1
|
Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat Commun 2023; 14:1428. [PMID: 36918573 PMCID: PMC10014959 DOI: 10.1038/s41467-023-37026-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Teleost fishes exhibit complex sexual characteristics in response to androgens, such as fin enlargement and courtship display. However, the molecular mechanisms underlying their evolutionary acquisition remain largely unknown. To address this question, we analyse medaka (Oryzias latipes) mutants deficient in teleost-specific androgen receptor ohnologs (ara and arb). We discovered that neither ar ohnolog was required for spermatogenesis, whilst they appear to be functionally redundant for the courtship display in males. However, both were required for reproductive success: ara for tooth enlargement and the reproductive behaviour eliciting female receptivity, arb for male-specific fin morphogenesis and sexual motivation. We further showed that differences between the two ar ohnologs in their transcription, cellular localisation of their encoded proteins, and their downstream genetic programmes could be responsible for the phenotypic diversity between the ara and arb mutants. These findings suggest that the ar ohnologs have diverged in two ways: first, through the loss of their roles in spermatogenesis and second, through gene duplication followed by functional differentiation that has likely resolved the pleiotropic roles derived from their ancestral gene. Thus, our results provide insights into how genome duplication impacts the massive diversification of sexual characteristics in the teleost lineage.
Collapse
|
2
|
Translocator Protein 18 kDa (TSPO) as a Novel Therapeutic Target for Chronic Pain. Neural Plast 2022; 2022:8057854. [PMID: 36071748 PMCID: PMC9444456 DOI: 10.1155/2022/8057854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is an enormous modern public health problem, with significant numbers of people debilitated by chronic pain from a variety of etiologies. Translocator protein 18 kDa (TSPO) was discovered in 1977 as a peripheral benzodiazepine receptor. It is a five transmembrane domain protein, mainly localized in the outer mitochondrial membrane. Recent and increasing studies have found changes in TSPO and its ligands in various chronic pain models. Reversing their expressions has been shown to alleviate chronic pain in these models, illustrating the effects of TSPO and its ligands. Herein, we review recent evidence and the mechanisms of TSPO in the development of chronic pain associated with peripheral nerve injury, spinal cord injury, cancer, and inflammatory responses. The cumulative evidence indicates that TSPO-based therapy may become an alternative strategy for treating chronic pain.
Collapse
|
3
|
Robitaille J, Langlois VS. Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. Gen Comp Endocrinol 2020; 290:113400. [PMID: 31981690 DOI: 10.1016/j.ygcen.2020.113400] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/16/2023]
Abstract
In 1974, a lack of 5α-dihydrotestosterone (5α-DHT), the most potent androgen across species except for fish, was shown to be the origin of a type of pseudohermaphrodism in which boys have female-like external genitalia. This human intersex condition is linked to a mutation in the steroid-5α-reductase type 2 (SRD5α2) gene, which usually produces an important enzyme capable of reducing the Δ4-ene of steroid C-19 and C-21 into a 5α-stereoisomer. Seeing the potential of SRD5α2 as a target for androgen synthesis, pharmaceutical companies developed 5α-reductase inhibitors (5ARIs), such as finasteride (FIN) and dutasteride (DUT) to target SRD5α2 in benign prostatic hyperplasia and androgenic alopecia. In addition to human treatment, the development of 5ARIs also enabled further research of SRD5α functions. Therefore, this review details the morphological, physiological, and molecular effects of the lack of SRD5α activity induced by both SRD5α mutations and inhibitor exposures across species. More specifically, data highlights 1) the role of 5α-DHT in the development of male secondary sexual organs in vertebrates and sex determination in non-mammalian vertebrates, 2) the role of SRD5α1 in the synthesis of the neurosteroid allopregnanolone (ALLO) and 5α-androstane-3α,17β-diol (3α-diol), which are involved in anxiety and sexual behavior, respectively, and 3) the role of SRD5α3 in N-glycosylation. This review also features the lesser known functions of SRD5αs in steroid degradation in the uterus during pregnancy and glucocorticoid clearance in the liver. Additionally, the review describes the regulation of SRD5αs by the receptors of androgens, progesterone, estrogen, and thyroid hormones, as well as their differential DNA methylation. Factors known to be involved in their differential methylation are age, inflammation, and mental stimulation. Overall, this review helps shed light on the various essential functions of SRD5αs across species.
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
4
|
González SL, Meyer L, Raggio MC, Taleb O, Coronel MF, Patte-Mensah C, Mensah-Nyagan AG. Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective. Cell Mol Neurobiol 2019; 39:523-537. [PMID: 30187261 PMCID: PMC11469882 DOI: 10.1007/s10571-018-0618-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease. Because the characterization of new related molecules with improved specificity and enhanced pharmacological profiles may represent a crucial step to develop more efficient steroid-based therapies, we have also discussed the potential of novel synthetic analogs of allopregnanolone as valuable molecules for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Susana Laura González
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - María Celeste Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - María Florencia Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - Ayikoe Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France.
| |
Collapse
|
5
|
Abi Ghanem C, Degerny C, Hussain R, Liere P, Pianos A, Tourpin S, Habert R, Macklin WB, Schumacher M, Ghoumari AM. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor. PLoS Genet 2017; 13:e1007049. [PMID: 29107990 PMCID: PMC5690690 DOI: 10.1371/journal.pgen.1007049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/16/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. Sex differences in brain structure are of great scientific and medical interest because the incidence and progress of many neurological and psychiatric disorders differ between males and females. They affect neural networks and also the myelin sheaths that insulate and protect axons and thus allow the rapid conduction of electrical impulses. In the central nervous system, myelin is formed by a particular type of cells named oligodendrocytes. In the male mouse brain, the density of oligodendrocytes is greater and myelin sheaths are thicker when compared with females. We show that these sex differences in myelin result from the long-lasting actions of androgens in males during their first 10 postnatal days. Importantly, the postnatal masculinizing effects of androgens involve brain androgen receptors as shown by the use of pharmacological and genetic tools. These findings are important for understanding sex-related differences in the susceptibility and progression of demyelinating diseases such as multiple sclerosis. They also reveal a so far unknown role of androgen receptor signaling in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Charly Abi Ghanem
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Cindy Degerny
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Rashad Hussain
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- Department of Neurosurgery, Institute for Translational Neuromedicine, University of Rochester, Rochester, NY, United States of America
| | - Philippe Liere
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Sophie Tourpin
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - René Habert
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO, United States of America
| | - Michael Schumacher
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| | - Abdel M. Ghoumari
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| |
Collapse
|
6
|
Coronel MF, Sánchez Granel ML, Raggio MC, Adler NS, De Nicola AF, Labombarda F, González SL. Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme 5α-reductase in the dorsal spinal cord of animals with neuropathic pain: Effects of progesterone administration. Neurosci Lett 2016; 624:23-8. [DOI: 10.1016/j.neulet.2016.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/20/2016] [Accepted: 04/30/2016] [Indexed: 02/07/2023]
|
7
|
Suzuki H, Suzuki K, Yamada G. Systematic analyses of murine masculinization processes based on genital sex differentiation parameters. Dev Growth Differ 2015; 57:639-47. [DOI: 10.1111/dgd.12247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroko Suzuki
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; 811-1 Kimiidera Wakayama 641-8509 Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; 811-1 Kimiidera Wakayama 641-8509 Japan
| | - Gen Yamada
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; 811-1 Kimiidera Wakayama 641-8509 Japan
| |
Collapse
|
8
|
Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Mol Biol Evol 2015; 33:228-44. [PMID: 26507457 DOI: 10.1093/molbev/msv218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Steroid hormone receptor family provides an example of evolution of diverse transcription factors through whole-genome duplication (WGD). However, little is known about how their functions have been evolved after the duplication. Teleosts present a good model to investigate an accurate evolutionary history of protein function after WGD, because a teleost-specific WGD (TSGD) resulted in a variety of duplicated genes in modern fishes. This study focused on the evolution of androgen receptor (AR) gene, as two distinct paralogs, ARα and ARβ, have evolved in teleost lineage after TSGD. ARα showed a unique intracellular localization with a higher transactivation response than that of ARβ. Using site-directed mutagenesis and computational prediction of protein-ligand interactions, we identified two key substitutions generating a new functionality of euteleost ARα. The substitution in the hinge region contributes to the unique intracellular localization of ARα. The substitution on helices 10/11 in the ligand-binding domain possibly modulates hydrogen bonds that stabilize the receptor-ligand complex leading to the higher transactivation response of ARα. These substitutions were conserved in Acanthomorpha (spiny-rayed fish) ARαs, but not in an earlier branching lineage among teleosts, Japanese eel. Insertion of these substitutions into ARs from Japanese eel recapitulates the evolutionary novelty of euteleost ARα. These findings together indicate that the substitutions generating a new functionality of teleost ARα were fixed in teleost genome after the divergence of the Elopomorpha lineage. Our findings provide a molecular explanation for an adaptation process leading to generation of the hyperactive AR subtype after TSGD.
Collapse
Affiliation(s)
- Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Hiroshi Ishibashi
- Department of Life Environmental Conservation, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Hitoshi Miyakawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Eri Sumiya
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
9
|
Transcript variability and physiological correlates in the fathead minnow ovary: Implications for sample size, and experimental power. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:22-30. [DOI: 10.1016/j.cbpb.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/23/2022]
|
10
|
Miyagawa S, Yatsu R, Kohno S, Doheny BM, Ogino Y, Ishibashi H, Katsu Y, Ohta Y, Guillette LJ, Iguchi T. Identification and Characterization of the Androgen Receptor From the American Alligator, Alligator mississippiensis. Endocrinology 2015; 156:2795-806. [PMID: 25974402 PMCID: PMC4511131 DOI: 10.1210/en.2015-1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens are essential for the development, reproduction, and health throughout the life span of vertebrates, particularly during the initiation and maintenance of male sexual characteristics. Androgen signaling is mediated by the androgen receptor (AR), a member of the steroid nuclear receptor superfamily. Mounting evidence suggests that environmental factors, such as exogenous hormones or contaminants that mimic hormones, can disrupt endocrine signaling and function. The American alligator (Alligator mississippiensis), a unique model for ecological research in that it exhibits environment-dependent sex determination, is oviparous and long lived. Alligators from a contaminated environment exhibit low reproductive success and morphological disorders of the testis and phallus in neonates and juveniles, both associated with androgen signaling; thus, the alterations are hypothesized to be related to disrupted androgen signaling. However, this line of research has been limited because of a lack of information on the alligator AR gene. Here, we isolated A mississippiensis AR homologs (AmAR) and evaluated receptor-hormone/chemical interactions using a transactivation assay. We showed that AmAR responded to all natural androgens and their effects were inhibited by cotreatment with antiandrogens, such as flutamide, p,p'-dichlorodiphenyldichloroethylene, and vinclozolin. Intriguingly, we found a spliced form of the AR from alligator cDNA, which lacks seven amino acids within the ligand-binding domain that shows no response to androgens. Finally, we have initial data on a possible dominant-negative function of the spliced form of the AR against androgen-induced AmAR.
Collapse
Affiliation(s)
- Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Ryohei Yatsu
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Satomi Kohno
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Brenna M Doheny
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Hiroshi Ishibashi
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Yoshinao Katsu
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Yasuhiko Ohta
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Louis J Guillette
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience (S.M., R.Y., Y.Og., T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Department of Obstetrics and Gynecology (S.K., B.M.D., L.J.G.), Medical University of South Carolina and Hollings Marine Laboratory, Charleston, South Carolina 29412; Department of Life Environmental Conservation (H.I.), Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan; Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo 060-0810, Japan; and Department of Veterinary Medicine (Y.Oh.), Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8553, Japan
| |
Collapse
|
11
|
Bain PA, Ogino Y, Miyagawa S, Iguchi T, Kumar A. Differential ligand selectivity of androgen receptors α and β from Murray-Darling rainbowfish (Melanotaenia fluviatilis). Gen Comp Endocrinol 2015; 212:84-91. [PMID: 25644213 DOI: 10.1016/j.ygcen.2015.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 01/24/2015] [Indexed: 11/16/2022]
Abstract
Androgen receptors (ARs) mediate the physiological effects of androgens in vertebrates. In fishes, AR-mediated pathways can be modulated by aquatic contaminants, resulting in the masculinisation of female fish or diminished secondary sex characteristics in males. The Murray-Darling rainbowfish (Melanotaenia fluviatilis) is a small-bodied freshwater teleost used in Australia as a test species for environmental toxicology research. We determined concentration-response profiles for selected agonists and antagonists of rainbowfish ARα and ARβ using transient transactivation assays. For both ARα and ARβ, the order of potency of natural agonists was 11-ketotestosterone (11-KT)>5α-dihydrotestosterone>testosterone>androstenedione. Methyltestosterone was a highly potent agonist of both receptors relative to 11-KT. The relative potency of the veterinary growth-promoting androgen, 17β-trenbolone, varied by more than a factor of 5 between ARα and ARβ. The non-steroidal anti-androgen bicalutamide exhibited high inhibitory potency relative to the structurally related model anti-androgen, flutamide. The inhibitory potency of the agricultural fungicide, vinclozolin, was approximately 1.7-fold relative to flutamide for ARα, but over 20-fold in the case of ARβ. Fluorescent protein tagging of ARs showed that the rainbowfish ARα subtype is constitutively localised to the nucleus, while ARβ is cytoplasmic in the absence of ligand, an observation which agrees with the reported subcellular localisation of AR subtypes from other teleost species. Collectively, these data suggest that M. fluviatilis ARα and ARβ respond differently to environmental AR modulators and that in vivo sensitivity to contaminants may depend on the tissue distribution of the AR subtypes at the time of exposure.
Collapse
Affiliation(s)
- Peter A Bain
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia.
| | - Yukiko Ogino
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Shinichi Miyagawa
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Taisen Iguchi
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Anupama Kumar
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
12
|
Effects of different ethanol-administration regimes on mRNA and protein levels of steroid 5α-reductase isozymes in prefrontal cortex of adolescent male rats. Psychopharmacology (Berl) 2014; 231:3273-80. [PMID: 24714925 DOI: 10.1007/s00213-014-3558-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Underage drinking is a leading public health problem in developed countries. An increasing proportion of adolescents consume alcoholic beverages every weekend. Increased anxiety, irritability, and depression among adolescents may induce them to seek for the anxiolytic and rewarding properties of alcohol. Allopregnanolone (AlloP) shares rewarding effects of ethanol and modulates ethanol intake. The rate-limiting enzyme in the biosynthesis of AlloP is steroid 5α-reductase (5α-R), which is expressed as three isozymes, 5α-R1, 5α-R2, and 5α-R3. OBJECTIVE The objective of this study was to quantify the expression levels of 5α-R isozymes in prefrontal cortex (PFC) of adolescent male rats after three different regimes of ethanol administration. METHODS Adolescent male Wistar rats were administered with ethanol (4 g/kg) or saline intraperitoneally for 1 day (acute), for 7 days (chronic), or every 72 h for 14 days (chronic intermittent). Messenger (m)RNA and protein levels of 5α-R isozymes were measured by quantitative RT-PCR and Western blot, respectively. RESULTS Ethanol significantly increased mRNA and protein levels of 5α-R1, 5α-R2, and 5α-R3 in the three different regimes of ethanol administration, being higher in the chronic intermittent regime in comparison with the others. CONCLUSIONS The expression of the AlloP-biosynthetic enzyme 5α-Rs increases in the prefrontal cortex of adolescent male rats under acute, chronic, and chronic intermittent regime of ethanol administration. The latter is very interesting because it mimics the teenage drinking behavior.
Collapse
|
13
|
Allopregnanolone as a mediator of affective switching in reproductive mood disorders. Psychopharmacology (Berl) 2014; 231:3557-67. [PMID: 24846476 PMCID: PMC4135022 DOI: 10.1007/s00213-014-3599-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/14/2014] [Indexed: 01/15/2023]
Abstract
RATIONALE Reproductive mood disorders, including premenstrual dysphoria (PMD) and postpartum depression (PPD), are characterized by affective dysregulation that occurs during specific reproductive states. The occurrence of illness onset during changes in reproductive endocrine function has generated interest in the role of gonadal steroids in the pathophysiology of reproductive mood disorders, yet the mechanisms by which the changing hormone milieu triggers depression in susceptible women remain poorly understood. OBJECTIVES This review focuses on one of the neurosteroid metabolites of progesterone - allopregnanolone (ALLO) - that acutely regulates neuronal function and may mediate affective dysregulation that occurs concomitant with changes in reproductive endocrine function. We describe the role of the "neuroactive" steroids estradiol and progesterone in reproductive endocrine-related mood disorders to highlight the potential mechanisms by which ALLO might contribute to their pathophysiology. Finally, using existing data, we test the hypothesis that changes in ALLO levels may trigger affective dysregulation in susceptible women. RESULTS Although there is no reliable evidence that basal ALLO levels distinguish those with PMD or PPD from those without, existing animal models suggest potential mechanisms by which specific reproductive states may unmask susceptibility to affective dysregulation. Consistent with these models, initially euthymic women with PMD and those with a history of PPD show a negative association between depressive symptoms and circulating ALLO levels following progesterone administration. CONCLUSIONS Existing animal models and our own preliminary data suggest that ALLO may play an important role in the pathophysiology of reproductive mood disorders by triggering affective dysregulation in susceptible women.
Collapse
|
14
|
Koonce CJ, Frye CA. Female mice with deletion of Type One 5α-reductase have reduced reproductive responding during proestrus and after hormone-priming. Pharmacol Biochem Behav 2014; 122:20-9. [PMID: 24650589 DOI: 10.1016/j.pbb.2014.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/24/2022]
Abstract
The capacity to form progesterone (P₄)'s 5α-reduced metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP; a.k.a. allopregnanolone), in the brain may be related to facilitation of lordosis among estrogen-primed (E₂) mice. We investigated this idea further by comparing effects of endogenous and exogenous progestogens in mice that are deficient in the Type One 5α-reductase enzyme (5α-reductase knockout mice; 5α-RKO), and their wildtype counterparts for sexual behavior. Comparisons were made following administration of progestogens that are expected to increase 3α,5α-THP or not. Sexual receptivity of 5α-RKO mice and their wildtype counterparts was examined when mice were naturally-cycling (Experiment 1); ovariectomized (OVX), E₂-primed (10 μg, subcutaneous; SC) and administered P₄ (0, 125, 250, or 500 μg SC; Experiment 2); and OVX, E₂-primed and administered P₄, medroxyprogesterone acetate (MPA, 4 mg/kg, SC, which does not convert to 3α,5α-THP) or 3α,5α-THP (4 mg/kg, SC; Experiment 3). The percentage of mounts that elicited lordosis (lordosis quotient) or aggression/rejection behavior (aggression quotient), as well as the quality of lordosis (lordosis rating), was scored. Wildtype, but not 5α-RKO, mice in behavioral estrus demonstrated significantly greater lordosis quotients and lordosis ratings, but similar aggression quotients, compared to their diestrous counterparts. Among OVX and E₂-primed mice, P₄ facilitated lordosis of wildtype, but not 5α-RKO, mice. MPA neither facilitated lordosis of wildtype, nor 5α-RKO mice. 3α,5α-THP administered to wildtype or 5α-RKO mice increased lordosis quotients and lordosis ratings and decreased aggression quotients. 3α,5α-THP levels in the midbrain, one brain region important for sexual behavior, were increased during behavioral estrus, with P4 administered to WT, but not 5α-RKO mice, and 3α,5α-THP administered to WT and 5α-RKO mice. MPA did not increase 3α,5α-THP. Thus, deletion of Type One 5α-reductase among female mice may attenuate reproductive responding during the estrous cycle and after hormone-priming.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Department of Psychology, University at Albany-SUNY, Albany, NY, United States; Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, United States; IDeA Network of Biomedical Excellence (INBRE), University of Alaska-Fairbanks, Fairbanks, AK, United States
| | - Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, Albany, NY, United States; Department of Biological Sciences, University at Albany-SUNY, Albany, NY, United States; The Centers for Neuroscience and Life Sciences Research, University at Albany-SUNY, Albany, NY, United States; Department of Chemistry & Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK, United States; Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, United States; IDeA Network of Biomedical Excellence (INBRE), University of Alaska-Fairbanks, Fairbanks, AK, United States.
| |
Collapse
|
15
|
Keil KP, Abler LL, Mehta V, Altmann HM, Laporta J, Plisch EH, Suresh M, Hernandez LL, Vezina CM. DNA methylation of E-cadherin is a priming mechanism for prostate development. Dev Biol 2014; 387:142-53. [PMID: 24503032 DOI: 10.1016/j.ydbio.2014.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/20/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022]
Abstract
In prostate and other epithelial cancers, E-cadherin (CDH1) is downregulated inappropriately by DNA methylation to promote an invasive phenotype. Though cancer frequently involves a reawakening of developmental signaling pathways, whether DNA methylation of Cdh1 occurs during organogenesis has not been determined. Here we show that DNA methylation of Cdh1 mediates outgrowth of developing prostate ducts. During the three-day gestational window leading up to and including prostate ductal initiation, Cdh1 promoter methylation increases and its mRNA and protein abundance decreases in epithelium giving rise to prostatic buds. DNA methylation is required for prostate specification, ductal outgrowth, and branching morphogenesis. All three endpoints are impaired by a DNA methylation inhibitor, which also decreases Cdh1 promoter methylation and increases Cdh1 mRNA and protein abundance. A CDH1 function-blocking antibody restores prostatic identity, bud outgrowth, and potentiates epithelial differentiation in the presence of the DNA methylation inhibitor. This is the first study to mechanistically link acquired changes in DNA methylation to the normal process of prostate organogenesis. We propose a novel mechanism whereby Cdh1 promoter methylation restricts Cdh1 abundance in developing prostate epithelium to create a permissive environment for prostatic bud outgrowth. Thus, DNA methylation primes the prostate primordium to respond to developmental cues mediating outgrowth, differentiation and maturation of the ductal network.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Lisa L Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Vatsal Mehta
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Helene M Altmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Jimena Laporta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erin H Plisch
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Gao G, Ze Y, Zhao X, Sang X, Zheng L, Ze X, Gui S, Sheng L, Sun Q, Hong J, Yu X, Wang L, Hong F, Zhang X. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. JOURNAL OF HAZARDOUS MATERIALS 2013; 258-259:133-43. [PMID: 23721730 DOI: 10.1016/j.jhazmat.2013.04.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/21/2013] [Accepted: 04/27/2013] [Indexed: 05/04/2023]
Abstract
Although titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to accumulate in organs resulting in toxicity, there is currently only limited data regarding male reproductive toxicity by TiO2 NPs. In this study, testicular damage and alterations in gene expression profiles in male mice induced by intragastric administration of 2.5, 5, and 10mg/kg body weight of TiO2 NPs for 90 consecutive days were examined. Our findings showed that TiO2 NPs can cross the blood-testis barrier to reach the testis and accumulate therein, which, in turn, results in testicular lesions, sperm malformations, and alterations in serum sex hormone levels. Furthermore, microarray analysis showed that 70 genes with known functions were up-regulated, while 72 were down-regulated in TiO2 NPs-exposed testes. Of the altered gene expressions, Ly6e, Adam3, Tdrd6, Spata19, Tnp2, and Prm1 are involved in spermatogenesis, whereas Sc4mol, Psmc3ip, Mvd, Srd5a2, Lep, and Cyp2e1 are associated with steroid and hormone metabolism. Hence, the production and application of TiO2 NPs should be carried out cautiously, especially by humans of reproductive age.
Collapse
Affiliation(s)
- Guodong Gao
- Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Keil KP, Altmann HM, Mehta V, Abler LL, Elton EA, Vezina CM. Catalog of mRNA expression patterns for DNA methylating and demethylating genes in developing mouse lower urinary tract. Gene Expr Patterns 2013; 13:413-24. [PMID: 23920106 DOI: 10.1016/j.gep.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/07/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltransferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
18
|
McNamara KM, Nakamura Y, Sasano H, Handelsman DJ, Simanainen U. Prostate epithelial AR inactivation leads to increased intraprostatic androgen synthesis. Prostate 2013; 73:316-27. [PMID: 22976924 DOI: 10.1002/pros.22570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/10/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Regulation of steroid synthesis within the prostate is not well understood. In this study, we examined androgen synthesis and metabolism in the mouse prostate. METHODS Using LC-MSMS steroid assays, immunohistochemistry and real-time PCR we examined the role of prostate epithelial AR in regulating 5αR expression and subsequent androgen metabolism by analyzing natural differences in epithelial AR expression between lobes as well as in the prostate epithelial AR knockout (PEARKO) mouse model. Subsequently, the role of intraprostatic androgen metabolism and epithelial AR in the generation and progression of prostate epithelial pathology was examined using long-term exogenous testosterone (T) + estradiol (E2) exposure. RESULTS Epithelial AR and 5αR2 expression as well as intraprostatic DHT followed the same lobe-specific pattern being lower in anterior than the other lobes (n = 6-8, P < 0.05). Lobe-specific 5αR2 expression was similar in PEARKO and wild-type (WT) prostate. However, PEARKO prostate had higher intraprostatic DHT content with significantly increased 5αR2 expression localized in abnormal epithelium. T + E2 treatment induced epithelial pathology was more common in PEARKO prostate compared to WT (20% vs. 2%), and was associated with increased 5αR2 expression (n = 6, P < 0.001). CONCLUSIONS We suggest that androgen synthesis via 5αR2 expression is driven by its own product (DHT) acting on adjacent stromal cells in a paracrine loop leading to increased in situ androgen levels in the PEARKO prostate. This may form part of a feed-forward loop that promotes the development of epithelial pathology.
Collapse
Affiliation(s)
- Keely M McNamara
- Andrology, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
19
|
Sánchez P, Torres JM, Castro B, Del Moral RG, de Dios Luna J, Ortega E. Steroid 5α-reductase in adult rat brain after neonatal dihydrotestosterone administration. Neurochem Res 2012; 38:557-63. [PMID: 23229791 DOI: 10.1007/s11064-012-0948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/22/2012] [Accepted: 12/01/2012] [Indexed: 11/29/2022]
Abstract
Testosterone (T) is known to play an important masculinizing role in the developing brain of rat, including the regulation of 5α-reductase (5α-R) isozymes. However, the effects of dihydrotesterone (DHT), a more potent androgen than T, have not been elucidated. In this study, DHT was administered from day 5 through day 20 of postnatal life (period of postnatal sexual differentiation of the central nervous system) at doses of: 12 mg/kg/d on days 5, 6, 7, 8, 19, and 20; 15 mg/kg/d on days 9, 10, 11, 12, 16, 17, and 18; and 18 mg/kg/d on days 13, 14, and 15. In adulthood, quantitative RT-PCR was used to measure mRNA levels of 5α-R1 and 5α-R2 isozymes in the prefrontal cortex (PFC) of male and female rats with varied androgenic status. Under our study conditions, neonatal DHT administration influenced on adult PFC 5α-R isozymes levels and their regulation pattern by androgens, and this pattern was the inverse of that reported in adult neonatally T-treated rats.
Collapse
Affiliation(s)
- P Sánchez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Granada, Avda. de Madrid s/n, 18012, Granada, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Keil KP, Mehta V, Branam AM, Abler LL, Buresh-Stiemke RA, Joshi PS, Schmitz CT, Marker PC, Vezina CM. Wnt inhibitory factor 1 (Wif1) is regulated by androgens and enhances androgen-dependent prostate development. Endocrinology 2012; 153:6091-103. [PMID: 23087175 PMCID: PMC3512059 DOI: 10.1210/en.2012-1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal prostate development from urogenital sinus (UGS) epithelium requires androgen receptor (AR) activation in UGS mesenchyme (UGM). Despite growing awareness of sexually dimorphic gene expression in the UGS, we are still limited in our knowledge of androgen-responsive genes in UGM that initiate prostate ductal development. We found that WNT inhibitory factor 1 (Wif1) mRNA is more abundant in male vs. female mouse UGM in which its expression temporally and spatially overlaps androgen-responsive steroid 5α-reductase 2 (Srd5a2). Wif1 mRNA is also present in prostatic buds during their elongation and branching morphogenesis. Androgens are necessary and sufficient for Wif1 expression in mouse UGS explant mesenchyme, and testicular androgens remain necessary for normal Wif1 expression in adult mouse prostate stroma. WIF1 contributes functionally to prostatic bud formation. In the presence of androgens, exogenous WIF1 protein increases prostatic bud number and UGS basal epithelial cell proliferation without noticeably altering the pattern of WNT/β-catenin-responsive Axin2 or lymphoid enhancer binding factor 1 (Lef1) mRNA. Wif1 mutant male UGSs exhibit increased (Sfrp)2 and (Sfrp)3 expression and form the same number of prostatic buds as the wild-type control males. Collectively our results reveal Wif1 as one of the few known androgen-responsive genes in the fetal mouse UGM and support the hypothesis that androgen-dependent Wif1 expression is linked to the mechanism of androgen-induced prostatic bud formation.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McNamara KM, Handelsman DJ, Simanainen U. The mouse as a model to investigate sex steroid metabolism in the normal and pathological prostate. J Steroid Biochem Mol Biol 2012; 131:107-21. [PMID: 22146616 DOI: 10.1016/j.jsbmb.2011.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/29/2022]
Abstract
Metabolism of sex steroids within the prostate is an important factor affecting its growth and pathology. Mouse models with genetic gain- and especially loss-of-function have characterised different steroid metabolic pathways and their contribution to prostate pathology. With reference to the human prostate, this review aims to summarize the steroidogenic pathways in the mouse prostate as the basis for using the mouse as a model for intraprostatic steroid signalling. In this review we summarize the current information for three main components of the steroid signalling pathway in the mouse prostate: circulating steroids, steroid receptors and steroidogenic enzymes with regard to signalling via androgen, estrogen, progesterone and glucocorticoid pathways. This review reveals many opportunities for characterisation steroid metabolism in various mouse models. The knowledge of steroid metabolism within prostate tissue and in a lobe (rodent)/region (human) specific manner, will give valuable information for future, novel hypotheses of intraprostatic control of steroid actions. This review summarizes knowledge of steroid metabolism in the mouse prostate and its relevance to the human.
Collapse
|
22
|
Mehta V, Abler LL, Keil KP, Schmitz CT, Joshi PS, Vezina CM. Atlas of Wnt and R-spondin gene expression in the developing male mouse lower urogenital tract. Dev Dyn 2011; 240:2548-60. [PMID: 21936019 DOI: 10.1002/dvdy.22741] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/24/2022] Open
Abstract
Prostate development is influenced by β-catenin signaling, but it is unclear which β-catenin activators are involved, where they are synthesized, and whether their mRNA abundance is influenced by androgens. We identified WNT/β-catenin-responsive β-galactosidase activity in the lower urogenital tract (LUT) of transgenic reporter mice, but β-galactosidase activity differed among the four mouse strains we examined. We used in situ hybridization to compare patterns of Wnts, r-spondins (Rspos, co-activators of β-catenin signaling), β-catenin-responsive mRNAs, and an androgen receptor-responsive mRNA in wild type fetal male, fetal female, and neonatal male LUT. Most Wnt and Rspo mRNAs were present in LUT during prostate development. Sexually dimorphic expression patterns were observed for WNT/β-catenin-responsive genes, and for Wnt2b, Wnt4, Wnt7a, Wnt9b, Wnt10b, Wnt11, Wnt16, and Rspo3 mRNAs. These results reveal sexual differences in WNT/β-catenin signaling in fetal LUT, supporting the idea that this pathway may be directly or indirectly responsive to androgens during prostate ductal development.
Collapse
Affiliation(s)
- Vatsal Mehta
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lorenz C, Contardo-Jara V, Trubiroha A, Krüger A, Viehmann V, Wiegand C, Pflugmacher S, Nützmann G, Lutz I, Kloas W. The Synthetic Gestagen Levonorgestrel Disrupts Sexual Development in Xenopus laevis by Affecting Gene Expression of Pituitary Gonadotropins and Gonadal Steroidogenic Enzymes. Toxicol Sci 2011; 124:311-9. [DOI: 10.1093/toxsci/kfr241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Abler LL, Keil KP, Mehta V, Joshi PS, Schmitz CT, Vezina CM. A high-resolution molecular atlas of the fetal mouse lower urogenital tract. Dev Dyn 2011; 240:2364-77. [PMID: 21905163 DOI: 10.1002/dvdy.22730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2011] [Indexed: 12/15/2022] Open
Abstract
Epithelial-stromal interactions in the lower urogenital tract (LUT) are integral to prostatic and seminal vesicle development in males, vaginal and uterine development in females, and urethral development in both sexes. Gene expression profiling of isolated LUT stroma and epithelium has unraveled mechanisms of LUT development, but such studies are confounded by heterogeneous and ill-defined cell sub-populations contained within each tissue compartment. We used in situ hybridization to synthesize a high-resolution molecular atlas of 17-day post-coitus fetal mouse LUT. We identified mRNAs that mark selective cell populations of the seminal vesicle, ejaculatory duct, prostate, urethra, and vagina, subdividing these tissues into 16 stromal and 8 epithelial sub-compartments. These results provide a powerful tool for mapping LUT gene expression patterns and also reveal previously uncharacterized sub-compartments that may play mechanistic roles in LUT development of which we were previously unaware.
Collapse
Affiliation(s)
- Lisa L Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
25
|
Development and persistence of limbic epileptogenesis are impaired in mice lacking progesterone receptors. J Neurosci 2011; 31:650-8. [PMID: 21228174 DOI: 10.1523/jneurosci.4488-10.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Progesterone plays a key role in ovarian cycle-related synaptic plasticity and neuronal excitability. Progesterone receptors (PRs), which mediate the cellular actions of progesterone, are expressed in the hippocampus and other limbic regions, but their functional significance remains unknown. Here, we report a novel role of PRs as crucial mediators in the development of epileptogenesis, which is the process whereby a normal brain becomes progressively epileptic because of precipitating factors. The PR knock-out (PR(-/-)) mouse, which lacks both the PR-A and PR-B isoforms, exhibited an increased resistance to epileptogenesis in the hippocampus and amygdala kindling models. Lack of PRs markedly impaired the persistence of seizure expression at 4 weeks after kindling development. We further show that selective inhibition of PRs in the brain by antisense oligos or pharmacological blockade of PRs by RU-486 [11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one] resulted in a significant decrease in epileptogenesis in wild-type (PR(+/+)) mice. The delayed epileptogenesis in PR knock-out mice was not substantially affected by inhibition of neurosteroid synthesis. Mice lacking PRs show supersensitivity to the antiseizure responses of progesterone. Collectively, these results suggest that PRs in the hippocampus are linked to signaling pathways that control susceptibility to epileptogenesis and possibly persistence of an epileptic-like state. The PR pathway may represent a unique target for preventing or retarding epileptogenesis in females.
Collapse
|
26
|
Matsuyama R, Takada I, Yokoyama A, Fujiyma-Nakamura S, Tsuji N, Kitagawa H, Fujiki R, Kim M, Kouzu-Fujita M, Yano T, Kato S. Double PHD fingers protein DPF2 recognizes acetylated histones and suppresses the function of estrogen-related receptor alpha through histone deacetylase 1. J Biol Chem 2010; 285:18166-76. [PMID: 20400511 PMCID: PMC2881740 DOI: 10.1074/jbc.m109.077024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
Estrogen-related receptor alpha (ERRalpha) is a member of the nuclear receptor superfamily and regulates many physiological functions, including mitochondrial biogenesis and lipid metabolism. ERRalpha enhances the transactivation function without endogenous ligand by associating with coactivators such as peroxisome proliferator-activated receptor gamma coactivator 1 alpha and beta (PGC-1alpha and -beta) and members of the steroid receptor coactivator family. However, the molecular mechanism by which the transactivation function of ERRalpha is converted from a repressive state to an active state is poorly understood. Here we used biochemical purification techniques to identify ERRalpha-associated proteins in HeLa cells stably expressing ERRalpha. Interestingly, we found that double PHD fingers protein DPF2/BAF45d suppressed PGC-1alpha-dependent transactivation of ERRalpha by recognizing acetylated histone H3 and associating with HDAC1. DPF2 directly bound to ERRalpha and suppressed the transactivation function of nuclear receptors such as androgen receptor. DPF2 was recruited to ERR target gene promoters in myoblast cells, and knockdown of DPF2 derepressed the level of mRNA expressed by target genes of ERRalpha. These results show that DPF2 acts as a nuclear receptor-selective co-repressor for ERRalpha by associating with both acetylated histone H3 and HDAC1.
Collapse
Affiliation(s)
- Reiko Matsuyama
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- the Department of Obstetrics and Gynecology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan, and
| | - Ichiro Takada
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Atsushi Yokoyama
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- ERATO, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Sally Fujiyma-Nakamura
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- ERATO, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Naoya Tsuji
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hirochika Kitagawa
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryoji Fujiki
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Misun Kim
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Madoka Kouzu-Fujita
- the Department of Obstetrics and Gynecology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan, and
| | - Tetsu Yano
- the Department of Obstetrics and Gynecology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan, and
| | - Shigeaki Kato
- From the Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
- ERATO, Japan Science and Technology, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Ogino Y, Katoh H, Kuraku S, Yamada G. Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates. Endocrinology 2009; 150:5415-27. [PMID: 19819965 PMCID: PMC2795718 DOI: 10.1210/en.2009-0523] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022]
Abstract
Vertebrates show diverse sexual characters in sexually attractive and reproductive organs, which are regulated by steroid hormones, particularly androgens. However, the evolutionary history of androgen receptor (AR) gene remains largely unknown on the basis of phylogenic and functional analyses. To elucidate the evolutionary history and functional diversification of AR genes in vertebrates, we cloned the AR cDNAs from a shark, basal ray-finned fishes (Actinopterygii), namely bichir and sturgeon (Acipenseriformes), and teleosts including a basal teleost, arowana (Osteoglossiformes). Molecular phylogenetic analysis revealed that the gene duplication event that gave rise to two different teleost ARs (alpha and beta) likely occurred in the actinopterygian lineage leading to teleosts after the divergence of Acipenseriformes but before the split of Osteoglossiformes, which is compatible with the phylogenetic timing of teleost-specific genome duplication. Searching for AR genes in the medaka genome indicated that the teleost AR gene duplication has been associated with the duplication between chromosomes 10 and 14. Our functional analysis revealed that the shark AR activates the target gene via androgen response element by classical androgens. The teleost ARalpha showed the unique intracellular localization with a significantly higher transactivating capacity than that by teleost ARbeta. These findings indicate that the most ancient type of AR, as activated by the classical androgens as ligands, emerged before the Chondrichthyes-Osteichthyes split, and the AR gene was duplicated during the teleost-specific genome duplication event. We report here for the first time the accurate evolutionary history of AR gene and functional characterization of AR duplicates in teleost lineage.
Collapse
Affiliation(s)
- Yukiko Ogino
- Department of Organ Formation, Institute of Molecular Embryology and Genetics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
28
|
Zhou X, Zhang X, Weng Y, Fang C, Kaminsky L, Ding X. High abundance of testosterone and salivary androgen-binding protein in the lateral nasal gland of male mice. J Steroid Biochem Mol Biol 2009; 117:81-6. [PMID: 19524040 PMCID: PMC2749885 DOI: 10.1016/j.jsbmb.2009.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/17/2022]
Abstract
To better understand androgen function in the mammalian nose, we have determined the levels of testosterone (T) in the olfactory mucosa (OM, which harbors the olfactory receptor neurons) and the lateral nasal gland (LNG, which is the largest anterior nasal gland) of C57BL/6 mice. The results indicated that, in adult male mice, T levels in the LNG were substantially higher than those in the OM and other non-reproductive or non-endocrine tissues examined, including liver, kidney, and brain. Furthermore, in the LNG, the high T levels were accompanied by high levels of salivary androgen-binding protein (sABP) and low microsomal T-hydroxylase activities. The high abundance of T and sABP in the LNG suggests not only that the LNG is a storage site for androgen, but also the possibility that unusually high T levels may occur in other organs that have abundant expression of sABP but low expression of steroid-metabolizing enzymes. Our findings suggest a critical need to determine androgen levels in various organs, as well as to establish the functional significance of an unusually high T level in the LNG, a gland known for its secretion of biologically active molecules, such as odorant binding proteins and immunoglobulin A, to the nasal cavity.
Collapse
Affiliation(s)
- Xin Zhou
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Xiuling Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Yan Weng
- Pfizer Global Research & Development, Groton/New London Laboratories, Pfizer Inc., Groton, CT 06340, USA
| | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Laurence Kaminsky
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, NY 12201, USA
| |
Collapse
|
29
|
Mitchell EA, Herd MB, Gunn BG, Lambert JJ, Belelli D. Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int 2008; 52:588-95. [PMID: 18055067 DOI: 10.1016/j.neuint.2007.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/30/2007] [Accepted: 10/10/2007] [Indexed: 11/18/2022]
Abstract
Over the past 20 years it has become apparent that certain steroids, synthesised de novo in the brain, hence named neurosteroids, produce immediate changes (within seconds) in neuronal excitability, a time scale that precludes a genomic locus of action. Identified molecular targets underlying modulation of brain excitability include both the inhibitory GABA(A) and the excitatory NMDA receptor. Of particular interest is the interaction of certain neurosteroids with the GABA(A) receptor, the major inhibitory receptor in mammalian brain. During the last decade, compelling evidence has accrued to reveal that locally produced neurosteroids may selectively "fine tune" neuronal inhibition. A range of molecular mechanisms including the subunit composition of the receptor(s), phosphorylation and local steroid metabolism, underpin the region- and neuronal selectivity of action of neurosteroids at synaptic and extrasynaptic GABA(A) receptors. The relative contribution played by each of these mechanisms in a variety of physiological and pathophysiological scenarios is currently being scrutinised at a cellular and molecular level. However, it is not known how such mechanisms may act in concert to influence behavioural profiles in health and disease. An important question concerns the identification of the anatomical substrates mediating the repertoire of behaviours produced by neurosteroids. "Knock-in" mice expressing mutant GABA(A) subunits engineered to be insensitive to benzodiazepines or general anaesthetics have proved invaluable in evaluating the role of GABA(A) receptor subtypes in complex behaviours such as sedation, cognition and anxiety [Rudolph, U., Mohler, H., 2006. GABA-based therapeutic approaches: GABA(A) receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23]. However, the development of a similar approach for neurosteroids has been hampered by the limited knowledge that, until recently, has surrounded the identity of the amino acid residues contributing to the neurosteroid binding pocket. Here, we will review recent progress in identifying the neurosteroid binding site on the GABA(A) receptor, and discuss how these discoveries will impact on our understanding of the role of neurosteroids in health and disease.
Collapse
Affiliation(s)
- Elizabeth A Mitchell
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Sasagawa S, Shimizu Y, Kami H, Takeuchi T, Mita S, Imada K, Kato S, Mizuguchi K. Dienogest is a selective progesterone receptor agonist in transactivation analysis with potent oral endometrial activity due to its efficient pharmacokinetic profile. Steroids 2008; 73:222-31. [PMID: 18061638 DOI: 10.1016/j.steroids.2007.10.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 11/28/2022]
Abstract
Dienogest was introduced as an oral progestin. Yet its strong oral potency on endometrial activity is not clearly explained. To circumvent this situation, steroid hormone receptor profiling using transactivation assay and endometrial activity test in rabbits were carried out with determination of plasma drug concentration. Agonistic/antagonistic activity on human progesterone receptor (PR), androgen receptor (AR), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), estrogen receptor alpha (ERalpha), or estrogen receptor beta (ERbeta) were determined. Dienogest activate PR (EC50=3.4 or 10.5 nmol/l) with antagonistic activity on AR (EC50=420.6 or 775.0 nmol/l) but not agonistic nor antagonistic action on GR, MR (3000 nmol/l). Dienogest activate neither ERalpha nor ERbeta (3000 nmol/l). Progesterone activated PR with antagonistic activity on AR and on MR. Dydrogesterone showed a similar profile to progesterone. Norethisterone activated PR, AR, and ERalpha. Medroxyprogesterone acetate activated PR, AR, and GR. Danazol activated PR and AR. Collectively, dienogest has a good specificity to PR compared with the other drugs. By oral treatment, dienogest showed the strongest endometrial activity (ED50=0.0042 mg/kg) in McPhail test among other progestins (ED50 values for MPA, DYG, NES were 0.074, 1.9, >0.05 mg/kg, respectively). Dienogest showed higher plasma concentrations than those of the other progestins with higher doses. The estimated plasma concentration of dienogest at ED50 (3.66 nmol/l) was close to its EC50 value to activate PR. Thus, the stronger oral activity of dienogest could be explained simply by its in vitro potency on PR and its oral pharmacokinetic profile.
Collapse
Affiliation(s)
- Shinichi Sasagawa
- Pharmaceutical Research Center, Mochida Pharmaceutical Co., Ltd., 722 Uenohara Jimba, Gotemba, Shizuoka 412-8524, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Verdi J, Ahmadiani A. Finasteride, a 5alpha-reductase inhibitor, potentiates antinociceptive effects of morphine, prevents the development of morphine tolerance and attenuates abstinence behavior in the rat. Horm Behav 2007; 51:605-10. [PMID: 17428486 DOI: 10.1016/j.yhbeh.2007.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/10/2007] [Accepted: 02/22/2007] [Indexed: 11/29/2022]
Abstract
It has been shown that morphine increases 5alpha-reductase enzyme activity in the rat central nervous system; however importance of this finding on morphine analgesia, tolerance and dependence has not been reported. In the present study, we investigated inhibition of 5alpha-reductase enzyme on morphine effects using finasteride. To determine whether the 5alpha-reductase enzyme interact with morphine analgesia, finasteride (5 mg/kg, i.p.) was administrated with morphine (5 and 7 mg/kg, i.p.). The tail-flick test was used to assess the nociceptive threshold, before and 15, 30, 45, 60 and 90 min after drug administration. In tolerance experiments, morphine 20 mg/kg was injected i.p., twice daily for 4 days. The development and expression of dependence were assessed in the naloxone precipitation test 5 days after the morphine (20-30 mg/kg, i.p.) administration. We found that finasteride could potentiate the antinociceptive effect of morphine. In addition, chronic finasteride administration effectively blocked development of tolerance and dependence to morphine. Following chronic morphine administration, single dose injection of finasteride failed to reverse tolerance but prevented naloxone precipitate withdrawal syndrome. Therefore, it was concluded that there is a functional relationship between 5alpha-reductase enzyme and morphine.
Collapse
Affiliation(s)
- Javad Verdi
- Department of Physiology and Pharmacology, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
32
|
Lee K, Jeong J, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ. Molecular mechanisms involved in progesterone receptor regulation of uterine function. J Steroid Biochem Mol Biol 2006; 102:41-50. [PMID: 17067792 PMCID: PMC2562605 DOI: 10.1016/j.jsbmb.2006.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The ovarian steroid hormone progesterone is a major regulator of uterine function. The actions of this hormone is mediated through its cognate receptor, the progesterone receptor, Pgr. Ablation of the Pgr has shown that this receptor is critical for all female reproductive functions including the ability of the uterus to support and maintain the development of the implanting mouse embryo. High density DNA microarray analysis has identified direct and indirect targets of Pgr action. One of the targets of Pgr action is a member of the Hedgehog morphogen Indian Hedgehog, Ihh. Ihh and members of the Hh signaling cascade show a coordinate expression pattern in the mouse uterus during the preimplantation period of pregnancy. The expression of Ihh and its receptor Patched-1, Ptc1, as well as, down stream targets of Ihh-Ptch1 signaling, such as the orphan nuclear receptor COUP-TF II show that this morphogen pathway mediates communication between the uterine epithelial and stromal compartments. The members of the Ihh signaling axis may function to coordinate the proliferation, vascularization and differentiation of the uterine stroma during pregnancy. This analysis demonstrates that progesterone regulates uterine function in the mouse by coordinating the signals from the uterine epithelium to stroma in the preimplantation mouse uterus.
Collapse
Affiliation(s)
- K Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Yoshino M, Mizutani T, Yamada K, Yazawa T, Ogata-Kawata H, Sekiguchi T, Kajitani T, Miyamoto K. Co-activator p120 is increased by gonadotropins in the rat ovary and enhances progesterone receptor activity. Reprod Biol Endocrinol 2006; 4:50. [PMID: 17014737 PMCID: PMC1617106 DOI: 10.1186/1477-7827-4-50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 10/03/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Ovarian follicular development is primarily dependent on pituitary gonadotropins. Identification of gonadotropin-inducible genes in the ovary is one of the effective approaches for the study of follicular development. In this study we identify rat homologue of p120, a nuclear transcription co-activator, as one of the FSH inducible genes in the rat granulosa cells. METHODS A full-length cDNA encoding rat p120 was cloned, and expression of the gene in the ovary was examined by Northern blotting. Tissue localization of p120 was examined by in situ hybridization. Cellular functions of p120 were studied by co-transfection of rat p120 gene together with estrogen receptor (ER)-alpha, ER-beta, androgen receptor (AR), or progesterone receptor (PR) genes. RESULTS A full-length cDNA encoding rat p120 was characterized as a protein with 957 amino acid residues. Rat p120 was expressed ubiquitously, but strongly in the ovary and the testis. Expression of p120 mRNA was also induced in vivo by PMSG or PMSG/hCG treatment. Strong expression of p120 mRNA was observed in the granulosa cells of pre-ovulatory large antral follicles. Progesterone receptor was co-localized with p120 in the large antral follicles. Co-transfection experiments revealed that rat p120 activated AR, ER-alpha, ER-beta, and PR in the presence of their respective ligands. CONCLUSION These observations suggest that rat p120 is strongly induced in the ovarian granulosa cells, and may work together with PR in the granulosa cells of ovulatory follicles to promote the ovulation process.
Collapse
Affiliation(s)
- Miki Yoshino
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Kazuya Yamada
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Hiroko Ogata-Kawata
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Toshio Sekiguchi
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Takashi Kajitani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
- CREST, JST (Japan Science and Technology), Japan
| |
Collapse
|
34
|
Labombarda F, Pianos A, Liere P, Eychenne B, Gonzalez S, Cambourg A, De Nicola AF, Schumacher M, Guennoun R. Injury elicited increase in spinal cord neurosteroid content analyzed by gas chromatography mass spectrometry. Endocrinology 2006; 147:1847-59. [PMID: 16396987 DOI: 10.1210/en.2005-0955] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of spinal cord injury (SCI), combined with castration and adrenalectomy, and of progesterone (PROG) treatment on neurosteroid levels and steroidogenic enzyme expression were investigated in the adult male rat spinal cord (SC). Steroid levels were quantified by gas chromatography/mass spectrometry in SC and plasma, and mRNAs of enzymes by quantitative real-time RT-PCR. The levels of pregnenolone (PREG), PROG, 5alpha-dihydroprogesterone, 3alpha,5alpha-tetrahydroprogesterone increased in SC 75 h after transection without significant increase in the plasma. After combined adrenalectomy and gonadectomy, significant levels of PREG and PROG remained in the SC, suggesting their local biosynthesis. In the SC of adrenalectomized and gonadectomized rats, there was an increase of PREG 24 h after SCI, followed at 75 h by a concomitant increase in its direct metabolite, PROG. These observations are consistent with a sequential increase of PREG biosynthesis and its conversion to PROG within the SC in response to injury. However, no significant change in P450-side chain cleavage and 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase mRNA levels was observed after SCI. Systemic PROG treatment after SCI, resulted in a very large increase in PROG, 5alpha-dihydroprogesterone, and 3alpha,5alpha-tetrahydroprogesterone in both plasma and SC. Furthermore, high levels of 3beta,5alpha-tetrahydroprogesterone were detected in SC, whereas their plasma levels remained barely detectable. Because the ratio of reduced metabolites to PROG was 65-times higher in SC than in the plasma, it appears likely that reduced metabolites mainly originated from local biosynthesis. Our results strongly suggest an important role for locally biosynthesized neurosteroids in the response of the SC to injury.
Collapse
Affiliation(s)
- F Labombarda
- Institut National de la Santé et de la Recherche Médicale Unité 488, Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Katoh H, Ogino Y, Yamada G. Cloning and expression analysis of androgen receptor gene in chicken embryogenesis. FEBS Lett 2006; 580:1607-15. [PMID: 16480982 DOI: 10.1016/j.febslet.2006.01.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/27/2006] [Accepted: 01/31/2006] [Indexed: 10/25/2022]
Abstract
We cloned a full-length androgen receptor (AR) cDNA from chicken (Gallus gallus) gonads. The cDNA sequence has an open reading frame of 2109 bp encoding 703 amino acids. The chicken AR (cAR) shares high homology with ARs from other species in its amino acid sequences, in particular DNA binding domain (DBD) and ligand binding domain (LBD). RT-PCR analysis revealed that cAR mRNA is expressed in several embryonic tissues of both sexes, and relatively higher expression was observed in left ovary compared with testis. The immunoreactive signal of AR was co-localized within the ovarian cell nucleus, while such nuclear localization was not detected in those of testis. To get insight on the possible role of androgen-AR signaling during gonadal development, non-steroidal AR antagonist, flutamide, was administrated in ovo. The treatment induced the disorganization of sex cords in ovarian cortex at day 12 of incubation. The effect was restored by testosterone co-treatment, implying the possibility that AR mediated signaling may be involved in ovarian morphogenesis. Furthermore, co-treatment of flutamide with estradiol-17beta (E2) also restored the phenotype, suggesting androgen-AR signaling might activate aromatase expression that is necessary for estrogen synthesis. These findings suggest androgen-AR signaling might contribute to chicken embryonic ovarian development.
Collapse
Affiliation(s)
- Hironori Katoh
- Center for Animal Resources and Development (CARD), Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
36
|
Watanabe H, Nonoguchi K, Sakurai T, Masuda T, Itoh K, Fujita J. A novel protein Depp, which is induced by progesterone in human endometrial stromal cells activates Elk-1 transcription factor. Mol Hum Reprod 2005; 11:471-6. [PMID: 16123073 DOI: 10.1093/molehr/gah186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decidualization of the endometrial stromal cells (ESC), considered to be stimulated by progesterone and/or cAMP, is crucial for embryo implantation and placentation. In this study, we isolated a novel clone encoding decidual protein induced by progesterone (Depp) from a human ESC cDNA library enriched with progesterone-inducible genes. Depp mRNA was expressed in various human tissues including placenta, ovary and kidney. Increased expression of Depp was observed in endometria during mid- and late-secretory phases and 1st trimester deciduas. In vitro, Depp mRNA was induced in ESC within 30 min of progesterone treatment, which was inhibited by the antiprogestin RU486. Androgen alone also induced Depp expression. Depp increased the level of phosphorylated Erk and activated the Elk-1 transcription factor in human embryonal kidney 293 cells, suggesting that Depp modulates the effects of progesterone during decidualization and in the decidua by affecting gene expression. Elucidation of the biological function of Depp in the endometrium will facilitate our understanding of the molecular mechanisms of decidualization and placental development.
Collapse
Affiliation(s)
- Hirohiko Watanabe
- Daigo Watanabe Clinic, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Reddy DS, O'Malley BW, Rogawski MA. Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 2005; 48:14-24. [PMID: 15617723 DOI: 10.1016/j.neuropharm.2004.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/13/2004] [Accepted: 09/02/2004] [Indexed: 11/18/2022]
Abstract
Progesterone is an anxiolytic steroid that could play a role in the regulation of anxiety in women. However, the mechanism by which progesterone decreases anxiety is incompletely understood. Progesterone affects the function of the brain by two distinct mechanisms. Progesterone regulates reproductive behavior by activating intracellular progesterone receptors (PRs). In addition, progesterone is believed to influence neuronal activity through its conversion to allopregnanolone, a neurosteroid that acts as a positive allosteric modulator of GABAA receptors. The extent to which the anxiolytic action of progesterone requires PRs is uncertain. In this study, we utilized PR knockout (PRKO) mice bearing a targeted null mutation of the PR gene that abrogates the function of both PR-A and PR-B subtypes to determine the requirement for PRs in the anxiolytic actions of progesterone. The absence of PR receptor protein expression in PRKO brain was confirmed by immunocytochemistry. In PRKO mice and their isogenic wild-type (WT) littermates, progesterone administration was associated with a dose-dependent rise in plasma allopregnanolone concentrations and corresponding anxiolytic effects in the elevated plus maze test. PRKO mice exhibited a greater anxiolytic response than WT animals although the allopregnanolone levels were similar in the two genotypes. Allopregnanolone also exhibited anxiolytic effects, but the magnitude of the response was similar in both genotypes. Pretreatment of PRKO mice with finasteride, a 5alpha-reductase inhibitor that blocks the conversion of progesterone to allopregnanolone, completely prevented the anxiolytic activity of progesterone, but had no effect on the response to allopregnanolone, demonstrating that allopregnanolone (or other 5alpha-reduced metabolites of progesterone) accounts for the response to the parent steroid hormone. These results provide direct evidence that the anxiolytic action of progesterone does not require PRs. However, PR activation by progesterone may influence the anxiolytic response since PRKO mice were more sensitive to progesterone.
Collapse
Affiliation(s)
- Doodipala S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | |
Collapse
|
38
|
Seenundun S, Robaire B. Cloning and Characterization of the 5α-Reductase Type 2 Promoter in the Rat Epididymis1. Biol Reprod 2005; 72:851-61. [PMID: 15576829 DOI: 10.1095/biolreprod.104.033746] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Steroid 5alpha-reductase converts testosterone to the more potent androgen, dihydrotestosterone. The molecular mechanisms responsible for maintaining high concentrations of the 5alpha-reductase type 2 mRNA in the caput epididymidis and for regulating its region-specific expression are unknown. To gain insight into its transcriptional regulation, the cloning and characterization of the 5' upstream region of 5alpha-reductase type 2 were undertaken. Sequential deletion analysis was done to map the 2243-base pair (bp) cloned 5' upstream region, and the constructs were transfected into epididymal PC1 cells and prostatic PC3 cells. In both cell lines, regulatory elements and the minimal promoter were mapped to the 485-bp region upstream of the start codon. Primer extension and 5' RACE identified one transcriptional start site at 33-bp upstream of the start codon. Using electrophoretic mobility shift assay, a specific band was observed in the -68- to -32-bp region in the presence of nuclear extracts. Supershift and mutational studies confirmed the binding of SP1 and, to a lesser extent, SP3 to the two potential SP1 binding sites and the preference of these proteins to one binding site over the other. SP1 and SP3 were both predominantly immunolocalized to the principal cells of the epididymis and follow distinct distribution patterns in this tissue. These results provide a framework crucial in the further investigation of the transcriptional regulation of 5alpha-reductase type 2 in the rat epididymis.
Collapse
Affiliation(s)
- Shayesta Seenundun
- Departments of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
39
|
Abstract
'Classical' genomic progesterone receptors appear relatively late in phylogenesis, i.e. it is only in birds and mammals that they are detectable. In the different species, they mediate manifold effects regarding the differentiation of target organ functions, mainly in the reproductive system. Surprisingly, we know little about the physiology, endocrinology, and pharmacology of progesterone and progestins in male gender or men respectively, despite the fact that, as to progesterone secretion and serum progesterone levels, there are no great quantitative differences between men and women (at least outside the luteal phase). In a prospective cohort study of 1026 men with and without cardiovascular disease, we were not able to demonstrate any age-dependent change in serum progesterone concentrations. Progesterone influences spermiogenesis, sperm capacitation/acrosome reaction and testosterone biosynthesis in the Leydig cells. Other progesterone effects in men include those on the central nervous system (CNS) (mainly mediated by 5alpha-reduced progesterone metabolites as so-called neurosteroids), including blocking of gonadotropin secretion, sleep improvement, and effects on tumors in the CNS (meningioma, fibroma), as well as effects on the immune system, cardiovascular system, kidney function, adipose tissue, behavior, and respiratory system. A progestin may stimulate weight gain and appetite in men as well as in women. The detection of progesterone receptor isoforms would have a highly diagnostic value in prostate pathology (benign prostatic hypertrophy and prostate cancer). The modulation of progesterone effects on typical male targets is connected with a great pharmacodynamic variability. The reason for this is that, in men, some important effects of progesterone are mediated non-genomically through different molecular biological modes of action. Therefore, the precise therapeutic manipulation of progesterone actions in the male requires completely new endocrine-pharmacological approaches.
Collapse
|
40
|
Nguyen PN, Yan EB, Castillo-Melendez M, Walker DW, Hirst JJ. Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J Physiol 2004; 560:593-602. [PMID: 15331682 PMCID: PMC1665267 DOI: 10.1113/jphysiol.2004.069336] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Allopregnanolone (AP) is a potent modulator of the GABAA receptor. Brain AP concentrations increase in response to stress, which is thought to provide neuroprotection by reducing excitation in the adult brain. Umbilical cord occlusion (UCO) causes hypoxia and asphyxia in the fetus, which are major risk factors associated with poor neurological outcome for the neonate, and may lead to adverse sequelae such as cerebral palsy. The aims of this study were as follows: (i) to determine the effect of 10 min UCO on AP concentrations in the extracellular fluid of the fetal brain using microdialysis, and (ii) to compare the content of the steroidogenic enzymes P450scc and 5alpha-reductase type II (5alphaRII) with brain and CSF neurosteroid concentrations. UCO caused fetal asphyxia, hypertension, bradycardia and respiratory acidosis, which returned to normal levels after 1-2 h. AP concentrations in dialysate samples from probes implanted in grey and white matter of the parietal cortex were significantly increased 1 h after UCO from control levels of 10.4 +/- 0.4 and 12.4 +/- 0.3 to 26.0 +/- 5.1 and 27.6 +/- 6.4 nmol l(-1), respectively (P < 0.05), before returning to pre-occlusion levels by 3-4 h after UCO. When fetal brains were collected 1 h after a 10 min UCO, the relative increases of AP and pregnenolone content in the parietal cortex were similar to the increase observed in the extracellular (dialysate) fluid. AP, but not pregnenolone, was increased in CSF at this time. P450scc and 5alphaRII enzyme expression was significantly increased in the cerebral cortex in the UCO fetuses compared to control fetuses. These results suggest that the fetal brain is capable of transiently increasing neurosteroid production in response to asphyxia. The action of the increased neurosteroid content at GABAA receptors may serve to diminish the increased excitation due to excitotoxic amino acid release, and provide short-term protection to brain cells during such stress.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Fetal and Neonatal Research Group, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
41
|
Reddy DS, Castaneda DC, O'Malley BW, Rogawski MA. Anticonvulsant activity of progesterone and neurosteroids in progesterone receptor knockout mice. J Pharmacol Exp Ther 2004; 310:230-9. [PMID: 14982969 DOI: 10.1124/jpet.104.065268] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many of the biological actions of progesterone are mediated through the progesterone receptor (PR), a nuclear transcription factor. Progesterone is well recognized to protect against seizures in animal models. Although this activity has been attributed to the progesterone metabolite allopregnanolone, a GABAA receptor-modulating neurosteroid with anticonvulsant properties, PRs could also play a role. Here, we used PR knockout (PRKO(-/-)) mice bearing a targeted deletion of the PR gene that eliminates both isoforms of the PR to investigate the contribution of the PR to the anticonvulsant activity of progesterone. The protective activity of progesterone was examined in female and male homozygous PRKO mice and isogenic wild-type controls in the pentylenetetrazol (PTZ), maximal electroshock, and amygdala-kindling seizure models. In all three models, the anticonvulsant potency of progesterone was undiminished in PRKO mice compared with control mice. On the contrary, there was a substantial increase in the anticonvulsant potency of progesterone in the PTZ and kindling models. The antiseizure activity of progesterone in PRKO mice was reversed by pretreatment with finasteride, a 5alpha-reductase inhibitor that blocks the metabolism of progesterone to allopregnanolone. Unlike progesterone, the neurosteroids allopregnanolone and allotetrahydrodeoxycorticosterone exhibited comparable anticonvulsant potency in PRKO and wild-type mice. The basis for the heightened progesterone responsiveness of PRKO mice is not attributable to pharmacokinetic factors, because the plasma allopregnanolone levels achieved after progesterone administration were not greater in the PRKO mice. These studies provide strong evidence that the PR is not required for the antiseizure effects of progesterone, which mainly occurs through its conversion to the neurosteroid allopregnanolone.
Collapse
Affiliation(s)
- D S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606, USA.
| | | | | | | |
Collapse
|
42
|
Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in fetal sheep with umbilicoplacental embolization. Pediatr Res 2003; 54:840-7. [PMID: 12930920 DOI: 10.1203/01.pdr.0000088066.47755.36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pregnane steroids have sedative and neuroprotective effects on the brain, due to interactions with the steroid-binding site of the GABAA receptor. In the adult brain, synthesis of the pregnane steroids is increased in response to stress. Therefore, we have used umbilicoplacental embolization to mimic chronic placental insufficiency during late gestation in sheep, to investigate the expression of the steroidogenic enzymes p450scc, 5alpha-reductase type I (5alphaRI), 5alpha-reductase type II (5alphaRII), and allopregnanolone (AP) content in the fetal brain. Umbilicoplacental embolization was induced from 114 d gestation (term approximately 147 d) by daily injection of inert microspheres into the umbilical artery and continued for 17-23 d. Fetal arterial oxygen saturation was reduced to approximately 60% of the preembolization value in each fetus, with a significant reduction in blood arterial Po2, pH, and plasma glucose concentrations (p < 0.05) and a significant increase in blood arterial Pco2 and plasma lactate concentrations (p < 0.05). At postmortem at 131-137 d gestation, embolized fetuses were growth-restricted (2.10 +/- 0.14 kg, n = 5) compared with age-matched controls (4.43 +/- 0.56 kg, n = 7, p < 0.05). Umbilicoplacental embolized fetuses showed increased P450scc expression in the primary motor cortex; 5alphaRI expression was not changed in any of the regions examined, whereas 5alphaRII expression was markedly increased in all brain regions. Brain AP content did not significantly change, whereas plasma concentrations were increased. These findings suggest that the increased expression of p450scc and 5alphaRII may be a response that maintains AP concentration in the fetal brain after compromised placental function and/or intrauterine stress.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Department of Physiology, Monash University, Clayton Victoria 3800, Australia
| | | | | | | |
Collapse
|
43
|
Mitev YA, Darwish M, Wolf SS, Holsboer F, Almeida OFX, Patchev VK. Gender differences in the regulation of 3 alpha-hydroxysteroid dehydrogenase in rat brain and sensitivity to neurosteroid-mediated stress protection. Neuroscience 2003; 120:541-9. [PMID: 12890523 DOI: 10.1016/s0306-4522(03)00287-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The enzyme 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) is involved in the generation of neuroactive steroids through ring-A-reduction of hormonal precursors. We examined the developmental regulation of, gender differences in, and effects of hormonal manipulations on the expression of 3 alpha-HSD in the rat hippocampus. High levels of 3 alpha-HSD mRNA were found on postnatal day 7, coinciding with the stress hyporesponsive period in the rat. Gender differences in 3 alpha-HSD expression were documented during puberty, but not in adulthood. Adrenalectomy and gonadectomy, and supplementation with individual steroid hormones influenced 3 alpha-HSD expression in a gender-specific mode. We also demonstrate that the manifestation of behavioral and endocrine consequences of early life stress depends on the individual's gender and gonadal status. Males are liable to aftereffects of neonatal maternal deprivation, regardless of their adult gonadal status. In females, however, anxiogenic aftereffects of neonatal stress become apparent only after gonadectomy. These data suggest that (i) transient increase of neurosteroid biosynthesis may contribute to stress hyporesponsiveness during early infancy; (ii) gonadal steroids regulate 3 alpha-HSD expression in the hippocampus in a sex-specific mode; (iii) physiological sex steroid secretions in females may mask behavioral consequences of adverse early life events, and (iv) concomitant treatment with the neurosteroid THP counteracts behavioral and endocrine dysregulation induced by neonatal stress in both genders.
Collapse
Affiliation(s)
- Y A Mitev
- Male Health Care II, Schering AG/Jenapharm, Otto Schott Strasse 15, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Torres JM, Ortega E. Differential regulation of steroid 5alpha-reductase isozymes expression by androgens in the adult rat brain. FASEB J 2003; 17:1428-33. [PMID: 12890696 DOI: 10.1096/fj.02-1119com] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The enzyme 5alpha-reductase (5alpha-R) is present in many mammalian tissues, including the brain. The physiological importance of 5alpha-R in the brain derives from its capability to convert testosterone (T) to a more potent androgen, dihydrotestosterone (DHT), and to convert progesterone and deoxycorticosterone (DOC) to their respective 5alpha-reduced derivatives, precursors of allopregnanolone and tetrahydroDOC, potent allosteric modulators of the gamma-aminobutyric acid receptor (GABA(A)-R). 5alpha-R occurs as two isoforms, 5alpha-R type 1 (5alpha-R1) and 5alpha-R type 2 (5alpha-R2). We studied the effects of T and DHT on the mRNA levels of both 5alpha-R isozymes in the prefrontal cortex of the adult rat, using an accurate and precise method that combines the high specificity of one-step quantitative RT-PCR with the sensitivity of capillary electrophoresis. Our results demonstrate that both isozymes of 5alpha-R are expressed in the cerebral cortex of adult rats. The gene expression of 5alpha-R type 2 is under the positive control of T and DHT. The gene that codes for 5alpha-R type 1 is not constitutive, because its expression is negatively regulated by T and DHT. These results open up a new research line that may lead to a better understanding of the role of 5alpha-R isozymes in the physiology of the central nervous system.
Collapse
Affiliation(s)
- J M Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain
| | | |
Collapse
|