1
|
Fan L, Zhang W, Rybchuk J, Luo Y, Xiao W. Genetic Dissection of Budding Yeast PCNA Mutations Responsible for the Regulated Recruitment of Srs2 Helicase. mBio 2023; 14:e0031523. [PMID: 36861970 PMCID: PMC10127746 DOI: 10.1128/mbio.00315-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
DNA-damage tolerance (DDT) is a mechanism by which eukaryotes bypass replication-blocking lesions to resume DNA synthesis and maintain cell viability. In Saccharomyces cerevisiae, DDT is mediated by sequential ubiquitination and sumoylation of proliferating cell nuclear antigen (PCNA, encoded by POL30) at the K164 residue. Deletion of RAD5 or RAD18, encoding two ubiquitin ligases required for PCNA ubiquitination, results in severe DNA-damage sensitivity, which can be rescued by inactivation of SRS2 encoding a DNA helicase that inhibits undesired homologous recombination. In this study, we isolated DNA-damage resistant mutants from rad5Δ cells and found that one of them contained a pol30-A171D mutation, which could rescue both rad5Δ and rad18Δ DNA-damage sensitivity in a srs2-dependent and PCNA sumoylation-independent manner. Pol30-A171D abolished physical interaction with Srs2 but not another PCNA-interacting protein Rad30; however, Pol30-A171 is not located in the PCNA-Srs2 interface. The PCNA-Srs2 structure was analyzed to design and create mutations in the complex interface, one of which, pol30-I128A, resulted in phenotypes reminiscent of pol30-A171D. This study allows us to conclude that, unlike other PCNA-binding proteins, Srs2 interacts with PCNA through a partially conserved motif, and the interaction can be strengthened by PCNA sumoylation, which turns Srs2 recruitment into a regulated process. IMPORTANCE It is known that budding yeast PCNA sumoylation serves as a ligand to recruit a DNA helicase Srs2 through its tandem receptor motifs that prevent unwanted homologous recombination (HR) at replication forks, a process known as salvage HR. This study reveals detailed molecular mechanisms, in which constitutive PCNA-PIP interaction has been adapted to a regulatory event. Since both PCNA and Srs2 are highly conserved in eukaryotes, from yeast to human, this study may shed light to investigation of similar regulatory mechanisms.
Collapse
Affiliation(s)
- Li Fan
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wenqing Zhang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Josephine Rybchuk
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yu Luo
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Arbel M, Liefshitz B, Kupiec M. DNA damage bypass pathways and their effect on mutagenesis in yeast. FEMS Microbiol Rev 2021; 45:5896953. [PMID: 32840566 DOI: 10.1093/femsre/fuaa038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.
Collapse
Affiliation(s)
- Matan Arbel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Batia Liefshitz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
3
|
Rad52 Oligomeric N-Terminal Domain Stabilizes Rad51 Nucleoprotein Filaments and Contributes to Their Protection against Srs2. Cells 2021; 10:cells10061467. [PMID: 34207997 PMCID: PMC8230603 DOI: 10.3390/cells10061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination (HR) depends on the formation of a nucleoprotein filament of the recombinase Rad51 to scan the genome and invade the homologous sequence used as a template for DNA repair synthesis. Therefore, HR is highly accurate and crucial for genome stability. Rad51 filament formation is controlled by positive and negative factors. In Saccharomyces cerevisiae, the mediator protein Rad52 catalyzes Rad51 filament formation and stabilizes them, mostly by counteracting the disruptive activity of the translocase Srs2. Srs2 activity is essential to avoid the formation of toxic Rad51 filaments, as revealed by Srs2-deficient cells. We previously reported that Rad52 SUMOylation or mutations disrupting the Rad52–Rad51 interaction suppress Rad51 filament toxicity because they disengage Rad52 from Rad51 filaments and reduce their stability. Here, we found that mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells. Structural studies showed that these mutations affect the Rad52 oligomeric ring structure. Overall, in vivo and in vitro analyzes of these mutants indicate that Rad52 ring structure is important for protecting Rad51 filaments from Srs2, but can increase Rad51 filament stability and toxicity in Srs2-deficient cells. This stabilization function is distinct from Rad52 mediator and annealing activities.
Collapse
|
4
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
5
|
Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis. Curr Genet 2020; 67:141-151. [PMID: 33128582 PMCID: PMC7886746 DOI: 10.1007/s00294-020-01115-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/04/2022]
Abstract
In eukaryotes, DNA damage tolerance (DDT) is determined by two repair pathways, homologous repair recombination (HRR) and a pathway controlled by the RAD6-epistatic group of genes. Monoubiquitylation of PCNA mediates an error-prone pathway, whereas polyubiquitylation stimulates an error-free pathway. The error-free pathway involves components of recombination repair; however, the factors that act in this pathway remain largely unknown. Here, we report that the HIM1 gene participates in error-free DDT. Notably, inactivation RAD30 gene encoding Polη completely suppresses him1-dependent UV mutagenesis. Furthermore, data obtained show a significant role of Polη in him1-dependent mutagenesis, especially at non-bipyrimidine sites (NBP sites). We demonstrate that him1 mutation significantly reduces the efficiency of the induction expression of RNR genes after UV irradiation. Besides, this paper presents evidence that significant increase in the dNTP levels suppress him1-dependent mutagenesis. Our findings show that Polη responsible for him1-dependent mutagenesis.
Collapse
|
6
|
Niu H, Klein HL. Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 2017; 17:fow111. [PMID: 28011904 DOI: 10.1093/femsyr/fow111] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae Srs2 DNA helicase has important roles in DNA replication, recombination and repair. In replication, Srs2 aids in repair of gaps by repair synthesis by preventing gaps from being used to initiate recombination. This is considered to be an anti-recombination role. In recombination, Srs2 plays both prorecombination and anti-recombination roles to promote the synthesis-dependent strand annealing recombination pathway and to inhibit gaps from initiating homologous recombination. In repair, the Srs2 helicase actively promotes gap repair through an interaction with the Exo1 nuclease to enlarge a gap for repair and to prevent Rad51 protein from accumulating on single-stranded DNA. Finally, Srs2 helicase can unwind hairpin-forming repeat sequences to promote replication and prevent repeat instability. The Srs2 activities can be controlled by phosphorylation, SUMO modification and interaction with key partners at DNA damage or lesions sites, which include PCNA and Rad51. These interactions can also limit DNA polymerase function during recombinational repair independent of the Srs2 translocase or helicase activity, further highlighting the importance of the Srs2 protein in regulating recombination. Here we review the myriad roles of Srs2 that have been documented in genome maintenance and distinguish between the translocase, helicase and additional functions of the Srs2 protein.
Collapse
Affiliation(s)
- Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Jalal D, Chalissery J, Hassan AH. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res 2017; 45:2242-2261. [PMID: 28115630 PMCID: PMC5389695 DOI: 10.1093/nar/gkw1369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023] Open
Abstract
The genome of the cell is often exposed to DNA damaging agents and therefore requires an intricate well-regulated DNA damage response (DDR) to overcome its deleterious effects. The DDR needs proper regulation for its timely activation, repression, as well as appropriate choice of repair pathway. Studies in Saccharomyces cerevisiae have advanced our understanding of the DNA damage response, as well as the mechanisms the cell employs to maintain genome stability and how these mechanisms are regulated. Eukaryotic cells utilize post-translational modifications as a means for fine-tuning protein functions. Ubiquitylation and SUMOylation involve the attachment of small protein molecules onto proteins to modulate function or protein–protein interactions. SUMO in particular, was shown to act as a molecular glue when DNA damage occurs, facilitating the assembly of large protein complexes in repair foci. In other instances, SUMOylation alters a protein's biochemical activities, and interactions. SUMO-targeted ubiquitin ligases (STUbLs) are enzymes that target SUMOylated proteins for ubiquitylation and subsequent degradation, providing a function for the SUMO modification in the regulation and disassembly of repair complexes. Here, we discuss the major contributions of SUMO and STUbLs in the regulation of DNA damage repair pathways as well as in the maintenance of critical regions of the genome, namely rDNA regions, telomeres and the 2 μm circle in budding yeast.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| |
Collapse
|
8
|
Fasullo MT, Sun M. Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS GENETICS 2017; 4:84-102. [PMID: 28596989 PMCID: PMC5460634 DOI: 10.3934/genet.2017.2.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sister chromatids are preferred substrates for recombinational repair after cells are exposed to DNA damage. While some agents directly cause double-strand breaks (DSBs), others form DNA base adducts which stall or impede the DNA replication fork. We asked which types of DNA damage can stimulate SCE in budding yeast mutants defective in template switch mechanisms and whether PCNA polyubiquitination functions are required for DNA damage-associated SCE after exposure to potent recombinagens. We measured spontaneous and DNA damage-associated unequal sister chromatid exchange (uSCE) in yeast strains containing two fragments of his3 after exposure to MMS, 4-NQO, UV, X rays, and HO endonuclease-induced DSBs. We determined whether other genes in the pathway for template switching, including UBC13, MMS2, SGS1, and SRS2 were required for DNA damage-associated SCE. RAD5 was required for DNA damage-associated SCE after exposure to UV, MMS, and 4-NQO, but not for spontaneous, X-ray-associated, or HO endonuclease-induced SCE. While UBC13, MMS2, and SGS1 were required for MMS and 4NQO-associated SCE, they were not required for UV-associated SCE. DNA damage-associated recombination between his3 recombination substrates on non-homologous recombination was enhanced in rad5 mutants. These results demonstrate that DNA damaging agents that cause DSBs stimulate SCE by RAD5-independent mechanisms, while several potent agents that generate bulky DNA adducts stimulate SCE by multiple RAD5-dependent mechanisms. We suggest that DSB-associated recombination that occurs in G2 is RAD5-independent.
Collapse
Affiliation(s)
- Michael T Fasullo
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Mingzeng Sun
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
9
|
Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase. Genetics 2016; 204:975-986. [PMID: 27585847 PMCID: PMC5105872 DOI: 10.1534/genetics.116.192211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/25/2016] [Indexed: 01/25/2023] Open
Abstract
Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis.
Collapse
|
10
|
Wemhoff S, Klassen R, Beetz A, Meinhardt F. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B. PLoS One 2016; 11:e0157611. [PMID: 27472060 PMCID: PMC4966947 DOI: 10.1371/journal.pone.0157611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.
Collapse
Affiliation(s)
- Sabrina Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Anja Beetz
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance (DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis (TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching (TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.
Collapse
|
12
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Xu X, Blackwell S, Lin A, Li F, Qin Z, Xiao W. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:43-50. [DOI: 10.1016/j.mrrev.2015.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
|
14
|
Similarities and differences between Arabidopsis PCNA1 and PCNA2 in complementing the yeast DNA damage tolerance defect. DNA Repair (Amst) 2015; 28:28-36. [DOI: 10.1016/j.dnarep.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
|
15
|
Bi X, Yu Q, Siler J, Li C, Khan A. Functions of Fun30 chromatin remodeler in regulating cellular resistance to genotoxic stress. PLoS One 2015; 10:e0121341. [PMID: 25806814 PMCID: PMC4373758 DOI: 10.1371/journal.pone.0121341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/30/2015] [Indexed: 01/14/2023] Open
Abstract
The Saccharomyces cerevisiae Fun30 chromatin remodeler has recently been shown to facilitate long-range resection of DNA double strand break (DSB) ends, which proceeds homologous recombination (HR). This is believed to underlie the role of Fun30 in promoting cellular resistance to DSB inducing agent camptothecin. We show here that Fun30 also contributes to cellular resistance to genotoxins methyl methanesulfonate (MMS) and hydroxyurea (HU) that can stall the progression of DNA replication. We present evidence implicating DNA end resection in Fun30-dependent MMS-resistance. On the other hand, we show that Fun30 deletion suppresses the MMS- and HU-sensitivity of cells lacking the Rad5/Mms2/Ubc13-dependent error-free DNA damage tolerance mechanism. This suppression is not the result of a reduction in DNA end resection, and is dependent on the key HR component Rad51. We further show that Fun30 negatively regulates the recovery of rad5Δ mutant from MMS induced G2/M arrest. Therefore, Fun30 has two functions in DNA damage repair: one is the promotion of cellular resistance to genotoxic stress by aiding in DNA end resection, and the other is the negative regulation of a Rad51-dependent, DNA end resection-independent mechanism for countering replicative stress. The latter becomes manifest when Rad5 dependent DNA damage tolerance is impaired. In addition, we find that the putative ubiquitin-binding CUE domain of Fun30 serves to restrict the ability of Fun30 to hinder MMS- and HU-tolerance in the absence of Rad5.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| | - Qun Yu
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Jasmine Siler
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Chong Li
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ali Khan
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
16
|
Chavdarova M, Marini V, Sisakova A, Sedlackova H, Vigasova D, Brill SJ, Lisby M, Krejci L. Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res 2015; 43:3626-42. [PMID: 25765656 PMCID: PMC4402524 DOI: 10.1093/nar/gkv198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81–Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81–Mms4. In this study, we show that the Srs2 and Mus81–Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81–Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81–Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81–Mms4 to cleave DNA. Concomitantly, Mus81–Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81–Mms4 and Srs2 in processing of recombination as well as replication intermediates.
Collapse
Affiliation(s)
- Melita Chavdarova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic
| | - Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Hana Sedlackova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic
| | - Dana Vigasova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Steven J Brill
- Department of Genetics, Cancer Research Institute, Vlarska 7, 833 91 Bratislava, Slovakia
| | - Michael Lisby
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
17
|
Makarova AV, Burgers PM. Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 2015; 29:47-55. [PMID: 25737057 DOI: 10.1016/j.dnarep.2015.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis.
Collapse
Affiliation(s)
- Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute of Molecular Genetics, Russian Academy of Sciences (IMG RAS), Kurchatov Sq. 2, Moscow 123182, Russia
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Xu X, Ball L, Chen W, Tian X, Lambrecht A, Hanna M, Xiao W. The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLoS One 2013; 8:e81371. [PMID: 24339919 PMCID: PMC3855272 DOI: 10.1371/journal.pone.0081371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022] Open
Abstract
DNA-damage tolerance (DDT) is defined as a mechanism by which eukaryotic cells resume DNA synthesis to fill the single-stranded DNA gaps left by replication-blocking lesions. Eukaryotic cells employ two different means of DDT, namely translesion DNA synthesis (TLS) and template switching, both of which are coordinately regulated through sequential ubiquitination of PCNA at the K164 residue. In the budding yeast Saccharomyces cerevisiae, the same PCNA-K164 residue can also be sumoylated, which recruits the Srs2 helicase to prevent undesired homologous recombination (HR). While the mediation of TLS by PCNA monoubiquitination has been extensively characterized, the method by which K63-linked PCNA polyubiquitination leads to template switching remains unclear. We recently identified a yeast heterotetrameric Shu complex that couples error-free DDT to HR as a critical step of template switching. Here we report that the Csm2 subunit of Shu physically interacts with Rad55, an accessory protein involved in HR. Rad55 and Rad57 are Rad51 paralogues and form a heterodimer to promote Rad51-ssDNA filament formation by antagonizing Srs2 activity. Although Rad55-Rad57 and Shu function in the same pathway and both act to inhibit Srs2 activity, Shu appears to be dedicated to error-free DDT while the Rad55-Rad57 complex is also involved in double-strand break repair. This study reveals the detailed steps of error-free lesion bypass and also brings to light an intrinsic interplay between error-free DDT and Srs2-mediated inhibition of HR.
Collapse
Affiliation(s)
- Xin Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lindsay Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Wangyang Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuelei Tian
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Amanda Lambrecht
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Michelle Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
19
|
Mániková D, Vlasáková D, Letavayová L, Klobučniková V, Griač P, Chovanec M. Selenium toxicity toward yeast as assessed by microarray analysis and deletion mutant library screen: a role for DNA repair. Chem Res Toxicol 2012; 25:1598-608. [PMID: 22747191 DOI: 10.1021/tx300061n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Selenium (Se) is a trace element that is essential for human health as it takes part in many cellular processes. The cellular response to this compound elicits very diverse processes including DNA damage response and repair. Because an inorganic form of Se, sodium selenite (SeL), has often been a part of numerous studies and because this form of Se is used as a dietary supplement by the public, here, we elucidated mechanisms of SeL-induced toxicity in yeast Saccharomyces cerevisiae using a combination of systematic genetic and transcriptome analysis. First, we screened the yeast haploid deletion mutant library for growth in the presence of this Se compound. We identified 39 highly SeL sensitive mutants. The corresponding deleted genes encoded mostly proteins involved in DNA damage response and repair, vacuole function, glutathione (GSH) metabolism, transcription, and chromatin metabolism. DNA damage response and repair mutants were examined in more detail: a synergistic interaction between postreplication (PRR) and homologous recombination (HRR) repair pathways was revealed. In addition, the effect of combined defects in HRR and GSH metabolism was analyzed, and again, the synergistic interaction was found. Second, microarray analysis was used to reveal expression profile changes after SeL exposure. The gene process categories "amino acid metabolism" and "generation of precursor metabolites and energy" comprised the greatest number of induced and repressed genes, respectively. We propose that SeL-induced toxicity markedly results from DNA injury, thereby highlighting the importance of DNA damage response and repair pathways in protecting cells against toxic effects of this Se compound. In addition, we suggest that SeL toxicity also originates from damage to cellular proteins, including those acting in DNA damage response and repair.
Collapse
Affiliation(s)
- Dominika Mániková
- Laboratory of Molecular Genetics, Cancer Research Institute, Vlárska 7, 833 91 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
20
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
León Ortiz AM, Reid RJD, Dittmar JC, Rothstein R, Nicolas A. Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions. DNA Repair (Amst) 2011; 10:506-17. [PMID: 21459050 PMCID: PMC3084345 DOI: 10.1016/j.dnarep.2011.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination intermediates. To further address its biological roles and uncover new genetic interactions, we examined the consequences of overexpressing SRS2 as well as two helicase-dead mutants, srs2-K41A and srs2-K41R, in the collection of 4827 yeast haploid deletion mutants. We identified 274 genes affecting a large variety of cellular functions that are required for cell growth when SRS2 or its mutants are overexpressed. Further analysis of these interactions reveals that Srs2 acts independently of its helicase function at replication forks likely through its recruitment by the sumoylated PCNA replication clamp. This helicase-independent function is responsible for the negative interactions with DNA metabolism genes and for the toxicity of SRS2 overexpression in many of the diverse cellular pathways revealed in our screens.
Collapse
Affiliation(s)
- Ana María León Ortiz
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Robert J. D. Reid
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - John C. Dittmar
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Rodney Rothstein
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Alain Nicolas
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
22
|
Halas A, Podlaska A, Derkacz J, McIntyre J, Skoneczna A, Sledziewska-Gojska E. The roles of PCNA SUMOylation, Mms2-Ubc13 and Rad5 in translesion DNA synthesis in Saccharomyces cerevisiae. Mol Microbiol 2011; 80:786-97. [PMID: 21362066 DOI: 10.1111/j.1365-2958.2011.07610.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mms2, in concert with Ubc13 and Rad5, is responsible for polyubiquitination of replication processivity factor PCNA. This modification activates recombination-like DNA damage-avoidance mechanisms, which function in an error-free manner. Cells deprived of Mms2, Ubc13 or Rad5 exhibit mutator phenotypes as a result of the channelling of premutational DNA lesions to often error-prone translesion DNA synthesis (TLS). Here we show that Siz1-mediated PCNA SUMOylation is required for the stimulation of this TLS, despite the presence of PCNA monoubiquitination. The stimulation of spontaneous mutagenesis by Siz1 in cells carrying rad5 and/or mms2 mutations is connected with the known role of PCNA SUMOylation in the inhibition of Rad52-mediated recombination. However, following UV irradiation, Siz1 is engaged in additional, as yet undefined, mechanisms controlling genetic stability at the replication fork. We also demonstrate that in the absence of PCNA SUMOylation, Mms2-Ubc13 and Rad5 may, independently of each other, function in the stimulation of TLS. Based on this finding and on an analysis of the epistatic relationships between SIZ1, MMS2 and RAD5, with respect to UV sensitivity, we conclude that PCNA SUMOylation is responsible for the functional differences between the Mms2 and Rad5 homologues of Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Agnieszka Halas
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Homologous recombination plays a key role in the maintenance of genome integrity, especially during DNA replication and the repair of double-stranded DNA breaks (DSBs). Just a single un-repaired break can lead to aneuploidy, genetic aberrations or cell death. DSBs are caused by a vast number of both endogenous and exogenous agents including genotoxic chemicals or ionizing radiation, as well as through replication of a damaged template DNA or the replication fork collapse. It is essential for cell survival to recognise and process DSBs as well as other toxic intermediates and launch most appropriate repair mechanism. Many helicases have been implicated to play role in these processes, however their detail roles, specificities and co-operativity in the complex protein-protein interaction networks remain unclear. In this review we summarize the current knowledge about Saccharomyces cerevisiae helicase Srs2 and its effect on multiple DNA metabolic processes that generally affect genome stability. It would appear that Srs2 functions as an “Odd-Job Man” in these processes to make sure that the jobs proceed when and where they are needed.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
24
|
Ball LG, Zhang K, Cobb JA, Boone C, Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 2009; 73:89-102. [PMID: 19496932 DOI: 10.1111/j.1365-2958.2009.06748.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA. While translesion synthesis has been well characterized, little is known about the molecular events involved in error-free bypass, although it has been assumed that homologous recombination (HR) is required for such a mode of lesion bypass. We undertook a genome-wide synthetic genetic array screen for novel genes involved in error-free PRR and observed evidence of genetic interactions between error-free PRR and HR. Furthermore, this screen identified and assigned four genes, CSM2, PSY3, SHU1 and SHU2, whose products form a stable Shu complex, to the error-free PRR pathway. Previous studies have indicated that the Shu complex is required for efficient HR and that inactivation of any of these genes is able to suppress the severe phenotypes of top3 and sgs1. We confirmed and further extended some of the reported observations and demonstrated that error-free PRR mutations are also epistatic to sgs1. Based on the above analyses, we propose a model in which error-free PRR utilizes the Shu complex to recruit HR to facilitate template switching, followed by double-Holliday junction resolution by Sgs1-Top3. This mechanism appears to be conserved throughout eukaryotes.
Collapse
Affiliation(s)
- Lindsay G Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
25
|
Erlich RL, Fry RC, Begley TJ, Daee DL, Lahue RS, Samson LD. Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae. PLoS One 2008; 3:e3717. [PMID: 19005567 PMCID: PMC2579579 DOI: 10.1371/journal.pone.0003717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast strains lacking Anc1, a member of the YEATS protein family, are sensitive to several DNA damaging agents. The YEATS family includes two human genes that are common fusion partners with MLL in human acute leukemias. Anc1 is a member of seven multi-protein complexes involved in transcription, and the damage sensitivity observed in anc1Δ cells is mirrored in strains deleted for some other non-essential members of several of these complexes. Here we show that ANC1 is in the same epistasis group as SRS2 and RAD5, members of the postreplication repair (PRR) pathway, but has additive or synergistic interactions with several other members of this pathway. Although PRR is traditionally divided into an “error-prone” and an “error-free” branch, ANC1 is not epistatic with all members of either established branch, and instead defines a new error-free branch of the PRR pathway. Like several genes involved in PRR, an intact ANC1 gene significantly suppresses spontaneous mutation rates, including the expansion of (CAG)25 repeats. Anc1's role in the PRR pathway, as well as its role in suppressing triplet repeats, point to a possible mechanism for a protein of potential medical interest.
Collapse
Affiliation(s)
- Rachel L. Erlich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rebecca C. Fry
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Thomas J. Begley
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Danielle L. Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert S. Lahue
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Leona D. Samson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 2008; 18:162-73. [PMID: 18157158 DOI: 10.1038/cr.2007.114] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modifications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination complexes Rad6-Rad18 and Mms2-Ubc13-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA at the same K164 residue by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Data obtained from recent studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic instability and cancer.
Collapse
|
27
|
Chiolo I, Saponaro M, Baryshnikova A, Kim JH, Seo YS, Liberi G. The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 2007; 27:7439-50. [PMID: 17724085 PMCID: PMC2169053 DOI: 10.1128/mcb.00963-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Srs2 UvrD DNA helicase controls genome integrity by preventing unscheduled recombination events. While Srs2 orthologues have been identified in prokaryotic and lower eukaryotic organisms, human orthologues of Srs2 have not been described so far. We found that the human F-box DNA helicase hFBH1 suppresses specific recombination defects of S. cerevisiae srs2 mutants, consistent with the finding that the helicase domain of hFBH1 is highly conserved with that of Srs2. Surprisingly, hFBH1 in the absence of SRS2 also suppresses the DNA damage sensitivity caused by inactivation of postreplication repair-dependent functions leading to PCNA ubiquitylation. The F-box domain of hFBH1, which is not present in Srs2, is crucial for hFBH1 functions in substituting for Srs2 and postreplication repair factors. Furthermore, our findings indicate that an intact F-box domain, acting as an SCF ubiquitin ligase, is required for the DNA damage-induced degradation of hFBH1 itself. Overall, our findings suggest that the hFBH1 helicase is a functional human orthologue of budding yeast Srs2 that also possesses self-regulation properties necessary to execute its recombination functions.
Collapse
Affiliation(s)
- Irene Chiolo
- FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Tran PT, Fey JP, Erdeniz N, Gellon L, Boiteux S, Liskay RM. A mutation in EXO1 defines separable roles in DNA mismatch repair and post-replication repair. DNA Repair (Amst) 2007; 6:1572-83. [PMID: 17602897 PMCID: PMC2447855 DOI: 10.1016/j.dnarep.2007.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 01/27/2023]
Abstract
Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR.
Collapse
Affiliation(s)
- Phuoc T. Tran
- Department of Radiation Oncology, Stanford Hospital & Clinics, Stanford, CA 94305, USA
- Corresponding Author: Phuoc T. Tran, 875 Blake Wilbur Drive, Stanford, CA 94305, e-mail:
| | - Julien P. Fey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Naz Erdeniz
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lionel Gellon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Serge Boiteux
- Commissariat à l'Energie Atomique (CEA), Département de Radiobiologie et Radiopathologie, UMR217 CNRS/CEA Radiobiologie Moléculaire et Cellulaire, Fontenay aux Roses 92265, France
| | - R. Michael Liskay
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Daee DL, Mertz T, Lahue RS. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 2006; 27:102-10. [PMID: 17060452 PMCID: PMC1800661 DOI: 10.1128/mcb.01167-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trinucleotide repeats (TNRs) are unique DNA microsatellites that can expand to cause human disease. Recently, Srs2 was identified as a protein that inhibits TNR expansions in Saccharomyces cerevisiae. Here, we demonstrate that Srs2 inhibits CAG . CTG expansions in conjunction with the error-free branch of postreplication repair (PRR). Like srs2 mutants, expansions are elevated in rad18 and rad5 mutants, as well as the PRR-specific PCNA alleles pol30-K164R and pol30-K127/164R. Epistasis analysis indicates that Srs2 acts upstream of these PRR proteins. Also, like srs2 mutants, the pol30-K127/164R phenotype is specific for expansions, as this allele does not alter mutation rates at dinucleotide repeats, at nonrepeating sequences, or for CAG . CTG repeat contractions. Our results suggest that Srs2 action and PRR processing inhibit TNR expansions. We also investigated the relationship between PRR and Rad27 (Fen1), a well-established inhibitor of TNR expansions that acts at 5' flaps. Our results indicate that PRR protects against expansions arising from the 3' terminus, presumably replication slippage events. This work provides the first evidence that CAG . CTG expansions can occur by 3' slippage, and our results help define PRR as a key cellular mechanism that protects against expansions.
Collapse
Affiliation(s)
- Danielle L Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
30
|
Motegi A, Kuntz K, Majeed A, Smith S, Myung K. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:1424-33. [PMID: 16449653 PMCID: PMC1367189 DOI: 10.1128/mcb.26.4.1424-1433.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. Previously, we showed that inactivation of Rad5 or Rad18, ubiquitin ligases (E3) targeting for proliferating cell nuclear antigen (PCNA), increases the de novo telomere addition type of GCR (S. Smith, J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung, Proc. Natl. Acad. Sci. USA 101:9039-9044, 2004). GCR suppression by Rad5 and Rad18 appears to be exerted by the RAD5-dependent error-free mode of bypass DNA repair. In contrast, Siz1 SUMO ligase and another ubiquitin ligase, Bre1, which target for PCNA and histone H2B, respectively, have GCR-supporting activities. Inactivation of homologous recombination (HR) proteins or the helicase Srs2 reduces GCR rates elevated by the rad5 or rad18 mutation. GCRs are therefore likely to be produced through the restrained recruitment of an HR pathway to stalled DNA replication forks. Since this HR pathway is compatible with Srs2, it is not a conventional form of recombinational pathway. Lastly, we demonstrate that selection of proper DNA repair pathways to stalled DNA replication forks is controlled by the Mec1-dependent checkpoint and is executed by cooperative functions of Siz1 and Srs2. We propose a mechanism for how defects in these proteins could lead to diverse outcomes (proper repair or GCR formation) through different regulation of DNA repair machinery.
Collapse
Affiliation(s)
- Akira Motegi
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Building 49, Room 4A22, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Osman F, Dixon J, Barr AR, Whitby MC. The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol Cell Biol 2005; 25:8084-96. [PMID: 16135800 PMCID: PMC1234329 DOI: 10.1128/mcb.25.18.8084-8096.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1(-) mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.
Collapse
Affiliation(s)
- Fekret Osman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
32
|
Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 2005; 19:123-33. [PMID: 15989970 DOI: 10.1016/j.molcel.2005.06.001] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/02/2005] [Accepted: 06/07/2005] [Indexed: 01/27/2023]
Abstract
Posttranslational modification of proliferating cell nuclear antigen (PCNA), an essential processivity clamp for DNA polymerases, by ubiquitin and SUMO contributes to the coordination of DNA replication, damage tolerance, and mutagenesis. Whereas ubiquitination in response to DNA damage promotes the bypass of replication-blocking lesions, sumoylation during S phase is damage independent. As both modifiers target the same site on PCNA, an antagonistic action of SUMO on ubiquitin-dependent DNA damage tolerance has been proposed. We now present evidence that the apparent negative effect of SUMO on lesion bypass is not due to competition with ubiquitination but is rather mediated by the helicase Srs2p, which affects genome stability by suppressing unscheduled homologous recombination. We show that Srs2p physically interacts with sumoylated PCNA, which contributes to the recruitment of the helicase to replication forks. Our findings suggest a mechanism by which SUMO and ubiquitin cooperatively control the choice of pathway for the processing of DNA lesions during replication.
Collapse
Affiliation(s)
- Efterpi Papouli
- Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 2005; 436:428-33. [PMID: 15931174 DOI: 10.1038/nature03665] [Citation(s) in RCA: 478] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 04/15/2005] [Indexed: 12/25/2022]
Abstract
Damaged DNA, if not repaired before replication, can lead to replication fork stalling and genomic instability; however, cells can switch to different damage bypass modes that permit replication across lesions. Two main bypasses are controlled by ubiquitin modification of proliferating cell nuclear antigen (PCNA), a homotrimeric DNA-encircling protein that functions as a polymerase processivity factor and regulator of replication-linked functions. Upon DNA damage, PCNA is modified at the conserved lysine residue 164 by either mono-ubiquitin or a lysine-63-linked multi-ubiquitin chain, which induce error-prone or error-free replication bypasses of the lesions. In S phase, even in the absence of exogenous DNA damage, yeast PCNA can be alternatively modified by the small ubiquitin-related modifier protein SUMO; however the consequences of this remain controversial. Here we show by genetic analysis that SUMO-modified PCNA functionally cooperates with Srs2, a helicase that blocks recombinational repair by disrupting Rad51 nucleoprotein filaments. Moreover, Srs2 displays a preference for interacting directly with the SUMO-modified form of PCNA, owing to a specific binding site in its carboxy-terminal tail. Our finding suggests a model in which SUMO-modified PCNA recruits Srs2 in S phase in order to prevent unwanted recombination events of replicating chromosomes.
Collapse
Affiliation(s)
- Boris Pfander
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
34
|
Minesinger BK, Jinks-Robertson S. Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 2005; 169:1939-55. [PMID: 15687278 PMCID: PMC1449579 DOI: 10.1534/genetics.104.033894] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/14/2005] [Indexed: 11/18/2022] Open
Abstract
DNA lesions that arise during normal cellular metabolism can block the progress of replicative DNA polymerases, leading to cell cycle arrest and, in higher eukaryotes, apoptosis. Alternatively, such blocking lesions can be temporarily tolerated using either a recombination- or a translesion synthesis-based bypass mechanism. In Saccharomyces cerevisiae, members of the RAD6 epistasis group are key players in the regulation of lesion bypass by the translesion DNA polymerase Polzeta. In this study, changes in the reversion rate and spectrum of the lys2DeltaA746 -1 frameshift allele have been used to evaluate how the loss of members of the RAD6 epistasis group affects Polzeta-dependent mutagenesis in response to spontaneous damage. Our data are consistent with a model in which Polzeta-dependent mutagenesis relies on the presence of either Rad5 or Rad18, which promote two distinct error-prone pathways that partially overlap with respect to lesion specificity. The smallest subunit of Poldelta, Pol32, is also required for Polzeta-dependent spontaneous mutagenesis, suggesting a cooperative role between Poldelta and Polzeta for the bypass of spontaneous lesions. A third error-free pathway relies on the presence of Mms2, but may not require PCNA.
Collapse
Affiliation(s)
- Brenda K Minesinger
- Biochemistry, Cell and Developmental Biology Program of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
35
|
Suzuki K, Kato A, Sakuraba Y, Inoue H. Srs2 and RecQ homologs cooperate in mei-3-mediated homologous recombination repair of Neurospora crassa. Nucleic Acids Res 2005; 33:1848-58. [PMID: 15800214 PMCID: PMC1072801 DOI: 10.1093/nar/gki326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination and post-replication repair facilitate restart of stalled or collapsed replication forks. The SRS2 gene of Saccharomyces cerevisiae encodes a 3′–5′ DNA helicase that functions both in homologous recombination repair and in post-replication repair. This study identifies and characterizes the SRS2 homolog in Neurospora crassa, which we call mus-50. A knockout mutant of N.crassa, mus-50, is sensitive to several DNA-damaging agents and genetic analyses indicate that it is epistatic with mei-3 (RAD51 homolog), mus-11 (RAD52 homolog), mus-48 (RAD55 homolog) and mus-49 (RAD57 homolog), suggesting a role for mus-50 in homologous recombination repair. However, epistasis evidence has presented that MUS50 does not participate in post-replication repair in N.crassa. Also, the N.crassa mus-25 (RAD54 homolog) mus-50 double mutant is viable, which is in contrast to the lethal phenotype of the equivalent rad54 srs2 mutant in S.cerevisiae. Tetrad analysis revealed that mus-50 in combination with mutations in two RecQ homologs, qde-3 and recQ2, is lethal, and this lethality is suppressed by mutation in mei-3, mus-11 or mus-25. Evidence is also presented for the two independent pathways for recovery from camptothecin-induced replication fork arrest: one pathway is dependent on QDE3 and MUS50 and the other pathway is dependent on MUS25 and RECQ2.
Collapse
Affiliation(s)
| | | | | | - Hirokazu Inoue
- To whom correspondence should be addressed. Tel: +81 48 858 3413; Fax: +81 48 858 3413;
| |
Collapse
|
36
|
Pessoa-Brandão L, Sclafani RA. CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 2005; 167:1597-610. [PMID: 15342501 PMCID: PMC1471023 DOI: 10.1534/genetics.103.021675] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.
Collapse
Affiliation(s)
- Luis Pessoa-Brandão
- Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
37
|
Zheng P, Schramm RD, Latham KE. Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol Reprod 2005; 72:1359-69. [PMID: 15703371 DOI: 10.1095/biolreprod.104.039073] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
DNA repair is essential for maintaining genomic integrity, and may be required in the early embryo to correct damage inherited via the gametes, damage that arises during DNA replication, or damage that arises in response to exposure to genotoxic agents. The capacity of preimplantation stage mammalian embryos to repair damaged DNA has not been well characterized, particularly in primate embryos. In this study, we examined the expression of 48 mRNAs related to sensing different kinds of DNA damage, repairing that DNA damage, and controlling the cell cycle to provide an opportunity for DNA repair. The expression data reveal dynamic temporal changes, indicating a changing ability of the rhesus embryo to detect and repair different kinds of DNA damage. Low expression or overexpression of specific DNA repair genes may limit the ability of the embryo to respond to DNA damage at certain stages. Additionally, our data reveal that in vitro culture may lead to dysregulation of many such genes and a potentially impaired ability to repair DNA damage, thus affecting cellular viability and long-term embryo viability via effects on genome integrity. This effect of in vitro culture on nonhuman primate embryos may be relevant to assessing the potential advantages and disadvantages of prolonged in vitro culture of human embryos.
Collapse
Affiliation(s)
- Ping Zheng
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
38
|
Shor E, Weinstein J, Rothstein R. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 2005; 169:1275-89. [PMID: 15654096 PMCID: PMC1449555 DOI: 10.1534/genetics.104.036764] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicases of the RecQ family and topoisomerase III are evolutionarily conserved proteins important for maintenance of genome stability. In Saccharomyces cerevisiae, loss of the TOP3 gene, encoding topoisomerase III, results in a phenotype of slow growth, DNA damage sensitivity, meiotic defects, and hyperrecombination. The sole RecQ helicase in budding yeast, Sgs1, interacts with Top3 both physically and genetically, and the two proteins are thought to act in concert in vivo. Much recent genetic and biochemical evidence points to the role of RecQ helicases and topoisomerase III in regulating homologous recombination (HR) during DNA replication. Previously, we found that mutations in HR genes partially suppress top3 slow growth. Here, we describe the analysis of four additional mutational suppressors of top3 defects: shu1, shu2, psy3, and csm2. These genes belong to one epistasis group and their protein products interact with each other, strongly suggesting that they function as a complex in vivo. Their mutant phenotype indicates that they are important for error-free repair of spontaneous and induced DNA lesions, protecting the genome from mutation. These mutants exhibit an epistatic relationship with rad52 and show altered dynamics of Rad52-YFP foci, suggesting a role for these proteins in recombinational repair.
Collapse
Affiliation(s)
- Erika Shor
- Department of Genetics and Development, Columbia University College of Physicians & Surgeons, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
39
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair. Genetics 2005; 166:1673-86. [PMID: 15126389 PMCID: PMC1470801 DOI: 10.1534/genetics.166.4.1673] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
40
|
Keszenman DJ, Candreva EC, Sánchez AG, Nunes E. RAD6 gene is involved in heat shock induction of bleomycin resistance in Saccharomyces cerevisiae. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:36-43. [PMID: 15605356 DOI: 10.1002/em.20083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells react to environmental and endogenous challenges such as high temperature, reactive oxygen species, DNA damage, and nutrient starvation by activating several defense mechanisms known as stress responses. An important feature is the overlap between different stress responses that contributes at least in part to the phenomenon of cross-protection. We previously demonstrated that pretreatment with a heat shock (HS) induces resistance to the lethal and mutagenic effects of the antineoplastic drug Bleomycin (BLM) in wild-type Saccharomyces cerevisiae. At the DNA level, the HS resulted in more efficient repair of BLM-induced DNA damage. In the present study, we have investigated the mechanisms involved in this HS-induced BLM resistance. Since the RAD6 gene is involved in the ubiquitin system and DNA repair, we analyzed the effects of HS on the lethality of BLM in a rad6Delta (ubc2) mutant strain of S. cerevisiae. The rad6Delta mutant was more sensitive to the lethal effects of BLM than wild-type yeast and HS had no effect on the lethality of BLM in the mutant. Analysis of cell proliferation kinetics indicated that the HS-induced cell cycle delay observed in the wild-type yeast was absent in the rad6Delta mutant strain. BLM treatment impaired mutant cell proliferation, and HS had no effect on the delayed cell kinetics of the mutant. In addition, pulsed-field electrophoresis of chromosomes damaged by BLM indicated that there was very little recovery from damage in the mutant after 24 hr of incubation in BLM-free nutrient medium, and that HS had little effect on the recovery. These data indicate that the RAD6 gene is involved in the HS-induced BLM resistance observed in the isogenic wild-type strain.
Collapse
|
41
|
Xu H, Boone C, Klein HL. Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 2004; 24:7082-90. [PMID: 15282308 PMCID: PMC479732 DOI: 10.1128/mcb.24.16.7082-7090.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SRS2 gene of Saccharomyces cerevisiae encoding a 3'-->5' DNA helicase is part of the postreplication repair pathway and functions to ensure proper repair of DNA damage arising during DNA replication through pathways that do not involve homologous recombination. Through a synthetic gene array analysis, genes that are essential when Srs2 is absent have been identified. Among these are MRC1, TOF1, and CSM3, which mediate the intra-S checkpoint response. srs2 Delta mrc1 Delta synthetic lethality is due to inappropriate recombination, as the lethality can be suppressed by genetic elimination of homologous recombination. srs2 Delta mrc1 Delta synthetic lethality is dependent on the role of Mrc1 in DNA replication but independent of the role of Mrc1 in a DNA damage checkpoint response. mrc1 Delta, tof1 Delta and csm3 Delta mutants have sister chromatid cohesion defects, implicating sister chromatid cohesion established at the replication fork as an important factor in promoting repair of stalled replication forks through gap repair.
Collapse
Affiliation(s)
- Hong Xu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
42
|
Schürer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 Gene Functions in an Error-Free DNA Damage Bypass Pathway That Requires Genes From Homologous Recombination, but Not From Postreplicative Repair. Genetics 2004. [DOI: 10.1093/genetics/166.4.1673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.
Collapse
Affiliation(s)
- K Anke Schürer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Christian Rudolph
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| | - Helle D Ulrich
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Wilfried Kramer
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
43
|
Doe CL, Whitby MC. The involvement of Srs2 in post-replication repair and homologous recombination in fission yeast. Nucleic Acids Res 2004; 32:1480-91. [PMID: 14993467 PMCID: PMC390302 DOI: 10.1093/nar/gkh317] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Homologous recombination is important for the repair of double-strand breaks and daughter strand gaps, and also helps restart stalled and collapsed replication forks. However, sometimes recombination is inappropriate and can have deleterious consequences. To temper recombination, cells have employed DNA helicases that unwind joint DNA molecules and/or dissociate recombinases from DNA. Budding yeast Srs2 is one such helicase. It can act by dissociating Rad51 nucleoprotein filaments, and is required for channelling DNA lesions to the post-replication repair (PRR) pathway. Here we have investigated the role of Srs2 in controlling recombination in fission yeast. Similar to budding yeast, deletion of fission yeast srs2 results in hypersensitivity to a range of DNA damaging agents, rhp51-dependent hyper-recombination and synthetic sickness when combined with rqh1- that is suppressed by deleting rhp51, rhp55 or rhp57. Epistasis analysis indicates that Srs2 and the structure-specific endonuclease Mus81-Eme1 function in a sub-pathway of PRR for the tolerance/repair of UV-induced damage. However, unlike in Saccharomyces cerevisiae, Srs2 is not required for channelling lesions to the PRR pathway in Schizosaccharomyces pombe. In addition to acting as an antirecombinase, we also show that Srs2 can aid the recombinational repair of camptothecin-induced collapsed replication forks, independently of PRR.
Collapse
Affiliation(s)
- Claudette L Doe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
44
|
Pastushok L, Xiao W. DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:279-306. [PMID: 15588847 DOI: 10.1016/s0065-3233(04)69010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
45
|
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419:135-41. [PMID: 12226657 DOI: 10.1038/nature00991] [Citation(s) in RCA: 1704] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
Collapse
Affiliation(s)
- Carsten Hoege
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|