1
|
Nag S, Banerjee C, Goyal M, Siddiqui AA, Saha D, Mazumder S, Debsharma S, Pramanik S, Saha SJ, De R, Bandyopadhyay U. Plasmodium falciparum Alba6 exhibits DNase activity and participates in stress response. iScience 2024; 27:109467. [PMID: 38558939 PMCID: PMC10981135 DOI: 10.1016/j.isci.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Alba domain proteins, owing to their functional plasticity, play a significant role in organisms. Here, we report an intrinsic DNase activity of PfAlba6 from Plasmodium falciparum, an etiological agent responsible for human malignant malaria. We identified that tyrosine28 plays a critical role in the Mg2+ driven 5'-3' DNase activity of PfAlba6. PfAlba6 cleaves both dsDNA as well as ssDNA. We also characterized PfAlba6-DNA interaction and observed concentration-dependent oligomerization in the presence of DNA, which is evident from size exclusion chromatography and single molecule AFM-imaging. PfAlba6 mRNA expression level is up-regulated several folds following heat stress and treatment with artemisinin, indicating a possible role in stress response. PfAlba6 has no human orthologs and is expressed in all intra-erythrocytic stages; thus, this protein can potentially be a new anti-malarial drug target.
Collapse
Affiliation(s)
- Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- Department of Molecular & Cell Biology, School of Dental Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal 700135, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal 700091, India
| |
Collapse
|
2
|
Kulbay M, Bernier-Parker N, Bernier J. The role of the DFF40/CAD endonuclease in genomic stability. Apoptosis 2021; 26:9-23. [PMID: 33387146 DOI: 10.1007/s10495-020-01649-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of genomic stability in cells is primordial for cellular integrity and protection against tumor progression. Many factors such as ultraviolet light, oxidative stress, exposure to chemical reagents, particularly mutagens and radiation, can alter the integrity of the genome. Thus, human cells are equipped with many mechanisms that prevent these irreversible lesions in the genome, as DNA repair pathways, cell cycle checkpoints, and telomeric function. These mechanisms activate cellular apoptosis to maintain DNA stability. Emerging studies have proposed a new protein in the maintenance of genomic stability: the DNA fragmentation factor (DFF). The DFF40 is an endonuclease responsible of the oligonucleosomal fragmentation of the DNA during apoptosis. The lack of DFF in renal carcinoma cells induces apoptosis without oligonucleosomal fragmentation, which poses a threat to genetic information transfer between cancerous and healthy cells. In this review, we expose the link between the DFF and genomic instability as the source of disease development.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montreal, QC, Canada
| | - Nathan Bernier-Parker
- Toronto Animal Health Partners Emergency and Specialty Hospital, 1 Scarsdale Road, North York, ON, M3B 2R2, Canada
| | - Jacques Bernier
- INRS - Centre Armand-Frappier-Santé-Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
3
|
Zhdanov DD, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, Pokrovskaya MV, Alexandrova SS, Plyasova AA, Sokolov NN. Endonuclease G modulates the alternative splicing of deoxyribonuclease 1 mRNA in human CD4 + T lymphocytes and prevents the progression of apoptosis. Biochimie 2018; 157:158-176. [PMID: 30521874 DOI: 10.1016/j.biochi.2018.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Apoptotic endonucleases act cooperatively to fragment DNA and ensure the irreversibility of apoptosis. However, very little is known regarding the potential regulatory links between endonucleases. Deoxyribonuclease 1 (DNase I) inactivation is caused by alternative splicing (AS) of DNase I pre-mRNA skipping exon 4, which occurs in response to EndoG overexpression in cells. The current study aimed to determine the role of EndoG in the regulation of DNase I mRNA AS and the modulation of its enzymatic activity. A strong correlation was identified between the EndoG expression levels and DNase I splice variants in human lymphocytes. EndoG overexpression in CD4+ T cells down-regulated the mRNA levels of the active full-length DNase I variant and up-regulated the levels of the non-active spliced variant, which acts in a dominant-negative fashion. DNase I AS was induced by the translocation of EndoG from mitochondria into nuclei during the development of apoptosis. The DNase I spliced variant was induced by recombinant EndoG or by incubation with EndoG-digested cellular RNA in an in vitro system with isolated cell nuclei. Using antisense DNA oligonucleotides, we identified a 72-base segment that spans the adjacent segments of exon 4 and intron 4 and appears to be responsible for the AS. DNase I-positive CD4+ T cells overexpressing EndoG demonstrated decreased progression towards bleomycin-induced apoptosis. Therefore, EndoG is an endonuclease with the unique ability to inactivate another endonuclease, DNase I, and to modulate the development of apoptosis.
Collapse
Affiliation(s)
- Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia.
| | - Yulia A Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia; N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Dmitry V Grishin
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| | - Vladimir A Grachev
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia
| | - Valentina S Orlova
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia
| | | | | | - Anna A Plyasova
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| | - Nikolay N Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| |
Collapse
|
4
|
Yuan Y, Yang Z, Zou Q. MiRNA-145 Induces Apoptosis in a Gallbladder Carcinoma Cell Line by Targeting DFF45. Open Life Sci 2018; 13:227-235. [PMID: 33817087 PMCID: PMC7874708 DOI: 10.1515/biol-2018-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/21/2018] [Indexed: 11/15/2022] Open
Abstract
Bakcground We measured expression of miRNA-145 in gallbladder carcinoma and its influence on propagation, invasion, and apoptosis of gallbladder carcinoma cells in vitro. Methods miRNA-145 expression was compared between normal gallbladder epithelial cells and GBS-SD (gallbladder series) cells using miRNA chip technology. Propagation, apoptosis, and invasion properties of each cell group were tested using MTT, a clone-formation assay, flow cytometry, Western blot, and Transwell assays. Results Expression of miRNA-145 was observed to be down-regulated and GBC-SD cell clones transiently transfected with hsa-miRNA-145 were substantially reduced compared with controls (p<0.01). We observed that GBC-SD cells transfected with hsa-miRNA-145 and double-positive (Annexin V and PI) for apoptosis were more numerous than controls. Moreover, GBC-SD cells over-expressing miRNA-145 had significantly greater expression of apoptosis-related protein, caspase-3. A Transwell assay confirmed that GBC-SD cells over-expressing miRNA-145 that migrated to the lower chamber were fewer compared with controls. Post-transcriptional regulation of gene expression was measured using dualluciferase reporter assays and data show that miRNA-145 facilitates the inhibition of GBC-SD cell growth and invasion while inducing apoptosis by targeting DFF45. Conclusion Thus, we speculate that miRNA-145 facilitates inhibition of GBC-SD cell growth and invasion while inducing apoptosis by targeting DFF45; however, miRNA-145 does not directly affect the GBC-SD cell cycle.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
5
|
Tan K, Wen C, Feng H, Chao X, Su H. Nuclear dynamics and programmed cell death in Arabidopsis root hairs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:77-85. [PMID: 27968999 DOI: 10.1016/j.plantsci.2016.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In this paper we demonstrate the coupling of nuclear migration to the base of Arabidopsis root hairs with programmed cell death (PCD). Nuclear migration and positioning are fundamental processes of eukaryotic cells. To date, no evidence for a direct connection between nucleus migration and PCD has been described in the literature. Based on the findings of our previous study, we hereby further establish the regulatory role of caspase-3-like/DEVDase in root hair death and demonstrate nuclear migration to a position close to the root hair basement during PCD. In addition, continuous observation and statistical analysis have revealed that the nucleus disengages from the root hair tip and moves back to the root after the root hair grows to a certain length. Finally, pharmacological studies have shown that the meshwork of actin filaments surrounding the nucleus plays a pivotal role in nuclear movement during root hair PCD, and the basipetal movement of the nucleus is markedly inhibited by the caspase-3 inhibitor, Ac-DEVD-CHO.
Collapse
Affiliation(s)
- Kang Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Chenxi Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Hualing Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Xiaoting Chao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
6
|
Zhang J, 1 Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China, 400044.;, Wang L, Chen H, Yin T, Teng Y, Zhang K, Yu D, Wang G. Effect of Caspase Inhibitor Ac-DEVD-CHO on Apoptosis of Vascular Smooth Muscle Cells Induced by Artesunate. AIMS BIOENGINEERING 2014. [DOI: 10.3934/bioeng.2014.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Iglesias-Guimarais V, Gil-Guiñon E, Sánchez-Osuna M, Casanelles E, García-Belinchón M, Comella JX, Yuste VJ. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3'-OH single-strand DNA breaks. J Biol Chem 2013; 288:9200-15. [PMID: 23430749 DOI: 10.1074/jbc.m112.411371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD(-/-) cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3'-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3'-OH ends in single-strand rather than double-strand DNA nicks/breaks.
Collapse
Affiliation(s)
- Victoria Iglesias-Guimarais
- Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Banga NR, Prasad KR, Burn JL, Homer-Vanniasinkam S, Graham A. An in vitro model of warm hypoxia-reoxygenation injury in human liver endothelial cells. J Surg Res 2012; 178:e35-41. [PMID: 22472696 DOI: 10.1016/j.jss.2011.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/14/2011] [Accepted: 12/19/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ischemia-reperfusion or hypoxia-reoxygenation (H-R) injury adversely affects hepatic function following transplantation and major resection; the death of human sinusoidal endothelial cells (SECs) by apoptosis may play a central role in this process. Caspase-3 is an important intracellular protease in the intrinsic and extrinsic pathways of apoptosis. MATERIALS AND METHODS SECs and EAhy926 cells were exposed to warm hypoxia at 37°C, followed by reoxygenation at 37°C. Activity of caspase-3 was quantified using Western blotting and colorimetric kinase assays. RESULTS H-R caused a significant increase in caspase-3 activity compared with controls in both cell types. CONCLUSIONS Warm H-R injury causes apoptotic cell death of SECs and immortalized cells, but with differing patterns of caspase activity.
Collapse
Affiliation(s)
- Neal R Banga
- Department of Hepatobiliary Surgery and Transplantation, St. James' University Hospital, Leeds, United Kingdom.
| | | | | | | | | |
Collapse
|
9
|
Reisner HM, Lundblad RL. Identifying residues in antigenic determinants by chemical modification. Methods Mol Biol 2009; 524:103-117. [PMID: 19377940 DOI: 10.1007/978-1-59745-450-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical modification of the side chains of amino acid residues was one of the first methods developed to investigate epitopes in protein antigens. The principle of the method is that alteration of the structure of a key residue of an epitope by a chemical modification will alter reactivity with antibody by affecting either specificity or avidity or both. Chemical modification has the advantage that it can be applied to discontinuous as well as continuous epitopes and may be of value in identifying cryptic epitopes. We consider here the several recent studies that have applied site-specific chemical modification to the identification of epitopes on antigens, including the use of formaldehyde, glutaraldehyde, and acid anhydrides, to produce allergoids where determinants important to reaction with IgE are modified but the ability to elicit an IgG response is retained. It is noteworthy that modification of amino groups with charge reversal appears to be the most useful approach. The approach to the use of site-specific chemical modification as a tool for the study of protein function is discussed, and emphasis is placed on the necessity to (1) validate the specificity of modification and (2) assess potential conformational change that may occur secondary to modification. Finally, a list of chemical reagents used for protein modification is presented, together with properties and references to use.
Collapse
Affiliation(s)
- Howard M Reisner
- Department of Pathology and Laboratory Medicine, University of North Carolina, PO Box 16695, Chapel Hill, NC 27516, USA
| | | |
Collapse
|
10
|
Nagata S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol Rev 2008; 220:237-50. [PMID: 17979851 DOI: 10.1111/j.1600-065x.2007.00571.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Apoptotic cells are recognized and subsequently engulfed by macrophages and immature dendritic cells. The engulfed dead cells are transported to the lysosomes of macrophages, and their components are degraded into amino acids and nucleotides for reuse. In mammals, macrophages also engulf nuclei expelled from erythroid precursors in the final stage of definitive erythropoiesis. Failure to swiftly engulf dead cells at the germinal centers of lymphoid organs causes systemic lupus erythematosus-type autoimmune diseases. In contrast, failure to efficiently degrade the DNA of dead cells or erythroid cell nuclei activates innate immunity, causing lethal anemia in the fetus and chronic arthritis in adults.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Abstract
We have created new genomics tools for chromatin research by genetically engineering the human and mouse major apoptotic nucleases that are responsible for internucleosomal DNA cleavage, DNA fragmentation factor (DFF). Normally, in its inactive form, DFF is a heterodimer composed of a 45-kDa chaperone inhibitor subunit (DFF45 or ICAD), and a 40-kDa latent endonuclease subunit (DFF40 or CAD). Upon caspase-3 cleavage of DFF45, DFF40 forms active endonuclease homo-oligomers. Although Saccharomyces cerevisiae lacks DFF, expression of caspase-3 is lethal in this organism, but expression of the highly sequence-specific tobacco etch virus protease (TEVP) is harmless. Therefore, we inserted TEVP cleavage sites immediately downstream of the two caspase-3 cleavage sites within DFF45, generating a novel form of DFF (DFF-T) whose nuclease activity proved to be exclusively under the control of TEVP. We demonstrate that co-expression of TEVP and DFF-T under galactose control results in nucleosomal DNA laddering and cell death in S. cerevisiae. We also created synthetic DFF genes with optimized codons for high-level expression in Eschericia coli or S. cerevisiae. We further demonstrate the excellence of the synthetic gene products for in vitro mapping of the nucleosome positions and hypersensitive sites in specific genes such as the yeast PHO5.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA and Faculty of Biotechnology, University of Rzeszow, 36-100 Werynia, Poland
| | - Piotr Widlak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA and Faculty of Biotechnology, University of Rzeszow, 36-100 Werynia, Poland
| | - William T. Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA and Faculty of Biotechnology, University of Rzeszow, 36-100 Werynia, Poland
- *To whom correspondence should be addressed. +1 214 648 1924+1 214 648 1915
| |
Collapse
|
12
|
Counis MF, Torriglia A. Acid DNases and their interest among apoptotic endonucleases. Biochimie 2006; 88:1851-8. [PMID: 16989934 DOI: 10.1016/j.biochi.2006.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/05/2006] [Indexed: 01/11/2023]
Abstract
Apoptosis is characterized by cell shrinkage, nuclear condensation and internucleosomal DNA cleavage. Besides the central role of caspases and other proteases, cell death triggers DNA degradation so that DNases have an active role in apoptotic cell death. The best-characterized apoptotic DNase is CAD, a neutral Mg-dependent endonuclease. Its activity is regulated by its inhibitor, ICAD, which is cleaved by caspases. Other neutral DNases have been shown to cleave nuclear DNA in apoptotic conditions: endonuclease G, GADD. In cells, the cytosolic pH is maintained to 7.2, mostly due to the activity of the Na(+)/H(+) exchanger. In many apoptotic conditions, a decrease of the intracellular pH has been shown. This decrease may activate different acid DNases, mostly when pH decreases below 6.5. Three acidic DNases II are so far known: DNase II alpha, DNase II beta and L-DNase II, a DNase II, derived from the serpin LEI (Leukocyte Elastase Inhibitor). Their activation during cell death is discussed in this review.
Collapse
Affiliation(s)
- Marie-France Counis
- INSERM U 598, Centre de Recherches Biomédicales des Cordeliers, Paris, France.
| | | |
Collapse
|
13
|
Reh S, Korn C, Gimadutdinow O, Meiss G. Structural basis for stable DNA complex formation by the caspase-activated DNase. J Biol Chem 2005; 280:41707-15. [PMID: 16236713 DOI: 10.1074/jbc.m509133200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a structural model for DNA binding by the caspase-activated DNase (CAD). Results of a mutational analysis and computational modeling suggest that DNA is bound via a positively charged surface with two functionally distinct regions, one being the active site facing the DNA minor groove and the other comprising distal residues close to or directly from helix alpha4, which binds DNA in the major groove. This bipartite protein-DNA interaction is present once in the CAD/inhibitor of CAD heterodimer and repeated twice in the active CAD dimer.
Collapse
Affiliation(s)
- Stefanie Reh
- Institute of Biochemistry, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
14
|
Korn C, Scholz SR, Gimadutdinow O, Lurz R, Pingoud A, Meiss G. Interaction of DNA Fragmentation Factor (DFF) with DNA Reveals an Unprecedented Mechanism for Nuclease Inhibition and Suggests That DFF Can Be Activated in a DNA-bound State. J Biol Chem 2005; 280:6005-15. [PMID: 15572351 DOI: 10.1074/jbc.m413035200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA fragmentation factor (DFF) is a complex of the DNase DFF40 (CAD) and its chaperone/inhibitor DFF45 (ICAD-L) that can be activated during apoptosis to induce DNA fragmentation. Here, we demonstrate that DFF directly binds to DNA in vitro without promoting DNA cleavage. DNA binding by DFF is mediated by the nuclease subunit, which can also form stable DNA complexes after release from DFF. Recombinant and reconstituted DFF is catalytically inactive yet proficient in DNA binding, demonstrating that the nuclease subunit in DFF is inhibited in DNA cleavage but not in DNA binding, revealing an unprecedented mode of nuclease inhibition. Activation of DFF in the presence of naked DNA or isolated nuclei stimulates DNA degradation by released DFF40 (CAD). In transfected HeLa cells transiently expressed DFF associates with chromatin, suggesting that DFF could be activated during apoptosis in a DNA-bound state.
Collapse
Affiliation(s)
- Christian Korn
- Institute of Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Schäfer P, Scholz SR, Gimadutdinow O, Cymerman IA, Bujnicki JM, Ruiz-Carrillo A, Pingoud A, Meiss G. Structural and functional characterization of mitochondrial EndoG, a sugar non-specific nuclease which plays an important role during apoptosis. J Mol Biol 2004; 338:217-28. [PMID: 15066427 DOI: 10.1016/j.jmb.2004.02.069] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/11/2004] [Accepted: 02/24/2004] [Indexed: 11/26/2022]
Abstract
Combining sequence analysis, structure prediction, and site-directed mutagenesis, we have investigated the mechanism of catalysis and substrate binding by the apoptotic mitochondrial nuclease EndoG, which belongs to the large family of DNA/RNA non-specific betabetaalpha-Me-finger nucleases. Catalysis of phosphodiester bond cleavage involves several highly conserved amino acid residues, namely His143, Asn174, and Glu182 required for water activation and metal ion binding, as well as Arg141 required for proper substrate binding and positioning, respectively. These results indicate that EndoG basically follows a similar mechanism as the Serratia nuclease, the best studied representative of the family of DNA/RNA non-specific nucleases, but that differences are observed for transition state stabilisation. In addition, we have identified two putative DNA/RNA binding residues of bovine EndoG, Arg135 and Arg186, strictly conserved only among mammalian members of the nuclease family, suggesting a similar mode of binding to single and double-stranded nucleic acid substrates by these enzymes. Finally, we demonstrate by ectopic expression of active and inactive variants of bovine EndoG in HeLa and CV1-cells that extramitochondrial active EndoG by itself induces cell death, whereas expression of an enzymatically inactive variant does not.
Collapse
Affiliation(s)
- Patrick Schäfer
- Institute of Biochemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Woo EJ, Kim YG, Kim MS, Han WD, Shin S, Robinson H, Park SY, Oh BH. Structural Mechanism for Inactivation and Activation of CAD/DFF40 in the Apoptotic Pathway. Mol Cell 2004; 14:531-9. [PMID: 15149602 DOI: 10.1016/s1097-2765(04)00258-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/01/2004] [Accepted: 03/24/2004] [Indexed: 01/30/2023]
Abstract
CAD/DFF40 is responsible for the degradation of chromosomal DNA into nucleosomal fragments and subsequent chromatin condensation during apoptosis. It exists as an inactive complex with its inhibitor ICAD/DFF45 in proliferating cells but becomes activated upon cleavage of ICAD/DFF45 into three domains by caspases in dying cells. The molecular mechanism underlying the control and activation of CAD/DFF40 was unknown. Here, the crystal structure of activated CAD/DFF40 reveals that it is a pair of molecular scissors with a deep active-site crevice that appears ideal for distinguishing internucleosomal DNA from nucleosomal DNA. Ensuing studies show that ICAD/DFF45 sequesters the nonfunctional CAD/DFF40 monomer and is also able to disassemble the functional CAD/DFF40 dimer. This capacity requires the involvement of the middle domain of ICAD/DFF45, which by itself cannot remain bound to CAD/DFF40 due to low binding affinity for the enzyme. Thus, the consequence of the caspase-cleavage of ICAD/DFF45 is a self-assembly of CAD/DFF40 into the active dimer.
Collapse
Affiliation(s)
- Eui-Jeon Woo
- Division of Molecular and Life Sciences, Department of Life Sciences and Center for Biomolecular Recognition, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Meurisse R, Brasseur R, Thomas A. Aromatic side-chain interactions in proteins: Near- and far-sequence Tyr-X pairs. Proteins 2003; 54:478-90. [PMID: 14747996 DOI: 10.1002/prot.10582] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, an extensive analysis of the aromatic Tyr-X interactions is performed on a data set of 593 PDB structures, X being Phe, His, Tyr, and Trp. The nonredundant Tyr-X pairs (2645) were retained and separated by both the residue distance in the sequence and the secondary structures they bridge. Similar to the Phe-X and His-X pairs, the far-sequence Tyr-X pairs (X partner > five apart in the sequence: 74%) show comparable secondary structures and conformers for either type of X partner, in contrast with the near-sequence Tyr-X pairs (26%). As the Phe-X pairs, the near-sequence Tyr-X pairs stabilize secondary structures, mainly the alpha- helices (positions 1, 3, and 4) and the beta-strands (position 2). Like the Phe-X and His-X pairs, most far-sequence Tyr-X pairs (34%) bridge beta-strands and only 11% bridge helices. As for the Phe-X and the His-X pairs, the X partners of the far-sequence Tyr-X pairs are frequently "above" the tyrosine ring with tilted and normal rings, whereas the X partner of the near-sequence Tyr-X pairs gradually moves from the "aside" to the "above" location, together with a progressive decrease of normal and increase of parallel rings, respectively. Unlike the His-X pairs, the interactions of the hetroatom in Tyr-X pairs are only favored with a sequence position +4 and over, owing to the spatial accessibility of the heteroatom.
Collapse
Affiliation(s)
- Rita Meurisse
- Centre de Biophysique Moléculaire Numérique, Faculté Scientifique Agronomique de Gembloux, Gembloux, Belgium.
| | | | | |
Collapse
|
18
|
Widlak P, Lanuszewska J, Cary RB, Garrard WT. Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis. J Biol Chem 2003; 278:26915-22. [PMID: 12748178 DOI: 10.1074/jbc.m303807200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA fragmentation factor (DFF) is one of the major endonucleases responsible for internucleosomal DNA cleavage during apoptosis. Understanding the regulatory checkpoints involved in safeguarding non-apoptotic cells against accidental activation of this nuclease is as important as elucidating its activation mechanisms during apoptosis. Here we address these issues by determining DFF native subunit structures and stoichiometries in human cells before and after induction of apoptosis using the technique of native pore-exclusion limit electrophoresis in combination with Western analyses. For comparison, we employed similar techniques with recombinant proteins in conjunction with atomic force microscopy. Before induction of apoptosis, the expression of DFF subunits varied widely among the cell types studied, and the chaperone/inhibitor subunits DFF45 and DFF35 unexpectedly existed primarily as monomers in vast excess of the latent nuclease subunit, DFF40, which was stoichiometrically associated with DFF45 to form heterodimers. DFF35 was exclusively cytoplasmic as a monomer. Nuclease activation upon caspase-3 cleavage of DFF45/DFF35 was accompanied by DFF40 homo-oligomer formation, with a tetramer being the smallest unit. Interestingly, intact DFF45 can inhibit nuclease activity by associating with these homo-oligomers without mediating their disassembly. We conclude that DFF nuclease is regulated by multiple pre- and post-activation fail-safe steps.
Collapse
Affiliation(s)
- Piotr Widlak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
19
|
Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ 2003; 10:108-16. [PMID: 12655299 DOI: 10.1038/sj.cdd.4401161] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is often accompanied by degradation of chromosomal DNA. CAD, caspase-activated DNase, was identified in 1998 as a DNase that is responsible for this process. In the last several years, mice deficient in the CAD system have been generated. Studies with these mice indicated that apoptotic DNA degradation occurs in two different systems. In one, the DNA fragmentation is carried out by CAD in the dying cells and in the other, by lysosomal DNase II after the dying cells are phagocytosed. Several other endonucleases have also been suggested as candidate effectors for the apoptotic degradation of chromosomal DNA. In this review, we will discuss the mechanism and role of DNA degradation during apoptosis.
Collapse
Affiliation(s)
- S Nagata
- Integrated Biology Laboratories, Graduate School of Frontier Science, Japan Science and Technology Corperation, Suita, Osaka.
| | | | | | | | | |
Collapse
|
20
|
Scholz SR, Korn C, Gimadutdinow O, Knoblauch M, Pingoud A, Meiss G. The effect of ICAD-S on the formation and intracellular distribution of a nucleolytically active caspase-activated DNase. Nucleic Acids Res 2002; 30:3045-51. [PMID: 12136086 PMCID: PMC135751 DOI: 10.1093/nar/gkf431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show here that co-expression of murine CAD with either ICAD-L or ICAD-S in Escherichia coli as well as mammalian cells leads to a functional DFF complex, which after caspase-3 activation releases a nucleolytically active DNase. The chaperone activity of ICAD-S is between one and two orders of magnitude less effective than that of ICAD-L, as deduced from cleavage experiments with different activated recombinant DFF complexes produced in E.coli. With nucleolytically active EGFP fusion proteins of CAD it is demonstrated that co-expression of ICAD-S, which lacks the C-terminal domain of ICAD-L, including the NLS, leads to a homogeneous intracellular distribution of the DNase in transfected cells, whereas co-expression of human or murine ICAD-L variants lacking the NLS leads to exclusion of EGFP-CAD from the nuclei in approximately 50% of cells. These results attribute a particular importance of the NLS in the long isoform of the inhibitor of CAD for nuclear accumulation of the DFF complex in living cells. It is concluded that ICAD-L and ICAD-S in vivo might function as tissue-specific modulators in the regulation of apoptotic DNA degradation by controlling not only the enzymatic activity but also the amount of CAD available in the nuclei of mammalian cells.
Collapse
Affiliation(s)
- Sebastian Richard Scholz
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|