:530-9. [PMID: 21317310 DOI: 10.1128/ec.00329-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antigenic variation in the human malaria parasite Plasmodium falciparum depends on the transcriptional regulation of the var gene family. In each individual parasite, mRNA is expressed exclusively from 1 var gene out of ∼60, while the rest of the genes are transcriptionally silenced. Both modifications to chromatin structure and DNA regulatory elements associated with each var gene have been implicated in the organization and maintenance of the silent state. Whether silencing is established at the level of entire chromosomal regions via heterochromatin spreading or at the level of individual var promoters through the action of a silencing element within each var intron has been debated. Here, we consider both possibilities, using clonal parasite lines carrying chromosomally integrated transgenes. We confirm a previous finding that the loss of an adjacent var intron results in var promoter activation and further show that transcriptional activation of a var promoter within a cluster does not affect the transcriptional activity of neighboring var promoters. Our results provide more evidence for the hypothesis that var genes are primarily silenced at the level of an individual gene, rather than by heterochromatin spreading. We also tested the intrinsic directionality of an intron's silencing effect on upstream or downstream var promoters. We found that an intron is capable of silencing in either direction and that, once established, a var promoter-intron pair is stably maintained through many generations, suggesting a possible role in epigenetic memory. This study provides insights into the regulation of endogenous var gene clusters.
Collapse
|
18
|
Iwanaga S, Khan SM, Kaneko I, Christodoulou Z, Newbold C, Yuda M, Janse CJ, Waters AP. Functional identification of the Plasmodium centromere and generation of a Plasmodium artificial chromosome. Cell Host Microbe 2010; 7:245-55. [PMID: 20227667 PMCID: PMC2996609 DOI: 10.1016/j.chom.2010.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/12/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
The artificial chromosome represents a useful tool for gene transfer, both as cloning vectors and in chromosome biology research. To generate a Plasmodium artificial chromosome (PAC), we had to first functionally identify and characterize the parasite's centromere. A putative centromere (pbcen5) was cloned from chromosome 5 of the rodent parasite P. berghei based on a Plasmodium gene-synteny map. Plasmids containing pbcen5 were stably maintained in parasites during a blood-stage infection with high segregation efficiency, without drug pressure. pbcen5-containing plasmids were also stably maintained during parasite meiosis and mitosis in the mosquito. A linear PAC (L-PAC) was generated by integrating pbcen5 and telomere into a plasmid. The L-PAC segregated with a high efficiency and was stably maintained throughout the parasite's life cycle, as either one or two copies. These results suggest that L-PAC behaves like a Plasmodium chromosome, which can be exploited as an experimental research tool.
Collapse
Affiliation(s)
| | - Shahid M. Khan
- Leiden Malaria Research Group, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden 2333 ZA, The Netherlands
| | - Izumi Kaneko
- Mie University, School of Medicine, Tsu 514-0001, Japan
| | - Zoe Christodoulou
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Chris Newbold
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Masao Yuda
- Mie University, School of Medicine, Tsu 514-0001, Japan
| | - Chris J. Janse
- Leiden Malaria Research Group, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden 2333 ZA, The Netherlands
| | - Andrew P. Waters
- Leiden Malaria Research Group, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden 2333 ZA, The Netherlands
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, Scotland
| |
Collapse
|
19
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rogerson SJ, Wijesinghe RS, Meshnick SR. Host immunity as a determinant of treatment outcome in Plasmodium falciparum malaria. THE LANCET. INFECTIOUS DISEASES 2010; 10:51-9. [PMID: 20129149 DOI: 10.1016/s1473-3099(09)70322-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Host immunity is an important but poorly understood determinant of antimalarial efficacy, influencing the outcome of prevention and treatment trials. Variations in host immunity might explain why factors such as host genetics, age, pregnancy, infection with HIV, parasite density, and malaria transmission intensity, can raise or lower apparent cure rates. Recently, attempts have been made to characterise immunological correlates of treatment outcome in Plasmodium falciparum malaria, but not yet for Plasmodium vivax. A better understanding of such correlates might improve trials of antimalarial drugs and provide leads for vaccine development. Greater understanding of the relation between host immunity and treatment outcome is crucial to making informed choices about the use of safe but partly effective drugs for malaria prevention in children and pregnant women. With increasing malaria control efforts worldwide, declining population immunity might alter drug response profiles. Improved methods for assessing antimalarial immunity will strengthen malaria control efforts.
Collapse
Affiliation(s)
- Stephen J Rogerson
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
21
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Tchurikov NA, Kretova OV, Moiseeva ED, Sosin DV. Evidence for RNA synthesis in the intergenic region between enhancer and promoter and its inhibition by insulators in Drosophila melanogaster. Nucleic Acids Res 2008; 37:111-22. [PMID: 19022852 PMCID: PMC2615631 DOI: 10.1093/nar/gkn926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Uncovering the nature of communication between enhancers, promoters and insulators is important for understanding the fundamental mechanisms that ensure appropriate gene expression levels. Here we describe an approach employing transient expression of genetic luciferase reporter gene constructs with quantitative RT–PCR analysis of transcription between an enhancer and Hsp70 promoter. We tested genetic constructs containing gypsy and/or Fab7 insulators in different orientations, and an enhancer from copia LTR-retroelement [(enh)copia]. A single gypsy or Fab7 insulator inserted between the promoter and enhancer in any polarity reduced enhancer action. A pair of insulators flanking the gene in any orientation exhibited increased insulation activity. We detected promoter-independent synthesis of non-coding RNA in the intergenic region of the constructs, which was induced by the enhancer in both directions and repressed by a single insulator or a pair of insulators. These results highlight the involvement of RNA-tracking mechanisms in the communications between enhancers and promoters, which are inhibited by insulators.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Genome Organization, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
23
|
Cui L, Miao J, Wang J, Li Q, Cui L. Plasmodium falciparum: development of a transgenic line for screening antimalarials using firefly luciferase as the reporter. Exp Parasitol 2008; 120:80-7. [PMID: 18579134 DOI: 10.1016/j.exppara.2008.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
High-throughput screening (HTS) of small-molecule libraries against pharmacological targets is a key strategy of contemporary drug discovery. This study reports a simple, robust, and cell-based luminescent method for assaying antimalarial drugs. Using transfection technology, we generated a stable Plasmodium falciparum line with high levels of firefly luciferase expression. A luciferase assay based on this parasite line was optimized in a 96-well plate format and used to compare with the standard [(3)H] hypoxanthine radioisotope method. The 50% inhibitory concentrations (IC(50)s) of chloroquine, artesunate, artemether, dihydroartemisinin and curcumin obtained by these two methods were not significantly different (P>0.05, ANOVA). In addition, this assay could be performed conveniently with a luminescence plate reader using unsynchronized stages within as early as 12h. Furthermore, the luciferase assay is robust with a Z' score of 0.77-0.92, which suggests the feasibility for further miniaturization and automation.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
24
|
De Koning-Ward TF, Olivieri A, Bertuccini L, Hood A, Silvestrini F, Charvalias K, Berzosa Díaz P, Camarda G, McElwain TF, Papenfuss T, Healer J, Baldassarri L, Crabb BS, Alano P, Ranford-Cartwright LC. The role of osmiophilic bodies and Pfg377 expression in female gametocyte emergence and mosquito infectivity in the human malaria parasite Plasmodium falciparum. Mol Microbiol 2007; 67:278-90. [DOI: 10.1111/j.1365-2958.2007.06039.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Meissner M, Breinich MS, Gilson PR, Crabb BS. Molecular genetic tools in Toxoplasma and Plasmodium: achievements and future needs. Curr Opin Microbiol 2007; 10:349-56. [PMID: 17826309 DOI: 10.1016/j.mib.2007.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/20/2007] [Indexed: 01/14/2023]
Abstract
The recent awarding of the Nobel prize to Andrew Fire and Craig Mello for the discovery of RNA-interference (RNAi) in plants once more demonstrated the importance of basic science in understanding biological mechanisms. Importantly, this discovery led to the establishment of powerful approaches to study gene function in a wide array of organisms. While a robust RNAi-technology remains elusive in apicomplexan parasites, other molecular genetic technologies have been introduced in recent years. Now, in the post genomic era, the task is to apply these methods to validate and functionally dissect an ever-expanding list of putative vaccine and drug candidates. The ultimate aim of such studies is to transform our knowledge of the genome to the knowledge of the phenome and ultimately new intervention strategies in these important pathogenic organisms. However, substantial limitations remain to the current repertoire of available molecular tools, which limits a comprehensive analysis of these candidates, especially of essential genes. This review summarises the methodologies available for functional gene analysis in apicomplexan parasites and discusses further needs in tool development.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut Heidelberg, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
26
|
Voss TS, Tonkin CJ, Marty AJ, Thompson JK, Healer J, Crabb BS, Cowman AF. Alterations in local chromatin environment are involved in silencing and activation of subtelomeric var genes in Plasmodium falciparum. Mol Microbiol 2007; 66:139-50. [PMID: 17725559 PMCID: PMC2169929 DOI: 10.1111/j.1365-2958.2007.05899.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var gene family, undergoes antigenic variation and plays an important role in chronic infection and severe malaria. Only a single var gene is transcribed per parasite, and epigenetic control mechanisms are fundamental in this strategy of mutually exclusive transcription. We show that subtelomeric upsB var gene promoters carried on episomes are silenced by default, and that promoter activation is sufficient to silence all other family members. However, they are active by default when placed downstream of a second active var promoter, underscoring the significance of local chromatin environment and nuclear compartmentalization in var promoter regulation. Native chromatin covering the SPE2-repeat array in upsB promoters is resistant to nuclease digestion, and insertion of these regulatory elements into a heterologous promoter causes local alterations in nucleosomal organization and promoter repression. Our findings suggest a common logic underlying the transcriptional control of all var genes, and have important implications for our understanding of the epigenetic processes involved in the regulation of this major virulence gene family.
Collapse
Affiliation(s)
- Till S Voss
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
| | - Christopher J Tonkin
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
| | - Allison J Marty
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
- Department of Microbiology, Monash UniversityClayton 3800, Australia
| | - Jennifer K Thompson
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
| | - Julie Healer
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
| | - Brendan S Crabb
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
| | - Alan F Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical ResearchParkville 3050, Australia
- E-mail ; Tel. (+61) 3 9345 2555; Fax (+61) 3 9347 0852
| |
Collapse
|
27
|
López-Estraño C, Semblat JP, Gopalakrishnan AM, Turner L, Mazier D, Haldar K. Plasmodium falciparum: hrp3 promoter region is associated with stage-specificity and episomal recombination. Exp Parasitol 2007; 116:327-33. [PMID: 17367782 PMCID: PMC2267921 DOI: 10.1016/j.exppara.2007.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/27/2006] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
The asexual blood stage of Plasmodium falciparum in the human host is comprised of morphologically distinct ring, trophozoite and schizont stages, each of which possesses a distinct pattern of gene expression. Episomal promoter recombination has been recently reported in malaria parasites. We aim to investigate the nature of this process, and its relationship with promoter activity by employing a series of nested deletions of the ring-specific hrp3 promoter. Our results showed a discrete promoter region that is preferentially used for recombination. The P. falciparum hrp3 mRNA is only seen in ring-stage parasites but deletion of the recombination region was associated with decreased ring-stage expression and concurrent detection of transcripts in trophozoite-stage parasites. Our results describe a ring-stage specific regulatory region possibly involved in episomal promoter recombination, suggesting that common sequences might mediate both processes.
Collapse
Affiliation(s)
- Carlos López-Estraño
- Department of Biology, Life Sciences Building, Room 409B, The University of Memphis, Memphis, TN 38152, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Crabb BS, Gilson PR. A new system for rapid plasmid integration in Plasmodium parasites. Trends Microbiol 2006; 15:3-6. [PMID: 17126551 DOI: 10.1016/j.tim.2006.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/09/2006] [Accepted: 11/15/2006] [Indexed: 11/15/2022]
Abstract
Transfection of the human malaria parasite Plasmodium falciparum has facilitated greater understanding of the biology of this devastating protozoal pathogen. However, technical limitations have restricted the options available for functional analysis. A recent study by Nkrumah and colleagues provides a powerful new transfection tool, the Bxb1 integrase system. In this article, we outline the potential of this system, describing how it enables direct site-specific integration and the rapid generation of stably transformed populations that express uniform levels of introduced transgenes.
Collapse
Affiliation(s)
- Brendan S Crabb
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne 3050, Australia.
| | | |
Collapse
|
29
|
Balu B, Adams JH. Advancements in transfection technologies for Plasmodium. Int J Parasitol 2006; 37:1-10. [PMID: 17113093 DOI: 10.1016/j.ijpara.2006.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022]
Abstract
Malaria is a global problem that affects millions of people annually. A relatively poor understanding of the malaria parasite biology has hindered vaccine and drug development against this disease. Robust methods for genetic analyses in Plasmodium have been lacking due to the difficulties in its genetic manipulation. Introduction of transfection technologies laid the foundation for genetic dissection of Plasmodium and recent years have seen the development of novel tools for genetic manipulation that will help us delineate the intriguing biology of this parasite. This review focuses on such recent advances in transfection technologies for Plasmodium that have improved our ability to carry out more thorough genetic analyses of the biology of the malaria parasite.
Collapse
Affiliation(s)
- Bharath Balu
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
30
|
Abstract
Plasmodium falciparum is the causative agent for the most lethal form of human malaria, killing millions annually. Genetic analyses of P. falciparum have been relatively limited due to the lack of robust techniques to manipulate this parasite. Development of transfection technologies and whole genome analyses have helped in understanding the complex biology of this parasite. Even with this wealth of information functional genomics approaches are still very limited in P. falciparum due to the cumbersome and inefficient methods of genetic manipulation. This review focuses on a recently developed, highly efficient method for transposon-based mutagenesis and transgene expression in P. falciparum that will allow functional genomics studies to be performed proficiently on this deadly malaria parasite. By using a piggyBac-based transposition system, multiple random integrations have been obtained into the genome of the parasite. This technique could hence be employed to set up several biological screens in this lethal protozoan parasite that may lead to identification of novel drug targets and vaccine candidates.
Collapse
Affiliation(s)
- Bharath Balu
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
31
|
Sanders PR, Kats LM, Drew DR, O'Donnell RA, O'Neill M, Maier AG, Coppel RL, Crabb BS. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun 2006; 74:4330-8. [PMID: 16790807 PMCID: PMC1489731 DOI: 10.1128/iai.00054-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted gene disruption has proved to be a powerful approach for studying the function of important ligands involved in erythrocyte invasion by the extracellular merozoite form of the human malaria parasite, Plasmodium falciparum. Merozoite invasion proceeds via a number of seemingly independent alternate pathways, such that entry can proceed with parasites lacking particular ligand-receptor interactions. To date, most focus in this regard has been on single-pass (type 1) membrane proteins that reside in the secretory organelles. Another class of merozoite proteins likely to include ligands for erythrocyte receptors are the glycosylphosphatidyl inositol (GPI)-anchored membrane proteins that coat the parasite surface and/or reside in the apical organelles. Several of these are prominent vaccine candidates, although their functions remain unknown. Here, we systematically attempted to disrupt the genes encoding seven of the known GPI-anchored merozoite proteins of P. falciparum by using a double-crossover gene-targeting approach. Surprisingly, and in apparent contrast to other merozoite antigen classes, most of the genes (six of seven) encoding GPI-anchored merozoite proteins are refractory to genetic deletion, with the exception being the gene encoding merozoite surface protein 5 (MSP-5). No distinguishable growth rate or invasion pathway phenotype was detected for the msp-5 knockout line, although its presence as a surface-localized protein was confirmed.
Collapse
Affiliation(s)
- Paul R Sanders
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Crooke A, Diez A, Mason PJ, Bautista JM. Transient silencing of Plasmodium falciparum bifunctional glucose-6-phosphate dehydrogenase- 6-phosphogluconolactonase. FEBS J 2006; 273:1537-46. [PMID: 16689939 DOI: 10.1111/j.1742-4658.2006.05174.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (G6PD-6PGL) found in Plasmodium falciparum has unique structural and functional characteristics restricted to this genus. This study was designed to examine the effects of RNA-mediated PfG6PD-6PGL gene silencing in cultures of P. falciparum on the expression of parasite antioxidant defense genes at the transcription level. The highest degree of G6PD-6PGL silencing achieved was 86% at the mRNA level, with a recovery to almost normal levels within 24 h, indicating only transient diminished expression of the PfG6PD-6PGL gene. PfG6PD-6PGL silencing caused arrest of the trophozoite stage and enhanced gametocyte formation. In addition, an immediate transcriptional response was shown by thioredoxin reductase suggesting that P. falciparum G6PD-6PGL plays a physiological role in the specific response of the parasite to intracellullar oxidative stress. P. falciparum transfection with an empty DNA vector also promoted intracellular stress, as determined by mRNA up-regulation of antioxidant genes. Collectively, our findings point to an important role for this enzyme in the parasite's infection cycle. The different characteristics of G6PD-6PGL with respect to its homologue in the host make it an ideal target for therapeutic strategies.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Abstract
As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.
Collapse
Affiliation(s)
- John E Hyde
- Faculty of life Sciences, University of Manchester, P.O. Box 88, Manchester M60 1QD, UK.
| |
Collapse
|
34
|
Meissner M, Krejany E, Gilson PR, de Koning-Ward TF, Soldati D, Crabb BS. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc Natl Acad Sci U S A 2005; 102:2980-5. [PMID: 15710888 PMCID: PMC548799 DOI: 10.1073/pnas.0500112102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic manipulation has revolutionized research in the Apicomplexan parasite Plasmodium falciparum, the most important causative agent of malaria. However, to date no techniques have been established that allow modifications that are deleterious to blood-stage growth, such as the disruption of essential genes or the expression of dominant-negative transgenes. The recent establishment of a screen for functional transactivators in the related parasite Toxoplasma gondii prompted us to identify transactivators in T. gondii and to examine their functionality in P. falciparum. Tetracycline-responsive minimal promoters were generated based on the characterized P. falciparum calmodulin promoter and used to assess transactivators in P. falciparum. We demonstrate that artificial tetracycline-regulated transactivators isolated in T. gondii are also functional in P. falciparum. By using the tetracycline analogue anhydrotetracycline, efficient, stage-specific gene regulation was achieved in P. falciparum. This regulatable expression technology has clear potential for the study of essential gene function in P. falciparum blood stages. On the other hand, the identified transactivators are not functional in mammalian cells, consistent with the fundamental differences in the mechanism of gene regulation between Apicomplexan parasites and their human hosts.
Collapse
Affiliation(s)
- Markus Meissner
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3050, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Wang P, Wang Q, Aspinall TV, Sims PFG, Hyde JE. Transfection studies to explore essential folate metabolism and antifolate drug synergy in the human malaria parasite Plasmodium falciparum. Mol Microbiol 2004; 51:1425-38. [PMID: 14982635 DOI: 10.1111/j.1365-2958.2003.03915.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Folate metabolism in Plasmodium falciparum is the target of important antimalarial agents. The biosynthetic pathway converts GTP to polyglutamated derivatives of tetrahydrofolate (THF), essential cofactors for DNA synthesis. Tetrahydrofolate can also be acquired by salvage mechanisms. Using a transfection system adapted to studying this pathway, we investigated modulation of dihydropteroate synthase (DHPS) activity on parasite phenotypes. Dihydropteroate synthase incorporates p-aminobenzoate (pABA) into dihydropteroate, the precursor of dihydrofolate. We were unable to obtain viable parasites where the dhps gene had been truncated. However, parasites where the protein was full-length but mutated at two key residues and having < 10% of normal activity were viable in folate-supplemented medium. Metabolic labelling showed that these parasites could still convert pABA to polyglutamated folates, albeit at a very low level, but they could not survive on pABA supplementation alone. This degree of disablement in DHPS also abolished the synergy of the antifolate combination pyrimethamine/sulfadoxine. These data indicate that DHPS activity above a low but critical level is essential regardless of the availability of salvageable folate and formally prove the role of this enzyme in antifolate drug synergy and folate biosynthesis in vivo. However, we found no evidence of a significant role for DHPS in folate salvage. Moreover, when biosynthesis was compromised by the absence of a fully functional DHPS, the parasite was able to compensate by increasing flux through the salvage pathway.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK
| | | | | | | | | |
Collapse
|
36
|
Eksi S, Czesny B, Greenbaum DC, Bogyo M, Williamson KC. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol Microbiol 2004; 53:243-50. [PMID: 15225318 DOI: 10.1111/j.1365-2958.2004.04108.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cysteine proteases are currently targets for drug development in a number of parasitic diseases, including malaria. In Plasmodium falciparum, the parasite responsible for the most virulent form of human malaria, there are four members of the cathepsin L-like family of cysteine proteases. Three of these (falcipains 2A, 2B and 3) are thought to be primarily involved in haemoglobin digestion, whereas falcipain 1 has recently been linked to erythrocyte invasion. Neither their expression nor their role in P. falciparum gametocytogenesis, which is required for malaria transmission, has been evaluated. In this study, RNA transcripts for the falcipain family members were identified as the parasite developed through all five stages of gametocytogenesis. Falcipain 1 transcript was upregulated in gametocytes, while levels of falcipain 2A/2B decreased in late-stage gametocytes and gametes. To evaluate the function of falcipain 1, the gene was disrupted, and clones from independent transformations were isolated. The asexual growth of the falcipain 1 minus clones was not overtly affected, and they produced morphologically normal gametocytes and gametes. However, when falcipain 1 minus parasites were fed to a mosquito, oocyst production was reduced by 70-90%, suggesting an important role for falcipain 1 during parasite development in the mosquito midgut.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, 6525 North Sheridan Rd., Chicago, IL 60626, USA
| | | | | | | | | |
Collapse
|
37
|
Boucher N, McNicoll F, Laverdière M, Rochette A, Chou MN, Papadopoulou B. The ribosomal RNA gene promoter and adjacent cis-acting DNA sequences govern plasmid DNA partitioning and stable inheritance in the parasitic protozoan Leishmania. Nucleic Acids Res 2004; 32:2925-36. [PMID: 15161957 PMCID: PMC419617 DOI: 10.1093/nar/gkh617] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Detailed analysis of the Leishmania donovani ribosomal RNA (rRNA) gene promoter region has allowed the identification of cis-acting sequences involved in plasmid DNA partitioning and stable plasmid inheritance. We report that plasmids bearing the 350 bp rRNA promoter along with the 200 bp region immediately 3' to the promoter exhibited a 6.5-fold increase in transformation frequency and were transmitted to daughter cells as single-copy molecules. This is in contrast to what has been observed for plasmid molecules in this organism so far. Moreover, we show that these low-copy-number plasmids displayed a remarkable mitotic stability in the absence of selective pressure. The region in the vicinity of the RNA pol I transcription initiation site, and also in the adjacent 200 nt, displays a complex structural organization and shares sequence similarity to the yeast autonomously replicating consensus sequence and centromere DNA elements. Deletion analyses indicated that these elements were necessary but not sufficient for plasmid DNA partitioning and stable inheritance, and that the rRNA promoter region was required for optimal function. These results suggest an interplay between RNA pol I transcription, DNA replication, DNA partitioning and mitotic stability in trypanosomatids. This is the first example of defined DNA elements for plasmid partitioning and stable inheritance in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Nathalie Boucher
- Infectious Disease Research Center, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Drew DR, O'Donnell RA, Smith BJ, Crabb BS. A common cross-species function for the double epidermal growth factor-like modules of the highly divergent plasmodium surface proteins MSP-1 and MSP-8. J Biol Chem 2004; 279:20147-53. [PMID: 14976193 DOI: 10.1074/jbc.m401114200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An understanding of structural and functional constraints on the C-terminal double epidermal growth factor (EGF)-like modules of merozoite surface protein (MSP)-1 and related proteins is of importance to the development of these molecules as malaria vaccines and drug targets. Using allelic replacement, we show that Plasmodium falciparum parasites can invade erythrocytes and grow efficiently in the absence of an MSP-1 protein with authentic MSP-1 EGF domains. In this mutant parasite line, the MSP-1 EGFs were replaced by the corresponding double EGF module from P. berghei MSP-8, the sequence of which shares only low identity with its MSP-1 counterpart. Hence, the C-terminal EGF domains of at least some Plasmodium surface proteins appear to perform the same function in asexual blood-stage development. Mapping the surface location of the few residues that are common to these functionally complementary EGF modules revealed the presence of a highly conserved pocket of potential functional significance. In contrast to MSP-8, an even more divergent double EGF module, that from the sexual stage protein PbS25, was not capable of complementing MSP-1 EGF function. More surprisingly, two chimeric double EGF modules comprising hybrids of the EGF domains from P. falciparum and P. chabaudi MSP-1 were also not capable of replacing the P. falciparum MSP-1 EGF module. Together, these data suggest that although the MSP-1 EGFs can accommodate extensive sequence diversity, there appear to be constraints that may restrict the simple accumulation of point mutations in the face of immune pressure in the field.
Collapse
Affiliation(s)
- Damien R Drew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3050, Australia
| | | | | | | |
Collapse
|
39
|
Voss TS, Kaestli M, Vogel D, Bopp S, Beck HP. Identification of nuclear proteins that interact differentially with Plasmodium falciparum var gene promoters. Mol Microbiol 2003; 48:1593-607. [PMID: 12791141 DOI: 10.1046/j.1365-2958.2003.03528.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Plasmodium falciparum virulence factor PfEMP1 is responsible for both antigenic variation and cytoadherence of infected erythrocytes in malaria. Approximately 50 var genes per parasite genome code for this highly polymorphic surface protein. We showed recently that chromosome-central and subtelomeric var genes are controlled by different promoters. Here, we report that transcriptional repression of var genes located in different chromosomal regions occurs by different mechanisms. Subtelomeric var gene transcription is repressed 4-8 h before that of chromosome-central var genes. Both repression events coincide with the shifted expression of two distinct nuclear proteins binding specifically to conserved sequence motifs, SPE1 and CPE, present in the respective promoter. Furthermore, a reiterated and highly conserved subtelomeric var promoter element (SPE2) interacts with a nuclear factor exclusively expressed during S-phase. Promoter analysis by transient transfection suggested direct involvement of these interactions in var gene repression and silencing, and identified regions implicated in transcriptional activation of var genes.
Collapse
Affiliation(s)
- Till S Voss
- Swiss Tropical Institute, Department of Medical Parasitology and Infection Biology, Socinstrasse 57, 4051 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
te Vruchte D, Aitcheson N, Rudenko G. Downregulation of Trypanosoma brucei VSG expression site promoters on circular bacterial artificial chromosomes. Mol Biochem Parasitol 2003; 128:123-33. [PMID: 12742579 DOI: 10.1016/s0166-6851(03)00053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trypanosoma brucei has about 20 telomeric variant surface glycoprotein (VSG) gene expression sites (ESs), which are downregulated in the insect form. We investigated the transcriptional behaviour of ES promoters on bacterial artificial chromosomes (BACs) containing two different ESs and their flanking regions on fragments of about 140kb. Four different BACs containing either the 221 or the VO2 ES were introduced into insect form T. brucei. The BACs replicated as circular episomes as shown using pulsed field gel (PFG) analysis of DNA exposed to increasing doses of gamma radiation, and digestion with Dam methylation-sensitive restriction enzymes. BAC copy number per cell varied from about 3 for the 221 ES BACs to about 15 for the VO2 ES BACs. Increasing drug selection pressure on the VO2 BAC T. brucei transformants resulted in amplification to about 80 BACs per cell. Although BACs were maintained in the absence of drug selection for at least 56 days, copy number fell and there was no evidence for centromere activity. ES promoters on small plasmid episomes introduced into insect form T. brucei in transient transfections are derepressed. In contrast, ES promoters on large BAC episomes are downregulated both on the original ES BACs, and on ES BACs selected for a drug marker driven by a rDNA promoter fused to the BAC vector. This indicates that downregulation of ES promoters in insect form T. brucei is influenced by genomic context, but does not necessitate proximity to a chromosome end.
Collapse
Affiliation(s)
- Daniëlle te Vruchte
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | | | | |
Collapse
|
41
|
Baldi DL, Good R, Duraisingh MT, Crabb BS, Cowman AF. Identification and disruption of the gene encoding the third member of the low-molecular-mass rhoptry complex in Plasmodium falciparum. Infect Immun 2002; 70:5236-45. [PMID: 12183575 PMCID: PMC128283 DOI: 10.1128/iai.70.9.5236-5245.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 05/29/2002] [Accepted: 06/04/2002] [Indexed: 11/20/2022] Open
Abstract
The low-molecular-mass rhoptry complex of Plasmodium falciparum consists of three proteins, rhoptry-associated protein 1 (RAP1), RAP2, and RAP3. The genes encoding RAP1 and RAP2 are known; however, the RAP3 gene has not been identified. In this study we identify the RAP3 gene from the P. falciparum genome database and show that this protein is part of the low-molecular-mass rhoptry complex. Disruption of RAP3 demonstrated that it is not essential for merozoite invasion, probably because RAP2 can complement the loss of RAP3. RAP3 has homology with RAP2, and the genes are encoded on chromosome 5 in a head-to-tail fashion. Analysis of the genome databases has identified homologous genes in all Plasmodium spp., suggesting that this protein plays a role in merozoite invasion. The region surrounding the RAP3 homologue in the Plasmodium yoelii genome is syntenic with the same region in P. falciparum; however, there is a single gene. Phylogenetic comparison of the RAP2/3 protein family from Plasmodium spp. suggests that the RAP2/3 duplication occurred after divergence of these parasite species.
Collapse
Affiliation(s)
- Deborah L Baldi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | |
Collapse
|
42
|
Horrocks P, Pinches R, Kyes S, Kriek N, Lee S, Christodoulou Z, Newbold CI. Effect of var gene disruption on switching in Plasmodium falciparum. Mol Microbiol 2002; 45:1131-41. [PMID: 12180930 DOI: 10.1046/j.1365-2958.2002.03085.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms underpinning switching of variant antigens on the surface of Plasmodium falciparum-infected erythrocytes are poorly understood. We tested the hypothesis that insertional disruption of the A4var gene, one of two var genes located within the subtelomeric region of one end of chromosome 13, would result in a preferential switch in transcription to the adjacent R29var gene upon rosette selection. In this way, we aimed to mimic the preferential transcription of R29var in rosetting R29 parasites, a parasite line in which the A4var gene is deleted through a chromosome end truncation. Initial analysis of the knock-out parasite lines shows that the insertional disruption of the A4var gene prevents A4 PfEMP1 expression, but that switching transcription to other var gene variants is unaffected. Furthermore, analysis of var transcription in the knock-out parasite line during rosette selection shows that, rather than facilitating a switch to R29var gene transcription, this event was suppressed in the transfectants. These data, and the implications for epigenetic transcriptional control of var genes, are discussed.
Collapse
Affiliation(s)
- Paul Horrocks
- Molecular Parasitology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Müller S. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 2002; 277:25970-5. [PMID: 12004069 DOI: 10.1074/jbc.m203539200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum poses an increasing threat to human health in the tropical regions of the world, and the validation and assessment of possible drug targets is required for the development of new antimalarials. It has been shown that the erythrocytic stages of the parasites, which are responsible for the pathology of the disease in humans, are under enhanced oxidative stress and are particularly vulnerable to exogenous challenges by reactive oxygen species. Therefore it is postulated that the disruption of the antioxidant and/or redox systems of the parasite is a feasible way to interfere with their development during erythrocytic schizogony. In order to test this suggestion thioredoxin reductase (TrxR), an enzyme heavily involved in maintenance of redox homeostasis and antioxidant defense, was knocked out in P. falciparum. It was impossible to generate parasites with a disrupted trxR gene suggesting that TrxR is essential for P. falciparum erythrocytic stages. Technical problems were excluded by transfecting a 3' replacement construct, which recombined correctly and transfectants did not show any phenotypic alterations. In order to prove that the trxR knockout was responsible for the lethal phenotype of the null mutants, a co-transfection with both the knockout construct and a construct containing the trxR coding region under the control of the calmodulin promoter was conducted. Despite the disruption of the trxR gene, parasites were viable. In a Southern blot analysis a complicated restriction pattern was obtained, but it was shown by pulse field gel electrophoresis and field inverse gel electrophoreses that only the trxR gene locus on chromosome 9 was targeted by the constructs. It was found that the co-transfected constructs form concatemeric structures prior to integration into the trxR gene locus, which is further supported by plasmid rescue followed by restriction analyses of the plasmids. Northern and Western blot analyses proved that the co-transfectants highly overexpress TrxR from the introduced gene. Our results demonstrate that TrxR is essential for the survival of the erythrocytic stages of P. falciparum.
Collapse
Affiliation(s)
- Zita Krnajski
- Bernhard Nocht Institute for Tropical Medicine, Department of Biochemical Parasitology, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Crabb BS. Transfection technology and the study of drug resistance in the malaria parasite Plasmodium falciparum. Drug Resist Updat 2002; 5:126-30. [PMID: 12237080 DOI: 10.1016/s1368-7646(02)00085-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous approaches have been employed to identify the molecules responsible for drug resistance in the human malaria parasite Plasmodium falciparum. However, it was not until the recent development of stable transfection in this parasite that it became possible to prove the role of particular genes in drug resistance and, perhaps more importantly, to characterise the nature of the specific mutations that contribute the resistance phenotype. In this review, the contribution of various molecular genetic approaches to the dissection of drug resistance in P. falciparum is described. Future possibilities in this field are also outlined in the light of recent technological advances.
Collapse
Affiliation(s)
- Brendan S Crabb
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Vic., Australia.
| |
Collapse
|
45
|
O’Donnell RA, Freitas-Junior LH, Preiser PR, Williamson DH, Duraisingh M, McElwain TF, Scherf A, Cowman AF, Crabb BS. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J 2002; 21:1231-9. [PMID: 11867551 PMCID: PMC125903 DOI: 10.1093/emboj/21.5.1231] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial plasmids introduced into the human malaria parasite Plasmodium falciparum replicate well but are poorly segregated during mitosis. In this paper, we screened a random P.falciparum genomic library in order to identify sequences that overcome this segregation defect. Using this approach, we selected for parasites that harbor a unique 21 bp repeat sequence known as Rep20. Rep20 is one of six different repeats found in the subtelomeric regions of all P.falciparum chromosomes but which is not found in other eukaryotes or in other plasmodia. Using a number of approaches, we demonstrate that Rep20 sequences lead to dramatically improved episomal maintenance by promoting plasmid segregation between daughter merozoites. We show that Rep20(+), but not Rep20(-), plasmids co-localize with terminal chromosomal clusters, indicating that Rep20 mediates plasmid tethering to chromosomes, a mechanism that explains the improved segregation phenotype. This study implicates a direct role for Rep20 in the physical association of chromosome ends, which is a process that facilitates the generation of diversity in the terminally located P.falciparum virulence genes.
Collapse
Affiliation(s)
- Rebecca A. O’Donnell
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Lúcio H. Freitas-Junior
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Peter R. Preiser
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Donald H. Williamson
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Manoj Duraisingh
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Terry F. McElwain
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Artur Scherf
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Alan F. Cowman
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| | - Brendan S. Crabb
- The Walter & Eliza Hall Institute of Medical Research, Victoria 3050, Department of Microbiology & Immunology and the Cooperative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia, Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 1960, Institut Pasteur, F-75724 Paris Cedex 15, France, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA Corresponding author e-mail:
| |
Collapse
|
46
|
Williamson DH, Janse CJ, Moore PW, Waters AP, Preiser PR. Topology and replication of a nuclear episomal plasmid in the rodent malaria Plasmodium berghei. Nucleic Acids Res 2002; 30:726-31. [PMID: 11809885 PMCID: PMC100307 DOI: 10.1093/nar/30.3.726] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Revised: 12/05/2001] [Accepted: 12/05/2001] [Indexed: 11/13/2022] Open
Abstract
The rodent malaria Plasmodium berghei is one of a small number of species of Plasmodium that can currently be genetically transformed through experimentally controlled uptake of exogenous DNA by bloodstage parasites. Circular DNA containing a selectable marker replicates and is maintained under selection pressure in a randomly segregating episomal form during the first weeks after transformation. In this study, using pulsed field gel electrophoresis and ionising radiation, we show that in dividing asexual blood stage parasites the episomes are completely converted, within 2 weeks post-infection, into non-rearranged circular concatamers ranging in size between about 9 and 15 copies of the monomer. These occur as slow-moving aggregates held together by radiation-sensitive linkers consisting partly of single-stranded DNA. The process generating these complexes is not clear but 2D gel analysis showed that Cairns-type replication origins were absent and it seems most likely that the initial concatamerisation takes place using a rolling circle mechanism followed by circularisation through internal recombination. We propose a model in which continued rolling circle replication of the large circular concatamers and the recombinational activity of the tails of the rolling circles could lead to the formation of the large aggregates.
Collapse
MESH Headings
- Animals
- DNA Replication
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- Electrophoresis, Gel, Pulsed-Field
- Electrophoresis, Gel, Two-Dimensional
- Malaria/parasitology
- Models, Genetic
- Nucleic Acid Conformation
- Plasmids/biosynthesis
- Plasmids/chemistry
- Plasmids/genetics
- Plasmodium berghei/genetics
- Radiation, Ionizing
- Recombination, Genetic/genetics
- Replication Origin/genetics
- Restriction Mapping
- Rodentia/parasitology
- Transformation, Genetic
Collapse
Affiliation(s)
- Donald H Williamson
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | |
Collapse
|
47
|
de Koning-Ward TF, Waters AP, Crabb BS. Puromycin-N-acetyltransferase as a selectable marker for use in Plasmodium falciparum. Mol Biochem Parasitol 2001; 117:155-60. [PMID: 11606225 DOI: 10.1016/s0166-6851(01)00344-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The limited number of selectable markers available for malaria transfection has hindered extensive manipulation of the Plasmodium falciparum genome and subsequently thorough genetic analysis of this organism. In this paper, we demonstrate that P. falciparum is highly sensitive to the drug puromycin, but that transgenic expression of the puromycin-N-acetyltransferase (PAC) gene from Streptomyces alboninger confers resistance to this drug with the IC(50) and IC(90) values increasing approximately 3- and 7-fold, respectively in PAC-expressing parasites. Despite this relatively low level of resistance, parasite populations transfected with the PAC selectable marker and selected directly on puromycin emerged at the same rate post-transfection as human dihydrofolate reductase (hDHFR)-expressing parasites, selected independently with the anti-folate drug WR99210. Transfected parasites generally maintained the PAC expression plasmid episomally at between two and six copies per parasite. We also demonstrate by cycling transfected parasites in the presence and absence of puromycin for several weeks, that the PAC selectable marker can be used for gene-targeting. Since the mode of action of puromycin is distinct from other drugs currently used for the stable transfection of P. falciparum, the PAC selectable marker should also have applicability for use in conjunction with other positive selectable markers, thereby increasing the possibilities for more complex functional studies of this organism.
Collapse
Affiliation(s)
- T F de Koning-Ward
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Melbourne, Vic. 3050, Australia
| | | | | |
Collapse
|