1
|
Rai A, Jha NS. Targeting Mycobacterium tuberculosis Parallel G-Quadruplex Motifs with Aminoglycosides Neomycin and Streptomycin: Spectroscopic and Calorimetric Aspects. J Phys Chem B 2025; 129:1715-1727. [PMID: 39902947 DOI: 10.1021/acs.jpcb.4c06795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mycobacterium tuberculosis (Mtb) contains potential G-quadruplex (PGQ) motifs in the genes espK and cyp51, which are crucial for the bacteria's virulence within host cells. Aminoglycoside molecules are commonly used as antibiotics for ribosomal targets. This study provides insight into the interactions between these aminoglycosides and Mtb-PGQ sequences (espK and cyp51), shedding light on the structural and thermodynamic dynamics of their binding. This study demonstrates the stability, affinity, and conformation of Mtb-PGQ in the presence of neomycin and streptomycin. Ultraviolet-visible spectroscopy (UV-vis), circular dichroism spectroscopy (CD), CD thermal melting, isothermal titration calorimetry (ITC), and fluorescence intercalator displacement (FID) assays were used to comprehensively examine these interactions. Our results reveal that neomycin with Mtb-PGQexhibits hypochromism accompanied by a 4-5 nm red shift in the UV-visible absorption titration, whereas streptomycin exhibits a hypochromic shift without changes in the maximum wavelength. Notably, neomycin shows a nonlinear binding isotherm, suggesting the involvement of more than one binding process in the formation of neomycin.Mtb-PGQ complexes. Scatchard plot analysis indicates higher binding affinity values for neomycin compared with weaker affinity of streptomycin. CD studies reveal that neomycin decreases the ellipticity of Mtb-PGQ with a red shift while retaining the parallel topology, ultimately enhancing the thermal stability of both espK and cyp51. In contrast, streptomycin destabilizes the cells. ITC analysis reveals that neomycin exhibits the strongest binding affinity for cyp51, with the relative order being NEO-cyp51 > NEO-espk > STR-cyp51 > STR-espk. Moreover, thermodynamic analysis reveals that neomycin possesses a unique dual mode of binding through grooves as well as stacking. FID studies further confirm a lower DC50 value for neomycin than for streptomycin, suggesting that neomycin is a strong displacer of thiazole orange. Thus, the results show that neomycin with amino groups selectively recognizes the grooves of cyp51 over espK.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Chemistry, National Institute of Technology, Patna 800005, India
| | - Niki S Jha
- Department of Chemistry, National Institute of Technology, Patna 800005, India
| |
Collapse
|
2
|
Al-Dulaimi S, Matta S, Slijepcevic P, Roberts T. 5-aza-2'-deoxycytidine induces telomere dysfunction in breast cancer cells. Biomed Pharmacother 2024; 178:117173. [PMID: 39059352 DOI: 10.1016/j.biopha.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
AIMS Azacitidine, a drug that epigenetically modifies DNA, is widely used to treat haematological malignancies. However, at low doses, it demethylates DNA, and as a result, can alter gene expression. In our previous publication, we showed that low doses of azacitidine induce telomere length elongation in breast cancer cells. In this study, we aim to identify the mechanisms which lead to telomere length increases. METHODS Breast cancer cell lines representing different molecular sub-types were exposed to 5-aza-2'-deoxycytidine (5-aza) in 2 and 3D cultures, followed by DNA, RNA, and protein extractions. Samples were then analysed for telomere length, DNA damage, telomerase, and ALT activity. RESULTS We show that treatment of the cell lines with 5-aza for 72 h induced DNA damage at the telomeres and increased ALT activity 3-fold. We also identified a gene, POLD3, which may be involved in the ALT activity seen after treatment. CONCLUSION Our results indicate that while 5-aza is a useful drug for treating haematological cancers, surviving cancer cells that have been exposed to lower doses of the drug may activate mechanisms such as ALT. This could lead to cancer cell survival and possible resistance to 5-aza clinically.
Collapse
Affiliation(s)
- Sarah Al-Dulaimi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Sheila Matta
- Royal Brompton Hospital, Respiratory Clinical Research Facility, Fulham Road, London SW3 6HP, UK
| | - Predrag Slijepcevic
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Terry Roberts
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
3
|
Zhang Q, Liu H, Xu Q, Liu H, Han Y, Li DL, Ma F, Zhang CY. Construction of a 3D Quantum Dot Nanoassembly with Two-Step FRET for One-Step Sensing of Human Telomerase RNA in Breast Cancer Cells and Tissues. Anal Chem 2024; 96:7738-7746. [PMID: 38690966 DOI: 10.1021/acs.analchem.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Zheng YY, Dartawan R, Wu Y, Wu C, Zhang H, Lu J, Hu A, Vangaveti S, Sheng J. Structural effects of inosine substitution in telomeric DNA quadruplex. Front Chem 2024; 12:1330378. [PMID: 38312345 PMCID: PMC10834636 DOI: 10.3389/fchem.2024.1330378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ricky Dartawan
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Yuhan Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Chengze Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Hope Zhang
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jeanne Lu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ashley Hu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jia Sheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
5
|
Dai Y, Zhang Z, Wang D, Li T, Ren Y, Chen J, Feng L. Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310455. [PMID: 37983564 DOI: 10.1002/adma.202310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Circularly polarized luminescence (CPL) materials have garnered significant interest due to their potential applications in chiral functional devices. Synthesizing CPL materials with a high dissymmetry factor (glum ) remains a significant challenge. Inspired by efficient machine learning (ML) applications in scientific research, this work demonstrates ML-based techniques for the first time to guide the synthesis of G-quartet-based CPL gels with high glum values and multiple chiral regulation strategies. Employing an "experiment-prediction-verification" approach, this work devises a ML classification and regression model for the solvothermal synthesis of G-quartet gels in deep eutectic solvents. This process illustrates the relationship between various synthesis parameters and the glum value. The decision tree algorithm demonstrates superior performance across six ML models, with model accuracy and determination coefficients amounting to 0.97 and 0.96, respectively. The screened CPL gels exhibiting a glum value up to 0.15 are obtained through combined ML guidance and experimental verification, among the highest ones reported till now for biomolecule-based CPL systems. These findings indicate that ML can streamline the rational design of chiral nanomaterials, thereby expediting their further development.
Collapse
Affiliation(s)
- Yankai Dai
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zhiwei Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Tianliang Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Shanghai Engineering Research Center of Organ Repair, ShanghaiUniversity, Shanghai, 200444, China
- QianWeichang College, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Gold NM, Okeke MN, He Y. Involvement of Inheritance in Determining Telomere Length beyond Environmental and Lifestyle Factors. Aging Dis 2023; 15:2470-2490. [PMID: 37962459 PMCID: PMC11567259 DOI: 10.14336/ad.2023.1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
All linear chromosomal ends have specific DNA-protein complexes called telomeres. Telomeres serve as a "molecular clock" to estimate the potential length of cell replication. Shortening of telomere length (TL) is associated with cellular senescence, aging, and various age-related diseases in humans. Here we reviewed the structure, function, and regulation of telomeres and the age-related diseases associated with telomere attrition. Among the various determinants of TL, we highlight the connection between TL and heredity to provide a new overview of genetic determinants for TL. Studies across multiple species have shown that maternal and paternal TL influence the TL of their offspring, and this may affect life span and their susceptibility to age-related diseases. Hence, we reviewed the linkage between TL and parental influences and the proposed mechanisms involved. More in-depth studies on the genetic mechanism for TL attrition are needed due to the potential application of this knowledge in human medicine to prevent premature frailty at its earliest stage, as well as promote health and longevity.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Michael Ngozi Okeke
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Center for Nanomedical Technology Research, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- State Key Laboratory of Genetic, Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Sharma P, Sweta Jha N. Enhanced antioxidant and cytotoxic activity of ferrocenyl-substituted curcumin via stabilization of promoter c-MYC silencer element. J Biomol Struct Dyn 2023; 41:9539-9550. [PMID: 36345790 DOI: 10.1080/07391102.2022.2143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
We are reporting a successful attachment of ferrocenyl moiety at the active methylene carbon atom of β-diketone of curcumin via Knoevenagel condensation reaction, to utilize the optimum selectivity toward biological targets. The formation of ferrocenyl curcumin (i.e., Fc-cur) has been confirmed by 1H NMR, 13C NMR, and FT-IR spectra analysis. Further, circular dichroism (CD) spectroscopy, thermal denaturation, absorption, and fluorescence spectroscopy have been used to understand the association of ligand (i.e., Fc-cur) with G-quadruplex. Based on these analysis, the binding mechanism of the ligand i.e., Fc-cur to the parallel and hybrid topology present in different G-quadruplex has been proposed. Further, the binding and modes of the interaction of Fc-cur with Pu27 c-MYC silencer element and H-telo G-quadruplex have unravelled selective and stronger binding via intercalation with the parallel topology of c-MYC G-quadruplex rather than the hybrid topology of H-telo quadruplex. The manifestation of better antioxidant activity of Fc-cur has been demonstrated by showing a stronger radical scavenging capability than pristine curcumin. The cytotoxicity analysis of the proposed ligand i.e., Fc-cur against Vero and HeLa cells have clearly reflected the nontoxicity toward Vero cells and quite effective against the HeLa cells which reduces the cancer cells more effectively than the already reported for curcumin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, Patna, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Patna, India
| |
Collapse
|
8
|
Kim H, Kim E, Pak Y. Computational Probing of the Folding Mechanism of Human Telomeric G-Quadruplex DNA. J Chem Inf Model 2023; 63:6366-6375. [PMID: 37782649 DOI: 10.1021/acs.jcim.3c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The human telomeric (htel) sequences in the terminal regions of human telomeres form diverse G-quadruplex (GQ) structures. Despite much experimental efforts to elucidate the folding pathways of htel GQ, no comprehensive model of htel GQ folding has been presented. Here, we describe folding pathways of the htel GQ determined by state-of-the-art enhanced sampling molecular dynamics simulation at the all-atom level. Briefly, GQ folding is initiated by the formation of a single-hairpin and then followed by the formation of double-hairpins, which then branch via distinct folding pathways to produce different GQ topologies (antiparallel chair, antiparallel basket, hybrids 1 and 2, and parallel propeller). In addition to these double-hairpin states, three-triad and two-tetrad structures in antiparallel backbone alignment serve as key intermediates that connect the GQ folding and transition between two different GQs.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
9
|
Zhong HS, Dong MJ, Gao F. G4Bank: A database of experimentally identified DNA G-quadruplex sequences. Interdiscip Sci 2023; 15:515-523. [PMID: 37389723 DOI: 10.1007/s12539-023-00577-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
G-quadruplex (G4), a non-canonical nucleic acid structure, has been suggested to play a key role in important cellular processes including transcription, replication and cancer development. Recently, high-throughput sequencing approaches for G4 detection have provided a large amount of experimentally identified G4 data that reveal genome-wide G4 landscapes and enable the development of new methods for predicting potential G4s from sequences. Although several existing databases provide G4 experimental data and relevant biological information from different perspectives, there is no dedicated database to collect and analyze DNA G4 experimental data genome-widely. Here, we constructed G4Bank, a database of experimentally identified DNA G-quadruplex sequences. A total of 6,915,983 DNA G4s were collected from 13 organisms, and state-of-the-art prediction methods were performed to filter and analyze the G4 data. Therefore, G4Bank will facilitate users to access comprehensive G4 experimental data and enable sequence feature analysis of G4 for further investigation. The database of the experimentally identified DNA G-quadruplex sequences can be accessed at http://tubic.tju.edu.cn/g4bank/ .
Collapse
Affiliation(s)
- Hong-Sheng Zhong
- Department of Physics, School of Science, Tianjin University, Tianjin, 300072, China
| | - Mei-Jing Dong
- Department of Physics, School of Science, Tianjin University, Tianjin, 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
10
|
Jarošová P, Hannig P, Kolková K, Mazzini S, Táborská E, Gargallo R, Borgonovo G, Artali R, Táborský P. Alkaloid Escholidine and Its Interaction with DNA Structures. BIOLOGY 2021; 10:1225. [PMID: 34943140 PMCID: PMC8698932 DOI: 10.3390/biology10121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant.
Collapse
Affiliation(s)
- Petra Jarošová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Pavel Hannig
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Kateřina Kolková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.B.)
| | - Eva Táborská
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain;
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.B.)
| | | | - Petr Táborský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| |
Collapse
|
11
|
Feng Y, Zhang K, Wu Q, Huang SY. NLDock: a Fast Nucleic Acid-Ligand Docking Algorithm for Modeling RNA/DNA-Ligand Complexes. J Chem Inf Model 2021; 61:4771-4782. [PMID: 34468128 DOI: 10.1021/acs.jcim.1c00341] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid-ligand interactions play an important role in numerous cellular processes such as gene function expression and regulation. Therefore, nucleic acids such as RNAs have become more and more important drug targets, where the structural determination of nucleic acid-ligand complexes is pivotal for understanding their functions and thus developing therapeutic interventions. Molecular docking has been a useful computational tool in predicting the complex structure between molecules. However, although a number of docking algorithms have been developed for protein-ligand interactions, only a few docking programs were presented for nucleic acid-ligand interactions. Here, we have developed a fast nucleic acid-ligand docking algorithm, named NLDock, by implementing our intrinsic scoring function ITScoreNL for nucleic acid-ligand interactions into a modified version of the MDock program. NLDock was extensively evaluated on four test sets and compared with five other state-of-the-art docking algorithms including AutoDock, DOCK 6, rDock, GOLD, and Glide. It was shown that our NLDock algorithm obtained a significantly better performance than the other docking programs in binding mode predictions and achieved the success rates of 73%, 36%, and 32% on the largest test set of 77 complexes for local rigid-, local flexible-, and global flexible-ligand docking, respectively. In addition, our NLDock approach is also computationally efficient and consumed an average of as short as 0.97 and 2.08 min for a local flexible-ligand docking job and a global flexible-ligand docking job, respectively. These results suggest the good performance of our NLDock in both docking accuracy and computational efficiency.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
12
|
Liu Z, Zhang L, Chen W, Yuan F, Yang Z, Liu S, Le F. miR-195-5p regulates cell proliferation, apoptosis, and invasion of thyroid cancer by targeting telomerase reverse transcriptase. Bioengineered 2021; 12:6201-6209. [PMID: 34482792 PMCID: PMC8806884 DOI: 10.1080/21655979.2021.1963908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In most human primary cancers, the expression, or telomerase activity, of telomerase reverse transcriptase (TERT) is detectable. However, the mechanism ofTERTactivity within oncogenesis of thyroid cancer remains largely unknown. In this study, we identified miR-195-5p as having involvement in cell proliferation, apoptosis, and invasion in human thyroid cancer. MTT was used to measure cell proliferation, Transwell chamber was used to measure invasion. Western blotting was used to detect the expressions of TERT, PCNA, and Ki67. Target gene prediction software predicted that TERT may be the target gene of miR-195-5p. Luciferase reporting system was used to identify the targeting relationship. A significant increase of in TERT expression was observed by immunohistochemistry compared with normal tissue, however, a decrease in miR-195-5p expression using qRT-PCRand western blot compared with normal cells. Functional analysis demonstrates that miR-195-5p negatively correlated withTERTand inhibitedTERTexpression through its interaction with theTERT3ʹ-untranslatedregion (3ʹ-UTR). Overexpression of miR-195-5p was shown to inhibit proliferation and invasion, and promote apoptosis of CAL-62 thyroid cancer cells. miR-195-5p-mediatedeffects were rescued by the overexpression ofTERT. Altogether, our data demonstrate that miR-195-5p regulates cell proliferation, apoptosis, and invasion in human thyroid cancer viaTERT, providing evidence of a new potential therapeutic target for further investigation.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department Of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Li Zhang
- Electrocardiography Room, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University ,Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology ,Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Wen Chen
- Department Of Breast Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Fenqian Yuan
- Department Of Head And Neck Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| | - Zhi Yang
- Department Of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Sheng Liu
- Department Of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Le
- Department Of Head And Neck Surgery, Jiangxi Provincial Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Center, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Deiana M, Mosser M, Le Bahers T, Dumont E, Dudek M, Denis-Quanquin S, Sabouri N, Andraud C, Matczyszyn K, Monnereau C, Guy L. Light-induced in situ chemical activation of a fluorescent probe for monitoring intracellular G-quadruplex structures. NANOSCALE 2021; 13:13795-13808. [PMID: 34477654 DOI: 10.1039/d1nr02855c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light-activated functional materials capable of remote control over duplex and G-quadruplex (G4) nucleic acids formation at the cellular level are still very rare. Herein, we report on the photoinduced macrocyclisation of a helicenoid quinoline derivative of binaphthol that selectively provides easy access to an unprecedented class of extended heteroaromatic structures with remarkable photophysical and DNA/RNA binding properties. Thus, while the native bisquinoline precursor shows no DNA binding activity, the new in situ photochemically generated probe features high association constants to DNA and RNA G4s. The latter inhibits DNA synthesis by selectively stabilizing G4 structures associated with oncogenic promoters and telomere repeat units. Finally, the light sensitive compound is capable of in cellulo photoconversion, localizes primarily in the G4-rich sites of cancer cells, competes with a well-known G4 binder and shows a clear nuclear co-localization with the quadruplex specific antibody BG4. This work provides a benchmark for the future design and development of a brand-new generation of light-activated target-selective G4-binders.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sánchez-González Á, Bandeira NAG, Ortiz de Luzuriaga I, Martins FF, Elleuchi S, Jarraya K, Lanuza J, Lopez X, Calhorda MJ, Gil A. New Insights on the Interaction of Phenanthroline Based Ligands and Metal Complexes and Polyoxometalates with Duplex DNA and G-Quadruplexes. Molecules 2021; 26:4737. [PMID: 34443326 PMCID: PMC8397986 DOI: 10.3390/molecules26164737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
This work provides new insights from our team regarding advances in targeting canonical and non-canonical nucleic acid structures. This modality of medical treatment is used as a form of molecular medicine specifically against the growth of cancer cells. Nevertheless, because of increasing concerns about bacterial antibiotic resistance, this medical strategy is also being explored in this field. Up to three strategies for the use of DNA as target have been studied in our research lines during the last few years: (1) the intercalation of phenanthroline derivatives with duplex DNA; (2) the interaction of metal complexes containing phenanthroline with G-quadruplexes; and (3) the activity of Mo polyoxometalates and other Mo-oxo species as artificial phosphoesterases to catalyze the hydrolysis of phosphoester bonds in DNA. We demonstrate some promising computational results concerning the favorable interaction of these small molecules with DNA that could correspond to cytotoxic effects against tumoral cells and microorganisms. Therefore, our results open the door for the pharmaceutical and medical applications of the compounds we propose.
Collapse
Affiliation(s)
- Ángel Sánchez-González
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Nuno A. G. Bandeira
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Euskadi, 20018 Donostia-San Sebastián, Spain;
- Polimero eta Material Aurreratuak, Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (J.L.); (X.L.)
| | - Frederico F. Martins
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Sawssen Elleuchi
- Laboratoire de Chimie Inorganique, LR17ES07, Faculté de Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia; (S.E.); (K.J.)
| | - Khaled Jarraya
- Laboratoire de Chimie Inorganique, LR17ES07, Faculté de Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia; (S.E.); (K.J.)
| | - Jose Lanuza
- Polimero eta Material Aurreratuak, Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (J.L.); (X.L.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak, Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; (J.L.); (X.L.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Maria José Calhorda
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
| | - Adrià Gil
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (Á.S.-G.); (N.A.G.B.); (F.F.M.); (M.J.C.)
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Euskadi, 20018 Donostia-San Sebastián, Spain;
| |
Collapse
|
15
|
Sharma S, Mukherjee AK, Roy SS, Bagri S, Lier S, Verma M, Sengupta A, Kumar M, Nesse G, Pandey DP, Chowdhury S. Human telomerase is directly regulated by non-telomeric TRF2-G-quadruplex interaction. Cell Rep 2021; 35:109154. [PMID: 34010660 PMCID: PMC7611063 DOI: 10.1016/j.celrep.2021.109154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) remains suppressed in most normal somatic cells. Resulting erosion of telomeres leads eventually to replicative senescence. Reactivation of hTERT maintains telomeres and triggers progression of >90% of cancers. However, any direct causal link between telomeres and telomerase regulation remains unclear. Here, we show that the telomere-repeat-binding-factor 2 (TRF2) binds hTERT promoter G-quadruplexes and recruits the polycomb-repressor EZH2/PRC2 complex. This is causal for H3K27 trimethylation at the hTERT promoter and represses hTERT in cancer as well as normal cells. Two highly recurrent hTERT promoter mutations found in many cancers, including ∼83% glioblastoma multiforme, that are known to destabilize hTERT promoter G-quadruplexes, showed loss of TRF2 binding in patient-derived primary glioblastoma multiforme cells. Ligand-induced G-quadruplex stabilization restored TRF2 binding, H3K27-trimethylation, and hTERT re-suppression. These results uncover a mechanism of hTERT regulation through a telomeric factor, implicating telomere-telomerase molecular links important in neoplastic transformation, aging, and regenerative therapy.
Collapse
Affiliation(s)
- Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Silje Lier
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manish Kumar
- Imaging Facility, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Gaute Nesse
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
16
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
17
|
Feng Y, Huang SY. ITScore-NL: An Iterative Knowledge-Based Scoring Function for Nucleic Acid-Ligand Interactions. J Chem Inf Model 2020; 60:6698-6708. [PMID: 33291885 DOI: 10.1021/acs.jcim.0c00974] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acid-ligand complexes underlie numerous cellular processes, such as gene function expression and regulation, in which their three-dimensional structures are important to understand their functions and thus to develop therapeutic interventions. Given the high cost and technical difficulties in experimental methods, computational methods such as molecular docking have been actively used to investigate nucleic acid-ligand interactions in which an accurate scoring function is crucial. However, because of the limited number of experimental nucleic acid-ligand binding data and structures, the scoring function development for nucleic acid-ligand interactions falls far behind that for protein-protein and protein-ligand interactions. Here, based on our statistical mechanics-based iterative approach, we have developed an iterative knowledge-based scoring function for nucleic acid-ligand interactions, named as ITScore-NL, by explicitly including stacking and electrostatic potentials. Our ITScore-NL scoring function was extensively evaluated for its ability in the binding mode and binding affinity predictions on three diverse test sets and compared with state-of-the-art scoring functions. Overall, ITScore-NL obtained significantly better performance than the other 12 scoring functions and predicted near-native poses with rmsd ≤ 1.5 Å for 71.43% of the cases when the top three binding modes were considered and a good correlation of R = 0.64 in binding affinity prediction on the large test set of 77 nucleic acid-ligand complexes. These results suggested the accuracy of ITScore-NL and the necessity of explicitly including stacking and electrostatic potentials.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
18
|
Diala I, Shiohama Y, Fujita T, Kotake Y, Demonacos C, Krstic-Demonacos M, Leva GD, Fujii M. Telomerase inhibition, telomere attrition and proliferation arrest of cancer cells induced by phosphorothioate ASO-NLS conjugates targeting hTERC and siRNAs targeting hTERT. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:407-425. [PMID: 32310030 DOI: 10.1080/15257770.2020.1713357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Telomerase activity has been regarded as a critical step in cellular immortalization and carcinogenesis and because of this, regulation of telomerase represents an attractive target for anti-tumor specific therapeutics. Recently, one avenue of cancer research focuses on antisense strategy to target the oncogenes or cancer driver genes, in a sequence specific fashion to down-regulate the expression of the target gene. The protein catalytic subunit, human telomerase reverse transcriptase (hTERT) and the template RNA component (hTERC) are essential for telomerase function, thus theoretically, inhibition of telomerase activity can be achieved by interfering with either the gene expression of hTERT or the hTERC of the telomerase enzymatic complex. The present study showed that phosphorothioate antisense oligonucleotide (sASO)-nuclear localization signal (NLS) peptide conjugates targeting hTERC could inhibit telomerase activity very efficiently at 5 μM concentration but less efficiently at 1 μM concentration. On the other hand, siRNA targeting hTERT mRNA could strongly suppress hTERT expression at 200 nM concentration. It was also revealed that siRNA targeting hTERT could induce telomere attrition and then irreversible arrest of proliferation of cancer cells.
Collapse
Affiliation(s)
- Irmina Diala
- Department of Biological & Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Japan
| | - Yasuo Shiohama
- Department of Biological & Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Japan
| | - Takashi Fujita
- Department of Biological & Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Japan
| | - Yojiro Kotake
- Department of Biological & Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Japan
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Marija Krstic-Demonacos
- College of Science & Technology, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Gianpiero Di Leva
- College of Science & Technology, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Masayuki Fujii
- Department of Biological & Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Japan
| |
Collapse
|
19
|
Grover J, Trujillo C, Saad M, Emandi G, Stipaničev N, Bernhard SSR, Guédin A, Mergny JL, Senge MO, Rozas I. Dual-binding conjugates of diaromatic guanidines and porphyrins for recognition of G-quadruplexes. Org Biomol Chem 2020; 18:5617-5624. [PMID: 32648871 DOI: 10.1039/d0ob01264e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first conceptualised class of dual-binding guanine quadruplex binders has been designed, synthesised and biophysically studied. These compounds combine diaromatic guanidinium systems and neutral tetra-phenylporphyrins (classical binding moiety for guanine quadruplexes) by means of a semi-rigid linker. An extensive screening of a variety of guanine quadruplex structures and double stranded DNA via UV-vis, FRET and CD experiments revealed the preference of the conjugates towards guanine quadruplexes. Additionally, docking studies indicate the potential dual mode of binding.
Collapse
Affiliation(s)
- Jagdeep Grover
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
21
|
Chen J, Morihiro K, Fukui D, Guo L, Okamoto A. Live-Cell Sensing of Telomerase Activity by Using Hybridization-Sensitive Fluorescent Oligonucleotide Probes. Chembiochem 2020; 21:1022-1027. [PMID: 31840916 DOI: 10.1002/cbic.201900555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Live-cell sensing of telomerase activity with simple and efficient strategies remains a challenging target. In this work, a strategy for telomerase sensing by using hybridization-sensitive fluorescent oligonucleotide probes is reported. In the presence of telomerase and dNTPs, the designed supporting strand was extended and generated the hairpin structure that catalyzed the next telomerase extending reaction. The special extension mechanism increased the local concentration of another supporting strand and telomerase, which resulted in enhanced telomerase activity. The hybridization-sensitive oligonucleotide probes bound to the hairpin catalyst and generated turn-on fluorescence. This method realized the sensing of telomerase activity in HeLa cell extract with a detection limit below 1.6×10-6 IU μL-1 . The real-time in situ observation of telomerase extension was achieved in living HeLa cells. This strategy has been applied to monitor the efficiency of telomerase-targeting anticancer drugs in situ.
Collapse
Affiliation(s)
- Jiazhuo Chen
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Fukui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Lihao Guo
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
22
|
Regulation of multiple energy transfer processes in a simple nano-system for sensitive telomerase detection. Anal Chim Acta 2020; 1097:135-143. [DOI: 10.1016/j.aca.2019.10.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/20/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
|
23
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
24
|
Uda RM, Nishimoto N, Matsui T, Takagi S. Photoinduced binding of malachite green copolymer to parallel G-quadruplex DNA. SOFT MATTER 2019; 15:4454-4459. [PMID: 31073583 DOI: 10.1039/c9sm00411d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designing ligands that selectively target G-quadruplex DNAs has gained attention due to their possible roles in regulation of gene expression and as anti-cancer agents. In this article, we report irradiation-induced ligand binding to G-quadruplex DNAs which offers a novel approach to targeting specific G-quadruplexes. Photoinduced binding to G-quadruplex DNAs was observed for copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). This molecule has an aromatic ring with cationic charge, which after irradiation becomes a binding site for G-quadruplex DNA. PVAMGs acted as neutral polymers with no binding affinity under dark conditions. The photoinduced binding was revealed by fluorescence spectroscopy, NMR spectroscopy, UV melting curve, and DNA polymerase stop assay. PVAMGs showed preference to parallel G-quadruplex structures over mixed parallel/antiparallel structures. PVAMGs were found to be noncytotoxic under both dark and irradiated conditions up to a concentration of 20 μM.
Collapse
Affiliation(s)
- Ryoko M Uda
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | | | | | | |
Collapse
|
25
|
Sharawy M, Consta S. Effect of the chemical environment of the DNA guanine quadruplex on the free energy of binding of Na and K ions. J Chem Phys 2019; 149:225102. [PMID: 30553268 DOI: 10.1063/1.5050534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Guanine quadruplex (G-quadruplex) structures play a vital role in stabilizing the DNA genome and in protecting healthy cells from transforming into cancer cells. The structural stability of G-quadruplexes is greatly enhanced by the binding of monovalent cations such as Na+ or K+ into the interior axial channel. We computationally study the free energy of binding of Na+ and K+ ions to two intramolecular G-quadruplexes that differ considerably in their degree of rigidity and the presence or absence of terminal nucleotides. The goal of our study is two-fold. On the one hand, we study the free energy of binding every ion, which complements the experimental findings that report the average free energy for replacing Na+ with K+ ions. On the other hand, we examine the role of the G-quadruplex structure in the binding free energy. In the study, we employ all-atom molecular dynamics simulations and the alchemical transformation method for the computation of the free energies. To compare the cation-dependent contribution to the structural stability of G-quadruplexes, we use a two-step approach to calculate the individual free energy difference ΔG of binding two Na+ and two K+ to two G-quadruplexes: the unimolecular DNA d[T2GT2(G3T)3] (Protein Data Bank ID 2M4P) and the human telomeric DNA d[AGGG(TTAGGG)3] (PDB ID 1KF1). In contrast to the experimental studies that estimate the average free energy of binding, we find a varying difference of approximately 2-9 kcal/mol between the free energy contribution of binding the first and second cation, Na+ or K+. Furthermore, we found that the free energy of binding K+ is not affected by the chemical nature of the two quadruplexes. By contrast, Na+ showed dependency on the G-quadruplex structure; the relatively small size allows Na+ to explore larger configurational space than K+. Numerical results presented here may offer reference values for future design of cationic drug-like ligands that replace the metal ions in G-quadruplexes.
Collapse
Affiliation(s)
- Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
26
|
Pattanayak R, Barua A, Das A, Chatterjee T, Pathak A, Choudhury P, Sen S, Saha P, Bhattacharyya M. Porphyrins to restrict progression of pancreatic cancer by stabilizing KRAS G-quadruplex: In silico, in vitro and in vivo validation of anticancer strategy. Eur J Pharm Sci 2018; 125:39-53. [PMID: 30223034 DOI: 10.1016/j.ejps.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
KRAS, a frequently mutated G-quadruplex forming proto-oncogene is responsible for almost every type of cancer which can form a parallel G-quadruplex structure in the promoter region. G-quadruplex structure is one of the most important drug targets for modern cancer therapy for their unique structure and specificity. Here, we have screened several synthetic porphyrin-based compounds as potential KRAS G-quadruplex stabilizing ligands, using molecular modeling and docking studies. Two novel porphyrins: Porphyrin-1(Cobalt containing) and Porphyrin-2 (Palladium containing) evidenced high affinity towards KRAS-promoter/G-quadruplex. As KRAS mutation is prevalent in pancreatic cancer, the efficacy of these ligands against human pancreatic ductal carcinoma cell line PANC-1 and MiaPaCa2 were examined. Both the Porphyrins exhibited significant cytotoxicity and block metastasis by inhibiting Epithelial to messenchymal transition. In vivo studies confirmed both porphyrin compounds to be effective against EAC tumors along with significantly low toxicity against normal Swiss albino mice. The expression of KRAS gene in porphyrin-treated PANC-1, MiaPaCa2 and tumor-derived EAC cells were drastically reduced at both protein and RNA levels. Thus interaction of porphyrin-based ligands with G-quadruplex DNA at the promoter region of KRAS, might be utilized as a target for anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata 700107, West Bengal, India
| | - Atish Barua
- Chittaranjan National Cancer Institute, 37, S.P.Mukherjee Road, Kolkata 700 026, West Bengal, India
| | - Amlan Das
- National Institute of Technology Sikkim, Barrffung Block Ravangla Sub-Division, South Sikkim 737139, India
| | - Tanima Chatterjee
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Adrija Pathak
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pritha Choudhury
- Chittaranjan National Cancer Institute, 37, S.P.Mukherjee Road, Kolkata 700 026, West Bengal, India
| | - Srikanta Sen
- 229A/230, Mira Tower, Lake Town, Block-A, Kolkata 700089, India
| | - Prosenjit Saha
- Chittaranjan National Cancer Institute, 37, S.P.Mukherjee Road, Kolkata 700 026, West Bengal, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata 700107, West Bengal, India.
| |
Collapse
|
27
|
Wu Q, Liu Z, Su L, Han G, Liu R, Zhao J, Zhao T, Jiang C, Zhang Z. Sticky-flares for in situ monitoring of human telomerase RNA in living cells. NANOSCALE 2018; 10:9386-9392. [PMID: 29740658 DOI: 10.1039/c8nr01260a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human telomerase RNA (hTR), a template of telomerase for telomeric repeat synthesis, was used to reflect the telomerase activity and act as a potential target of antitumor therapy. Here, we report a novel DNA-conjugated AuNP probe termed sticky-flares for the in situ detection of intracellular human telomerase RNA. The sticky-flares probe is capable of entering living cells directly without any auxiliary and recognizing the binding domain of human telomerase RNA. On recognition, the fluorophore-modified recognition flares can specifically bind to the target, separate from the sticky-flares and act as a fluorescent reporter to quantify and dynamically profile human telomerase RNA in living cells. We envision that the sticky-flares probe would be a valuable platform to investigate the function and regulation of hTR in antitumor therapy and hTR-related drug invention.
Collapse
Affiliation(s)
- Qilong Wu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Down regulation of human telomerase reverse transcriptase (hTERT) expression by BIBR1532 in human glioblastoma LN18 cells. Cytotechnology 2018; 70:1143-1154. [PMID: 29546682 DOI: 10.1007/s10616-018-0205-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Increased telomerase activity can be blocked by targeting the hTERT activity at both RNA and catalytic subunits. Various inhibitors had been used to regulate hTERT activity in glioblastoma cell lines and showed promising results. The present study hypothesized that the telomerase specific inhibitor BIBR1532 can effectively down-regulate the telomerase activity in LN18 glioblastoma cell line. LN18 glioblastoma cell line was treated with various concentrations of BIBR1532 at different time intervals. MTT assay was performed to determine cell viability after BIBR1532 treatment. hTERT mRNA and protein expression were determined by qRT-PCR and western blotting, respectively. Flow cytometry and TRAP assay was performed to detect the rate of apoptosis and telomerase activity in treated and control samples. One-way ANOVA was performed to compare the mean values of variables in control and BIBR1532 treated groups. LN18 cells showed a significant dose dependent cytotoxic effect after treatment with BIBR1532. hTERT mRNA expression in cells treated with 25, 100 and 200 μM BIBR1532 treated groups was decreased ~ 21, ~ 61.2, and ~ 77%, respectively (p < 0.05). We also observed that, BIBR1532 treatment reduced the expression of hTERT protein in LN18 cells in a dose dependent manner. The Flow cytometry data showed that, the drug induced significant increase in the total percentage of apoptotic cells with 200 μM concentration of BIBR1532 at all time points. BIBR1532 exhibited potent inhibition of telomerase activity in a dose-dependent manner in LN18 cells. BIBR1532 could induce apoptosis in LN18 cells through the downregulation of telomerase activity at transcriptional and translational level. We conclude that BIBR1532 may be a therapeutic agent to suppress telomerase activity, however, further efforts are necessary in order to explore this therapeutic strategy.
Collapse
|
29
|
Paul S, Samanta A. Ground- and Excited-State Interactions of a Psoralen Derivative with Human Telomeric G-Quadruplex DNA. J Phys Chem B 2018; 122:2277-2286. [PMID: 29376354 DOI: 10.1021/acs.jpcb.7b12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-quadruplex DNA has been a recent target for anticancer agents, and its binding interactions with small molecules, often used as anticancer drugs, have become an important area of research. Considering that psoralens have long been studied in the context of duplex DNA but that very little is known about their potential as G-quadruplex binders and their excited-state interaction with the latter has not been explored, we have studied herein the binding of a planar water-soluble psoralen derivative, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), with the 22-mer human telomeric G-quadruplex-forming sequence, AGGG(TTAGGG)3, labeled here as (hTel22), and investigated the consequences of photoexcitation of AMT by calorimetric and spectroscopic techniques. The results show an enthalpy-driven 1:1 binding of AMT with hTel22 via end-stacking mode. Fluorescence quenching experiments on 6-fluorescein amidite-labeled oligomers indicate that the binding site is nearer to the 3' end of hTel22 in the diagonal loop region. Femtosecond time-resolved transient absorption measurements indicate electron transfer from the guanine moiety of hTel22 to photoexcited AMT, leading to the formation of a radical pair species (AMT•-G•+), which survives for 30 ps and is favored by a parallel/quasi-parallel orientation between the two. The findings reveal psoralens as a prospective class of compounds for the development of anticancer therapeutics by targeting the G-quadruplex DNA.
Collapse
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
30
|
McRae EKS, Booy EP, Padilla-Meier GP, McKenna SA. On Characterizing the Interactions between Proteins and Guanine Quadruplex Structures of Nucleic Acids. J Nucleic Acids 2017; 2017:9675348. [PMID: 29250441 PMCID: PMC5700478 DOI: 10.1155/2017/9675348] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/08/2017] [Indexed: 01/07/2023] Open
Abstract
Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Ewan K. S. McRae
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Răsădean DM, Sheng B, Dash J, Pantoş GD. Amino-Acid-Derived Naphthalenediimides as Versatile G-Quadruplex Binders. Chemistry 2017; 23:8491-8499. [DOI: 10.1002/chem.201700957] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Dora M. Răsădean
- Department of Chemistry; University of Bath, Claverton Down; Bath BA2 7AY UK
| | - Bin Sheng
- Department of Chemistry; University of Bath, Claverton Down; Bath BA2 7AY UK
| | - Jyotirmayee Dash
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; 2A & @B Raja S C Mullick Road Kolkata 700032 India
| | - G. Dan Pantoş
- Department of Chemistry; University of Bath, Claverton Down; Bath BA2 7AY UK
| |
Collapse
|
32
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
33
|
Ali A, Kamra M, Roy S, Muniyappa K, Bhattacharya S. Enhanced G-Quadruplex DNA Stabilization and Telomerase Inhibition by Novel Fluorescein Derived Salen and Salphen Based Ni(II) and Pd(II) Complexes. Bioconjug Chem 2017; 28:341-352. [PMID: 28165710 DOI: 10.1021/acs.bioconjchem.6b00433] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal based salen complexes have been considered as an important scaffold toward targeting of DNA structures. In the present work, we have synthesized nickel(II) and palladium(II) salen and salphen complexes by using readily available fluorescein as the backbone to provide an extended aromatic surface. The metal complexes exhibit affinity toward the human telomeric G-quadruplex DNA with promising inhibition of telomerase activity. This has been ascertained by their efficiency in the long term cell proliferation assay which showed significant cancer cell toxicity in the presence of the metal complexes. Confocal microscopy showed cellular internalization followed by localization in the nucleus and mitochondria. Considerable population at the sub-G1 phase of the cell cycle showed cell death via apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | - Santanu Bhattacharya
- Director's Research Unit, Indian Association for the Cultivation of Science , Kolkata 700 032, India
| |
Collapse
|
34
|
Hu J, Wang ZY, Li CC, Zhang CY. Advances in single quantum dot-based nanosensors. Chem Commun (Camb) 2017; 53:13284-13295. [DOI: 10.1039/c7cc07752a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We review the advances in single quantum dot-based nanosensors and their biomedical applications. We highlight their challenges and future direction.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zi-yue Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chen-chen Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
35
|
Oxoisoaporphine as Potent Telomerase Inhibitor. Molecules 2016; 21:molecules21111534. [PMID: 27854257 PMCID: PMC6274343 DOI: 10.3390/molecules21111534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 11/17/2022] Open
Abstract
Two compounds previously isolated from traditional Chinese medicine, Menispermum dauricum (DC), 6-hydroxyl-oxoisoaporphine (H-La), and 4,6-di(2-pyridinyl)benzo[h]isoindolo[4,5,6-de]quinolin-8(5H)-one (H-Lb), were known to have in vitro antitumor activity and to selectively bind human telomeric, c-myc, and bcl-2 G-quadruplexes (G4s). In this study, the binding properties of these two compounds to telomerase were investigated through molecular docking and telomeric repeat amplication protocol and silver staining assay (TRAP-silver staining assay). The binding energies bound to human telomerase RNA were calculated by molecular docking to be -6.43 and -9.76 kcal/mol for H-La and H-Lb, respectively. Compared with H-La, the ligand H-Lb more strongly inhibited telomerase activity in the SK-OV-3 cells model.
Collapse
|
36
|
Marchand A, Gabelica V. Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res 2016; 44:10999-11012. [PMID: 27924036 PMCID: PMC5159560 DOI: 10.1093/nar/gkw970] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes adopt various folding topologies, but information on their folding pathways remains scarce. Here, we used electrospray mass spectrometry to detect and quantify the specifically bound potassium ions, and circular dichroism to characterize the stacking topology of each ensemble. For human telomeric (hTel) sequences containing the d((GGGTTA)3GGG) core, K+ binding affinity and cooperativity strongly depends on the chosen construct. The shortest sequences bind only one K+ at low KCl concentration, and this 2-quartet G-quadruplex is antiparallel. Flanking bases increase the K+ binding cooperativity. To decipher the folding pathways, we investigated the kinetics of K+ binding to telomeric (hybrid) and c-myc (parallel) G-quadruplexes. G-quadruplexes fold via branched pathways with multiple parallel reactions. Up to six states (one ensemble without K+, two ensembles with 1-K+ and three ensembles with 2-K+) are separated based on their formation rates and ion mobility spectrometry. All G-quadruplexes first form long-lived misfolded structures (off-pathway compared to the most stable structures) containing one K+ and two quartets in an antiparallel stacking arrangement. The results highlight the particular ruggedness of G-quadruplex nucleic acid folding landscapes. Misfolded structures can play important roles for designing artificial G-quadruplex based structures, and for conformational selection by ligands or proteins in a biological context.
Collapse
Affiliation(s)
- Adrien Marchand
- INSERM, CNRS, Univ. Bordeaux, U1212 / UMR5320 - Acides Nucléiques: Régulations Naturelle et Artificielle, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Valérie Gabelica
- INSERM, CNRS, Univ. Bordeaux, U1212 / UMR5320 - Acides Nucléiques: Régulations Naturelle et Artificielle, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
37
|
Ali A, Kamra M, Roy S, Muniyappa K, Bhattacharya S. Novel Oligopyrrole Carboxamide based Nickel(II) and Palladium(II) Salens, Their Targeting of Human G-Quadruplex DNA, and Selective Cancer Cell Toxicity. Chem Asian J 2016; 11:2542-54. [DOI: 10.1002/asia.201600655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/16/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Asfa Ali
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Mohini Kamra
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Soma Roy
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - K. Muniyappa
- Department of Biochemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
- Director's Research Unit; Indian Association for the Cultivation of Science; Kolkata 700 032 India
| |
Collapse
|
38
|
Gao Y, Wu S, Ye X. The effects of monovalent metal ions on the conformation of human telomere DNA using analytical ultracentrifugation. SOFT MATTER 2016; 12:5959-5967. [PMID: 27329676 DOI: 10.1039/c6sm01010e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A human telomere DNA segment (HT-DNA) can fold into a G-quadruplex in the presence of some monovalent cations. These cations can interact with the phosphate groups of the DNA segment and/or with the O6 oxygen atom of guanines, which are called non-specific interactions and specific interactions, respectively. However, until now how these two interactions affect the structure of HT-DNA has not been well understood. In this study, a combination of analytical ultracentrifugation (AUC) and circular dichroism (CD) was used to explore the effects of these two interactions on the structure of a 22-mer single-stranded DNA with a sequence of 5'-AGGG(TTAGGG)3-3'. The results showed that the standard sedimentation coefficient (s20,w) of HT-DNA starts to increase when the concentration of potassium ions (CK(+)) is higher than 10.0 µM due to the formation of a G-quadruplex through specific interactions. Whereas, for a control DNA, a higher CK(+) value of 1.0 mM was needed for increasing s20,w due to non-specific interactions. Moreover, potassium ions could promote the formation of the G-quadruplex much more easily than lithium, sodium and cesium ions, presumably due to its appropriate size in the dehydrated state and easier dehydration. The molar mass of DNA at different cation concentrations was nearly a constant and close to the theoretical value of the molar mass of monomeric HT-DNA, indicating that what we observed is the structural change of individual DNA chains.
Collapse
Affiliation(s)
- Yating Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
39
|
Seršen S, Šket P, Plavec J, Turel I. Interactions of two cytotoxic organoruthenium(II) complexes with G-quadruplex. J Inorg Biochem 2016; 160:70-7. [DOI: 10.1016/j.jinorgbio.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
|
40
|
Marchand A, Strzelecka D, Gabelica V. Selective and Cooperative Ligand Binding to Antiparallel Human Telomeric DNA G-Quadruplexes. Chemistry 2016; 22:9551-5. [PMID: 27168452 DOI: 10.1002/chem.201601937] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 01/16/2023]
Abstract
The quest for ligands that specifically bind to particular G-quadruplex nucleic acid structures is particularly important to conceive molecules with specific effects on gene expression or telomere maintenance, or conceive structure-specific molecular probes. Using electrospray mass spectrometry in native conditions, we reveal a highly cooperative and selective 2:1 binding of Cu(II) -tolylterpyridine complexes to human telomeric G-quadruplexes. Circular dichroism and comparisons of affinities for different sequences reveal a marked preference for antiparallel structures with diagonal loops and/or wide-medium-narrow-medium groove-width order. The cooperativity is attributed to conformational changes in the polymorphic telomeric G-quadruplex sequences, which convert preferably into an antiparallel three-quartet topology upon binding of two ligands.
Collapse
Affiliation(s)
- Adrien Marchand
- Université de Bordeaux, IECB, ARNA Laboratory, 33600, Pessac, France.,Inserm, U1212, ARNA Laboratory, 33000, Bordeaux, France.,CNRS, UMR 5320, ARNA Laboratory, 33400, Talence, France
| | - Dominika Strzelecka
- Université de Bordeaux, IECB, ARNA Laboratory, 33600, Pessac, France.,Inserm, U1212, ARNA Laboratory, 33000, Bordeaux, France.,Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Valerie Gabelica
- Université de Bordeaux, IECB, ARNA Laboratory, 33600, Pessac, France. .,Inserm, U1212, ARNA Laboratory, 33000, Bordeaux, France. .,CNRS, UMR 5320, ARNA Laboratory, 33400, Talence, France.
| |
Collapse
|
41
|
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64:101-33. [DOI: 10.1016/j.neubiorev.2016.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
42
|
Chan K, Yik-Sham Chung C, Wing-Wah Yam V. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(ii) complex ensemble. Chem Sci 2016; 7:2842-2855. [PMID: 30090278 PMCID: PMC6055111 DOI: 10.1039/c5sc04563k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
The formation of supramolecular assemblies between [Pt(bzimpy-Et){C[triple bond, length as m-dash]CC6H4(CH2NMe3-4)}]Cl2 (1) and mPPE-Ala and the FRET properties of the ensemble have been revealed from the UV-vis absorption, steady-state emission and time-resolved emission decay studies. The two-component mPPE-Ala-1 ensemble has been employed in a "proof-of-principle" concept for label-free detection of G-quadruplex DNAs with the intramolecular propeller parallel folding topology, such as c-myc, in aqueous buffer solution. By the modulation of the aggregation/deaggregation of the polymer-metal complex aggregates and hence the FRET from the mPPE-Ala donor to the aggregated 1 as acceptor, the ensemble has been demonstrated for sensitive and selective label-free detection of c-myc via the monitoring of emission spectral changes of the ensemble. Ratiometric emission of the ensemble at 461 and 662 nm has been shown to distinguish the intramolecular propeller parallel G-quadruplex folding topology of c-myc from other G-quadruplex-forming sequences of different folding topologies, owing to the strong and specific interactions between c-myc and 1 as suggested by the UV-vis absorption and UV melting studies. In addition, the formation of high-order intermolecular multimeric G-quadruplexes from c-myc under molecular crowding conditions has been successfully probed by the ratiometric emission of the ensemble. The conformational and topological transition of human telomeric DNA from the mixed-hybrid form to the intramolecular propeller parallel form, as observed from the circular dichroism spectroscopy, has also been monitored by the ratiometric emission of the ensemble. The ability of the ensemble to detect these conformational and topological transitions of G-quadruplex DNAs has been rationalized by the excellent selectivity and sensitivity of the ensemble towards the intramolecular propeller parallel G-quadruplex DNAs and their high-order intermolecular multimers, which are due to the extra stabilization gained from Pt···Pt and π-π interactions in addition to the electrostatic and hydrophobic interactions found in the polymer-metal complex aggregates.
Collapse
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
43
|
Zhuang Y, Huang F, Xu Q, Zhang M, Lou X, Xia F. Facile, Fast-Responsive, and Photostable Imaging of Telomerase Activity in Living Cells with a Fluorescence Turn-On Manner. Anal Chem 2016; 88:3289-94. [DOI: 10.1021/acs.analchem.5b04756] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuan Zhuang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fujian Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qi Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Mengshi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
44
|
Witkowska A, Strzalka-Mrozik B, Owczarek A, Gola J, Mazurek U, Grzeszczak W, Gumprecht J. Downregulation of telomerase maintenance-related ACD expression in patients undergoing immunosuppresive therapy following kidney transplantation. Exp Ther Med 2015; 10:2224-2230. [PMID: 26668621 DOI: 10.3892/etm.2015.2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
Chronic administration of immunosuppressants has been associated with long-term consequences, including a higher risk of neoplasm development. The processes regulating telomere function exert a major influence on human cancer biology. The present study aimed to assess the effect of immunosuppressive therapy on the expression of genes associated with telomere maintenance and protection in patients following renal transplantation. A total of 51 patients that had undergone kidney transplantation and 54 healthy controls were enrolled in the study. The 51 transplant patients received a three-drug immunosuppressive regimen consisting of cyclosporine A, prednisone and mycophenolate mofetil. In stage 1 of the study, the expression profiles of 123 transcripts, which represented 70 genes, were assessed in peripheral mononuclear blood cells using an oligonucleotide microarray technique in 8 transplant recipients and 4 healthy control subjects. Among the analyzed transcripts, the expression levels of 4 differed significantly between the studied groups; however, only the ACD (adrenocortical dysplasia homolog) gene, encoding the telomere-binding protein POT1-interacting protein 1 (TPP1), was sufficiently specific for telomere homeostasis. The expression of ACD was downregulated in transplant recipients (fold change, 2.11; P=0.006). In stage 2 of the study, reverse transcription-quantitative polymerase chain reaction analysis of ACD, DKC1 and hTERT mRNA was conducted for all transplant patients and control subjects. The results confirmed the downregulation of the ACD gene in patients that had received immunosuppressive therapy (P=0.002). The results of the present study indicate that the downregulation of ACD gene transcription, and thus TPP1 protein expression, may enhance the capacity for cell immortalization, despite normal levels of other key telomere maintenance factors, in patients undergoing immunosuppressive therapy. Furthermore, the results indicate that TPP1 has potential for use as an early clinical marker and/or therapeutic target for cancer in patients following organ transplantation.
Collapse
Affiliation(s)
- Agnieszka Witkowska
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, 41-800 Zabrze, Silesia, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Medical University of Silesia, 41-200 Sosnowiec, Silesia, Poland
| | - Aleksander Owczarek
- Division of Statistics, Medical University of Silesia, 41-200 Sosnowiec, Silesia, Poland
| | - Joanna Gola
- Department of Molecular Biology, Medical University of Silesia, 41-200 Sosnowiec, Silesia, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, 41-200 Sosnowiec, Silesia, Poland
| | - Wladyslaw Grzeszczak
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, 41-800 Zabrze, Silesia, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, 41-800 Zabrze, Silesia, Poland
| |
Collapse
|
45
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
46
|
Tomar JS. In-silico modeling studies of G-quadruplex with soy isoflavones having anticancerous activity. J Mol Model 2015; 21:193. [PMID: 26164556 DOI: 10.1007/s00894-015-2723-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022]
Abstract
Telomere forms t-loop and G-quadruplex as the protective structure and the formation of these structures hinder the telomerase enzyme action. The binding affinities of ligand which stabilize the G-quadruplex represent good correlation with telomerase inhibition depicted in the anti-cancerous action. Most of the potent G-quadruplex stabilizing compounds suffer from the poor drug like properties. Herein, natural dietary compounds isoflavones were taken for the theoretical study to examine their stabilizing effect on G-quadruplex structure. The experimental G-quadruplex complexes were reproduced to obtain and validate the theoretical parameters. The obtained theoretical binding energies are in significant correlation with the experimental data. Analysis of binding shows isoflavones to be groove binders, and differential nature of quadruplex grooves might be beneficial in the selectivity aspects. Among all, derrubone was found to have better selectivity as well as affinity for the G-quadruplex comparable to well known ligand TMPyP4. The GBSA rescoring result enlightens the various interaction terms involved in the binding process. Cumulative stabilizing effects coming from VDW, ES, and GB energy terms attest to optimal binding of derrubone molecule which can be considered as a lead for the higher phases of drug designing. These findings are of great value in terms of unexplored groove binding modes and the studied natural compounds might be helpful to direct the focus of synthetic chemists in designing of new generation of antitumor agents.
Collapse
Affiliation(s)
- Jyoti Singh Tomar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India,
| |
Collapse
|
47
|
Cousins ARO, Ritson D, Sharma P, Stevens MFG, Moses JE, Searle MS. Ligand selectivity in stabilising tandem parallel folded G-quadruplex motifs in human telomeric DNA sequences. Chem Commun (Camb) 2015; 50:15202-5. [PMID: 25338751 DOI: 10.1039/c4cc07487d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biophysical studies of ligand interactions with three human telomeric repeat sequences (d(AGGG(TTAGGG)n, n = 3, 7 and 11)) show that an oxazole-based 'click' ligand, which induces parallel folded quadruplexes, preferentially stabilises longer telomeric repeats providing evidence for selectivity in binding at the interface between tandem quadruplex motifs.
Collapse
Affiliation(s)
- Alex R O Cousins
- Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Bhowmik D, Fiorillo G, Lombardi P, Suresh Kumar G. Recognition of human telomeric G-quadruplex DNA by berberine analogs: effect of substitution at the 9 and 13 positions of the isoquinoline moiety. J Mol Recognit 2015; 28:722-30. [DOI: 10.1002/jmr.2486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gaetano Fiorillo
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - Paolo Lombardi
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - G. Suresh Kumar
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
49
|
Recent Developments in G-Quadruplex Probes. ACTA ACUST UNITED AC 2015; 22:812-28. [DOI: 10.1016/j.chembiol.2015.06.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
|
50
|
Human telomerase inhibitors from microbial source. World J Microbiol Biotechnol 2015; 31:1329-41. [DOI: 10.1007/s11274-015-1893-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
|