1
|
Tian H, Chen Y, Dong X, Fan X, Jia R. The m6A hypermethylation-induced PIR overexpression regulates H3K4me3 and promotes tumorigenesis of uveal melanoma. Cancer Lett 2025; 623:217729. [PMID: 40252822 DOI: 10.1016/j.canlet.2025.217729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Uveal melanoma (UM) is the most common primary ocular malignancy in adults, characterized by high mortality, strong metastatic potential, and limited treatment options, necessitating the identification of novel therapeutic targets. Here, we identified Pirin (PIR) as a key oncogenic factor in UM through comprehensive multi-omics analyses, revealing that PIR is significantly upregulated and correlates with poor prognosis. Functional assays indicated that inhibiting PIR markedly suppressed UM progression, highlighting its critical role in tumorigenesis behavior. Mechanistically, PIR expression is driven by aberrant N6-methyladenosine (m6A) modifications mediated by METTL3 and IGF2BP3. Meanwhile, the high expressed PIR acts as a transcriptional co-regulator by interacting with WDR5, resulting in the regulation of H3K4me3 modifications at the ANAPC10 promoter region and subsequent promotion of ANAPC10 expression. Overall, our study uncovered the METTL3/IGF2BP3 (m6A)-PIR-WDR5 (H3K4me3)-ANAPC10 axis, bridging RNA methylation and histone methylation in UM pathogenesis. By unmasking these intricate epigenetic interactions, we provided novel insights into UM biology and identified potential therapeutic targets for tumor treatment, offering the theoretical support for future drug development and clinical applications.
Collapse
Affiliation(s)
- Hao Tian
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Ying Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Xiaokang Dong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Ruobing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| |
Collapse
|
2
|
Yu Y, Yu X, Pan B, Chan HM, Kaniskan HÜ, Jin J, Cai L, Wang GG. Pharmacologic degradation of WDR5 suppresses oncogenic activities of SS18::SSX and provides a therapeutic of synovial sarcoma. SCIENCE ADVANCES 2025; 11:eads7876. [PMID: 40267190 PMCID: PMC12017321 DOI: 10.1126/sciadv.ads7876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer-causing aberrations recurrently target the chromatic-regulatory factors, leading to epigenetic dysregulation. Almost all patients with synovial sarcoma (SS) carry a characteristic gene fusion, SS18::SSX, which produces a disease-specific oncoprotein that is incorporated into the switch/sucrose non-fermentable (SWI/SNF) chromatin-remodeling complexes and profoundly alters their functionalities. Targeting epigenetic dependency in cancers holds promise for improving current treatment. Leveraging on cancer cell dependency dataset, pharmacological tools, and genomic profiling, we find WDR5, a factor critical for depositing histone H3 lysine 4 (H3K4) methylation, to be an unexplored vulnerability in SS. Mechanistically, WDR5 and SS18::SSX interact and colocalize at oncogenes where WDR5 promotes H3K4 methylation and the chromatin association of SS18::SSX-containing chromatin-remodeling complexes. WDR5 degradation by proteolysis-targeting chimera (PROTAC) not only suppresses the SS18::SSX-related oncogenic programs but additionally causes the ribosomal protein deregulations leading to p53 activation. WDR5-targeted PROTAC suppresses SS growth in vitro and in vivo, providing a promising strategy for the SS treatment.
Collapse
Affiliation(s)
- Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xufen Yu
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ho Man Chan
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA 02451, USA
| | - H. Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Han Q, Gu Y, Xiang H, Zhang L, Wang Y, Yang C, Li J, Steiner C, Lapalombella R, Woyach JA, Yang Y, Dovat S, Song C, Ge Z. Targeting WDR5/ATAD2 signaling by the CK2/IKAROS axis demonstrates therapeutic efficacy in T-ALL. Blood 2025; 145:1407-1421. [PMID: 39785511 PMCID: PMC11969266 DOI: 10.1182/blood.2024024130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD repeat-containing protein 5 (WDR5) in T-ALL. With in vitro and in vivo models, we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2). Moreover, the function of a zinc finger transcription factor of the Kruppel family (IKAROS) is often impaired by genetic alteration and casein kinase II (CK2) which is overexpressed in T-ALL. We found that IKAROS directly regulates WDR5 transcription; CK2 inhibitor, CX-4945, strongly suppresses WDR5 expression by restoring IKAROS function. Last, combining CX-4945 with WDR5 inhibitor demonstrates synergistic efficacy in the patient-derived xenograft mouse models. In conclusion, our results demonstrated that WDR5/ATAD2 is a new oncogenic signaling pathway in T-ALL, and simultaneous targeting of WRD5 and CK2/IKAROS has synergistic antileukemic efficacy and represents a promising potential strategy for T-ALL therapy.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Huimin Xiang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Linyao Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yan Wang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chan Yang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jun Li
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Chelsea Steiner
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Rosa Lapalombella
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Jennifer A. Woyach
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Yiping Yang
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Hershey Medical Center, Pennsylvania State University Medical College, Hershey, PA
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
4
|
Fesik SW. Drugging Challenging Cancer Targets Using Fragment-Based Methods. Chem Rev 2025; 125:3586-3594. [PMID: 40043012 PMCID: PMC11951080 DOI: 10.1021/acs.chemrev.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
There are many highly validated cancer targets that are difficult or impossible to drug due to the absence of suitable pockets that can bind small molecules. Fragment-based methods have been shown to be a useful approach for identifying ligands to proteins that were previously thought to be undruggable. In this review, I will give an overview of fragment-based ligand discovery and provide examples from our own work on how fragment-based methods were used to discover high affinity ligands for challenging cancer drug targets.
Collapse
Affiliation(s)
- Stephen W. Fesik
- Department of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235 United States
| |
Collapse
|
5
|
Nussinov R, Yavuz BR, Jang H. Molecular principles underlying aggressive cancers. Signal Transduct Target Ther 2025; 10:42. [PMID: 39956859 PMCID: PMC11830828 DOI: 10.1038/s41392-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
6
|
Jagodzik P, Zietkiewicz E, Bukowy-Bieryllo Z. Conservation of OFD1 Protein Motifs: Implications for Discovery of Novel Interactors and the OFD1 Function. Int J Mol Sci 2025; 26:1167. [PMID: 39940934 PMCID: PMC11818881 DOI: 10.3390/ijms26031167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
OFD1 is a protein involved in many cellular processes, including cilia biogenesis, mitotic spindle assembly, translation, autophagy and the repair of double-strand DNA breaks. Despite many potential interactors identified in high-throughput studies, only a few have been directly confirmed with their binding sites identified. We performed an analysis of the evolutionary conservation of the OFD1 sequence in three clades: 80 Tetrapoda, 144 Vertebrata or 26 Animalia species, and identified 59 protein-binding motifs localized in the OFD1 regions conserved in various clades. Our results indicate that OFD1 contains 14 potential post-translational modification (PTM) sites targeted by at least eight protein kinases, seven motifs bound by proteins recognizing phosphorylated aa residues and a binding site for phosphatase 2A. Moreover, OFD1 harbors both a motif that enables its phosphorylation by mitogen-activated protein kinases (MAPKs) and a specific docking site for these proteins. Generally, our results suggest that OFD1 forms a scaffold for interaction with many proteins and is tightly regulated by PTMs and ligands. Future research on OFD1 should focus on the regulation of OFD1 function and localization.
Collapse
Affiliation(s)
| | | | - Zuzanna Bukowy-Bieryllo
- Institute of Human Genetics Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (P.J.); (E.Z.)
| |
Collapse
|
7
|
Coker JA, Stauffer SR. WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present). Expert Opin Ther Pat 2025; 35:31-45. [PMID: 39706200 DOI: 10.1080/13543776.2024.2441658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5. AREAS COVERED Based on an international survey of the patent literature using SciFinder from 2016-2024, herein we provide a comprehensive account of the chemical matter targeting WDR5, with a particular focus on proprietary compounds that are underreported in the existing academic literature. Our survey illuminates challenges for the field to overcome: a broad lack of chemical diversity, confusion about the molecular mechanism of WIN-site inhibitors, a paucity of brain-penetrant scaffolds despite emerging evidence of activity in brain cancers, sparse pharmacokinetic, metabolic, and disposition characterization, and the absence of safety or efficacy data in humans. EXPERT OPINION It is our opinion that the best-in-class WIN-site inhibitors (from the imidazole class) merit advancement into clinical testing, likely against leukemia, which should provide much-needed clarity about the exciting but unproven potential of WDR5 as a next-generation therapeutic target.
Collapse
Affiliation(s)
- Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Juang U, Gwon S, Jung W, Nguyen H, Huang Q, Lee S, Lee B, Kwon SH, Kim SH, Park J. Exploring the various functions of PHD finger protein 20: beyond the unknown. Toxicol Res 2025; 41:1-11. [PMID: 39802118 PMCID: PMC11717773 DOI: 10.1007/s43188-024-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 01/16/2025] Open
Abstract
Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival. Given this regulatory effect, PHF20 is usually expressed not only in gliomas but also in breast cancers, colorectal cancers, and other diseases associated with skeletal muscle osteoblastosis and osteoporosis. Thus, PHF20 dysregulation and its downstream effects enhance the abnormalities associated with cancers or other diseases and encourage disease progression. Moreover, PHF20 serves as a nuclear factor kappa-light-chain enhancer of B cell activation, thus increasing pro-inflammatory cytokine production, associated with crosstalk involving the mouse double minute 2 homolog that in turn reduces the normal p53 levels not only in cancers but also in damaged or otherwise injured normal tissues. Despite the findings of various studies, the roles of PHF20 in terms of prognosis, diagnosis, and targeting of disease therapies remain unclear and should be further explored.
Collapse
Affiliation(s)
- Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Quingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
9
|
Liu C, Chen J, Huang X, Xia Q, Yang L, Guo J, Tian J, Wang J, Niu Y, Li L, Gou D. lncRNA VELRP Modulates Pulmonary Arterial Smooth Muscle Cell Proliferation and Promotes Vascular Remodeling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:2560-2576. [PMID: 39360410 DOI: 10.1161/atvbaha.124.321416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Pulmonary hypertension is a devastating vascular disorder characterized by extensive pulmonary vascular remodeling, ultimately leading to right ventricular failure and death. Activation of PDGF (platelet-derived growth factor) signaling promotes the hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs), thus contributing to the pulmonary vascular remodeling. However, the molecular mechanisms that govern hyperproliferation of PASMCs induced by PDGF remain largely unknown, including the contribution of long noncoding RNAs (lncRNAs). In this study, we aimed to identify a novel lncRNA regulated by PDGF implicated in PASMC proliferation in pulmonary vascular remodeling. METHODS RNA-sequencing analysis was conducted to identify a novel lncRNA named vessel-enriched lncRNA regulated by PDGF-BB (platelet-derived growth factor-BB; VELRP). Functional investigations of VELRP were performed using knockdown and overexpression strategies along with RNA sequencing. Validation of the function and potential mechanisms of VELRP was performed through Western blot, RNA immunoprecipitation, and chromatin immunoprecipitation assays. RESULTS We identified a novel vessel-enriched lncRNA with an increased response to PDGF-BB stimulus. VELRP was identified as an evolutionarily conserved RNA molecule. Modulation of VELRP in PASMCs significantly altered cell proliferation. Mechanistically, VELRP enhances trimethylation of H3K4 (histone H3 lysine 4) by interacting with WDR5 (WD repeat-containing protein 5), leading to increased expression of CDK (cyclin-dependent kinase) 1, CDK2, and CDK4 and consequent hyperproliferation of PASMCs. The pathological relevance of VELRP upregulation in pulmonary artery was confirmed using rat pulmonary hypertension models in vivo, as well as in PASMCs from patients with idiopathic pulmonary arterial hypertension. Specific knockdown of VELRP in smooth muscle cells using adeno-associated virus type 9 SM22α (smooth muscle protein 22α) promoter-shRNA-mediated silencing of VELRP resulted in a significant decrease in right ventricular systolic pressure and vascular remodeling in rat pulmonary hypertension model. CONCLUSIONS VELRP, as an lncRNA upregulated by PDGF-BB, mediates PASMC proliferation via WDR5/CDK signaling. In vivo studies demonstrate that targeted intervention of VELRP in smooth muscle cells can prevent the development of pulmonary hypertension.
Collapse
MESH Headings
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/genetics
- Cell Proliferation
- Animals
- Vascular Remodeling
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiopathology
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/pathology
- Male
- Rats, Sprague-Dawley
- Cells, Cultured
- Disease Models, Animal
- Signal Transduction
- Rats
- Humans
- Histones/metabolism
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
Collapse
Affiliation(s)
- Cuilian Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Xingtao Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Qinyi Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Lei Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Jiao Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, China
| |
Collapse
|
10
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Citron F, Ho IL, Balestrieri C, Liu Z, Yen EY, Cecchetto L, Perelli L, Zhang L, Montanez LC, Blazanin N, Dyke CA, Shah R, Attanasio S, Srinivasan S, Chen KC, Chen Z, Scognamiglio I, Pham N, Khan H, Jiang S, Pan J, Vanderkruk B, Leung CS, Mattohti M, Rai K, Chu Y, Wang L, Gao S, Deem AK, Carugo A, Wang H, Yao W, Tonon G, Xiong Y, Lorenzi PL, Bonini C, Anna Zal M, Hoffman BG, Heffernan T, Giuliani V, Jeter CR, Lissanu Y, Genovese G, Pilato MD, Viale A, Draetta GF. WRAD core perturbation impairs DNA replication fidelity promoting immunoediting in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619543. [PMID: 39484624 PMCID: PMC11526913 DOI: 10.1101/2024.10.21.619543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation. Consequently, in immunocompetent models, DPY30 loss induced T cell infiltration and immune-mediated clearance of highly proliferating cancer cells with complex karyotypes, thus improving anti-tumor efficacy upon anti-PD-1 treatment. In PDAC patients, DPY30 expression was associated with high tumor grade, worse prognosis, and limited response to immune checkpoint blockade. Together, our findings indicate that the WRAD core sustains genome stability and suggest that low intratumor DPY30 levels may identify PDAC patients who will benefit from immune checkpoint inhibitors.
Collapse
|
12
|
BenDavid E, Yang C, Zhou Y, Pfaller CK, Samuel CE, Ma D. Host WD repeat-containing protein 5 inhibits protein kinase R-mediated integrated stress response during measles virus infection. J Virol 2024; 98:e0102024. [PMID: 39194235 PMCID: PMC11406981 DOI: 10.1128/jvi.01020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Chuyuan Yang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Yuqin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles E. Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
13
|
Meyer CT, Smith BN, Wang J, Teuscher KB, Grieb BC, Howard GC, Silver AJ, Lorey SL, Stott GM, Moore WJ, Lee T, Savona MR, Weissmiller AM, Liu Q, Quaranta V, Fesik SW, Tansey WP. Expanded profiling of WD repeat domain 5 inhibitors reveals actionable strategies for the treatment of hematologic malignancies. Proc Natl Acad Sci U S A 2024; 121:e2408889121. [PMID: 39167600 PMCID: PMC11363251 DOI: 10.1073/pnas.2408889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Collapse
Affiliation(s)
- Christian T. Meyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Duet BioSystems, Nashville, TN37212
| | - Brianna N. Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Brian C. Grieb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Vito Quaranta
- Duet BioSystems, Nashville, TN37212
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| |
Collapse
|
14
|
Bailey JK, Ma D, Clegg DO. Initial Characterization of WDR5B Reveals a Role in the Proliferation of Retinal Pigment Epithelial Cells. Cells 2024; 13:1189. [PMID: 39056772 PMCID: PMC11275010 DOI: 10.3390/cells13141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The chromatin-associated protein WDR5 has been widely studied due to its role in histone modification and its potential as a pharmacological target for the treatment of cancer. In humans, the protein with highest sequence homology to WDR5 is encoded by the retrogene WDR5B, which remains unexplored. Here, we used CRISPR-Cas9 genome editing to generate WDR5B knockout and WDR5B-FLAG knock-in cell lines for further characterization. In contrast to WDR5, WDR5B exhibits low expression in pluripotent cells and is upregulated upon neural differentiation. Loss or shRNA depletion of WDR5B impairs cell growth and increases the fraction of non-viable cells in proliferating retinal pigment epithelial (RPE) cultures. CUT&RUN chromatin profiling in RPE and neural progenitors indicates minimal WDR5B enrichment at established WDR5 binding sites. These results suggest that WDR5 and WDR5B exhibit several divergent biological properties despite sharing a high degree of sequence homology.
Collapse
Affiliation(s)
- Jeffrey K. Bailey
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Dennis O. Clegg
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
15
|
Morgan AT, Amor DJ, St John MD, Scheffer IE, Hildebrand MS. Genetic architecture of childhood speech disorder: a review. Mol Psychiatry 2024; 29:1281-1292. [PMID: 38366112 PMCID: PMC11189821 DOI: 10.1038/s41380-024-02409-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Severe speech disorders lead to poor literacy, reduced academic attainment and negative psychosocial outcomes. As early as the 1950s, the familial nature of speech disorders was recognized, implying a genetic basis; but the molecular genetic basis remained unknown. In 2001, investigation of a large three generational family with severe speech disorder, known as childhood apraxia of speech (CAS), revealed the first causative gene; FOXP2. A long hiatus then followed for CAS candidate genes, but in the past three years, genetic analysis of cohorts ascertained for CAS have revealed over 30 causative genes. A total of 36 pathogenic variants have been identified from 122 cases across 3 cohorts in this nascent field. All genes identified have been in coding regions to date, with no apparent benefit at this stage for WGS over WES in identifying monogenic conditions associated with CAS. Hence current findings suggest a remarkable one in three children have a genetic variant that explains their CAS, with significant genetic heterogeneity emerging. Around half of the candidate genes identified are currently supported by medium (6 genes) to strong (9 genes) evidence supporting the association between the gene and CAS. Despite genetic heterogeneity; many implicated proteins functionally converge on pathways involved in chromatin modification or transcriptional regulation, opening the door to precision diagnosis and therapies. Most of the new candidate genes for CAS are associated with previously described neurodevelopmental conditions that include intellectual disability, autism and epilepsy; broadening the phenotypic spectrum to a distinctly milder presentation defined by primary speech disorder in the setting of normal intellect. Insights into the genetic bases of CAS, a severe, rare speech disorder, are yet to translate to understanding the heritability of more common, typically milder forms of speech or language impairment such as stuttering or phonological disorder. These disorders likely follow complex inheritance with polygenic contributions in many cases, rather than the monogenic patterns that underly one-third of patients with CAS. Clinical genetic testing for should now be implemented for individuals with CAS, given its high diagnostic rate, which parallels many other neurodevelopmental disorders where this testing is already standard of care. The shared mechanisms implicated by gene discovery for CAS highlight potential new targets for future precision therapies.
Collapse
Affiliation(s)
- Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia.
- Speech Pathology, Royal Children's Hospital, Melbourne, VIC, Australia.
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Miya D St John
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Speech Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Michael S Hildebrand
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
17
|
Streeter SA, Williams AG, Evans JR, Wang J, Guarnaccia AD, Florian AC, Al-Tobasei R, Liu Q, Tansey WP, Weissmiller AM. Mitotic gene regulation by the N-MYC-WDR5-PDPK1 nexus. BMC Genomics 2024; 25:360. [PMID: 38605297 PMCID: PMC11007937 DOI: 10.1186/s12864-024-10282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.
Collapse
Affiliation(s)
- Sarah A Streeter
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexandria G Williams
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - James R Evans
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, 94080, USA
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biology, Belmont University, Nashville, TN, 37212, USA
| | - Rafet Al-Tobasei
- Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
18
|
Ahmad M, Imran A, Movileanu L. Overlapping characteristics of weak interactions of two transcriptional regulators with WDR5. Int J Biol Macromol 2024; 258:128969. [PMID: 38158065 PMCID: PMC10922662 DOI: 10.1016/j.ijbiomac.2023.128969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The WD40 repeat protein 5 (WDR5) is a nuclear hub that critically influences gene expression by interacting with transcriptional regulators. Utilizing the WDR5 binding motif (WBM) site, WDR5 interacts with the myelocytomatosis (MYC), an oncoprotein transcription factor, and the retinoblastoma-binding protein 5 (RbBP5), a scaffolding element of an epigenetic complex. Given the clinical significance of these protein-protein interactions (PPIs), there is a pressing necessity for a quantitative assessment of these processes. Here, we use biolayer interferometry (BLI) to examine interactions of WDR5 with consensus peptide ligands of MYC and RbBP5. We found that both interactions exhibit relatively weak affinities arising from a fast dissociation process. Remarkably, live-cell imaging identified distinctive WDR5 localizations in the absence and presence of full-length binding partners. Although WDR5 tends to accumulate within nucleoli, WBM-mediated interactions with MYC and RbBP5 require their localization outside nucleoli. We utilize fluorescence resonance energy transfer (FRET) microscopy to confirm these weak interactions through a low FRET efficiency of the MYC-WDR5 and RbBP5-WDR5 complexes in living cells. In addition, we evaluate the impact of peptide and small-molecule inhibitors on these interactions. These outcomes form a fundamental basis for further developments to clarify the multitasking role of the WBM binding site of WDR5.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
19
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Weissmiller AM, Fesik SW, Tansey WP. WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think. J Clin Med 2024; 13:274. [PMID: 38202281 PMCID: PMC10779565 DOI: 10.3390/jcm13010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation-a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited.
Collapse
Affiliation(s)
- April M. Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 32132, USA;
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
21
|
Teuscher KB, Mills JJ, Tian J, Han C, Meyers KM, Sai J, South TM, Crow MM, Van Meveren M, Sensintaffar JL, Zhao B, Amporndanai K, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-Based Discovery of Potent, Orally Bioavailable Benzoxazepinone-Based WD Repeat Domain 5 Inhibitors. J Med Chem 2023; 66:16783-16806. [PMID: 38085679 DOI: 10.1021/acs.jmedchem.3c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The chromatin-associated protein WDR5 (WD repeat domain 5) is an essential cofactor for MYC and a conserved regulator of ribosome protein gene transcription. It is also a high-profile target for anti-cancer drug discovery, with proposed utility against both solid and hematological malignancies. We have previously discovered potent dihydroisoquinolinone-based WDR5 WIN-site inhibitors with demonstrated efficacy and safety in animal models. In this study, we sought to optimize the bicyclic core to discover a novel series of WDR5 WIN-site inhibitors with improved potency and physicochemical properties. We identified the 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one core as an alternative scaffold for potent WDR5 inhibitors. Additionally, we used X-ray structural analysis to design partially saturated bicyclic P7 units. These benzoxazepinone-based inhibitors exhibited increased cellular potency and selectivity and favorable physicochemical properties compared to our best-in-class dihydroisoquinolinone-based counterparts. This study opens avenues to discover more advanced WDR5 WIN-site inhibitors and supports their development as novel anti-cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232-0142, United States
| | | | | | | | | | | | | | | | | | | | - William J Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Gordon M Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701-4907, United States
| | | | | | - Stephen W Fesik
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0142, United States
| |
Collapse
|
22
|
Chen Y, Su H, Zhao J, Na Z, Jiang K, Bacchiocchi A, Loh KH, Halaban R, Wang Z, Cao X, Slavoff SA. Unannotated microprotein EMBOW regulates the interactome and chromatin and mitotic functions of WDR5. Cell Rep 2023; 42:113145. [PMID: 37725512 PMCID: PMC10629662 DOI: 10.1016/j.celrep.2023.113145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The conserved WD40-repeat protein WDR5 interacts with multiple proteins both inside and outside the nucleus. However, it is currently unclear whether and how the distribution of WDR5 between complexes is regulated. Here, we show that an unannotated microprotein EMBOW (endogenous microprotein binder of WDR5) dually encoded in the human SCRIB gene interacts with WDR5 and regulates its binding to multiple interaction partners, including KMT2A and KIF2A. EMBOW is cell cycle regulated, with two expression maxima at late G1 phase and G2/M phase. Loss of EMBOW decreases WDR5 interaction with KIF2A, aberrantly shortens mitotic spindle length, prolongs G2/M phase, and delays cell proliferation. In contrast, loss of EMBOW increases WDR5 interaction with KMT2A, leading to WDR5 binding to off-target genes, erroneously increasing H3K4me3 levels, and activating transcription of these genes. Together, these results implicate EMBOW as a regulator of WDR5 that regulates its interactions and prevents its off-target binding in multiple contexts.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Jianing Zhao
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ken H Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhentian Wang
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
23
|
Yang R, Liu N, Li T, Liu F, Zhang J, Zhao H, Zou L, He X. LncRNA AC142119.1 facilitates the progression of neuroblastoma by epigenetically initiating the transcription of MYCN. J Transl Med 2023; 21:659. [PMID: 37741985 PMCID: PMC10518117 DOI: 10.1186/s12967-023-04535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Oncogene MYCN is closely related with malignant progression and poor prognosis of neuroblastoma (NB). Recently, long non-coding RNAs (lncRNAs) have been recognized as crucial regulators in various cancers. However, whether lncRNAs contribute to the overexpression of MYCN in NB is unclear. METHODS Microarray analysis were applied to analyze the differentially expressed lncRNAs between MYCN-amplified and MYCN-non-amplified NB cell lines. Bioinformatic analyses were utilized to identify lncRNAs nearby MYCN locus. qRT-PCR was used to detect the expression level of lncRNA AC142119.1 in NB cell lines and tissues. Gain- and loss-of-function assays were conducted to investigate the biological effect of AC142119.1 in NB. Fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, mass spectrometry, RNA electrophoretic mobility shift, chromatin immunoprecipitation and chromatin isolation by RNA purification assays were performed to validate the interaction between AC142119.1 and WDR5 protein as well as MYCN promoter. RESULTS AC142119.1 was significantly elevated in NB tissues with MYCN amplification, advanced INSS stage and high risk, and associated with poor survival of NB patients. Moreover, enforced expression of AC142119.1 reinforced the proliferation of NB cells in vitro and in vivo. Additionally, AC142119.1 specifically recruited WDR5 protein to interact with MYCN promoter, further initiating the transcription of MYCN and accelerating NB progression. CONCLUSIONS We identified a novel lncRNA AC142119.1, which promoted the progression of NB through epigenetically initiating the transcription of MYCN via interacting with both WDR5 protein and the promoter of MYCN, indicating that AC142119.1 might be a potential diagnostic biomarker and therapeutic target for NB.
Collapse
Affiliation(s)
- Rui Yang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Nanjing Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Fangjie Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Zhang
- Department of Oncological Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Lin Zou
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Clinical Research Unit, Children's Hospital of Shanghai Jiaotong University School of Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200062, China.
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
24
|
Mouti MA, Deng S, Pook M, Malzahn J, Rendek A, Militi S, Nibhani R, Soonawalla Z, Oppermann U, Hwang CI, Pauklin S. KMT2A associates with PHF5A-PHF14-HMG20A-RAI1 subcomplex in pancreatic cancer stem cells and epigenetically regulates their characteristics. Nat Commun 2023; 14:5685. [PMID: 37709746 PMCID: PMC10502114 DOI: 10.1038/s41467-023-41297-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Pancreatic cancer (PC), one of the most aggressive and life-threatening human malignancies, is known for its resistance to cytotoxic therapies. This is increasingly ascribed to the subpopulation of undifferentiated cells, known as pancreatic cancer stem cells (PCSCs), which display greater evolutionary fitness than other tumor cells to evade the cytotoxic effects of chemotherapy. PCSCs are crucial for tumor relapse as they possess 'stem cell-like' features that are characterized by self-renewal and differentiation. However, the molecular mechanisms that maintain the unique characteristics of PCSCs are poorly understood. Here, we identify the histone methyltransferase KMT2A as a physical binding partner of an RNA polymerase-associated PHF5A-PHF14-HMG20A-RAI1 protein subcomplex and an epigenetic regulator of PCSC properties and functions. Targeting the protein subcomplex in PCSCs with a KMT2A-WDR5 inhibitor attenuates their self-renewal capacity, cell viability, and in vivo tumorigenicity.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Siwei Deng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Jessica Malzahn
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aniko Rendek
- Department of Histopathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford, UK
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, USA
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Thammathong J, Chisam KB, Tessmer GE, Womack CB, Sidrak MM, Weissmiller AM, Banerjee S. Fused Imidazopyrazine-Based Tubulin Polymerization Inhibitors Inhibit Neuroblastoma Cell Function. ACS Med Chem Lett 2023; 14:1284-1294. [PMID: 37736192 PMCID: PMC10510670 DOI: 10.1021/acsmedchemlett.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Targeting the colchicine binding site on tubulin is a promising approach for cancer treatment to overcome the limitations of current tubulin polymerization inhibitors. New classes of colchicine binding site inhibitors (CBSIs) are continually being uncovered; however, balancing metabolic stability and cellular potency remains an issue that needs to be resolved. Therefore, we designed and synthesized a series of novel fused imidazopyridine and -pyrazine CBSIs and evaluated their cellular activity, metabolic stability, and tubulin-binding properties. Evidence shows that the imidazo[1,2-a]pyrazine series are effective against neuroblastoma cell lines marked by MYCN amplification. Further assessment shows that a combination of an imidazo[1,2-a]pyrazine core with a trimethoxyphenyl ring D results in the highest cellular activity and binding characteristics compared with a dichloromethoxyphenyl or difluoromethoxyphenyl ring D. However, the metabolic stability of compounds with a dichloromethoxyphenyl or difluoromethoxyphenyl ring D is significantly higher than that of those containing a trimethoxyphenyl ring D, suggesting that improved metabolic stability is achieved with a moderate impact on potency.
Collapse
Affiliation(s)
- Joshua Thammathong
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Kaylee B. Chisam
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Garrett E. Tessmer
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Carl B. Womack
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Mario M. Sidrak
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - April M. Weissmiller
- Department
of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Souvik Banerjee
- Department
of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
26
|
Bumpous LA, Moe KC, Wang J, Carver LA, Williams AG, Romer AS, Scobee JD, Maxwell JN, Jones CA, Chung DH, Tansey WP, Liu Q, Weissmiller AM. WDR5 facilitates recruitment of N-MYC to conserved WDR5 gene targets in neuroblastoma cell lines. Oncogenesis 2023; 12:32. [PMID: 37336886 PMCID: PMC10279693 DOI: 10.1038/s41389-023-00477-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Collectively, the MYC family of oncoprotein transcription factors is overexpressed in more than half of all malignancies. The ability of MYC proteins to access chromatin is fundamental to their role in promoting oncogenic gene expression programs in cancer and this function depends on MYC-cofactor interactions. One such cofactor is the chromatin regulator WDR5, which in models of Burkitt lymphoma facilitates recruitment of the c-MYC protein to chromatin at genes associated with protein synthesis, allowing for tumor progression and maintenance. However, beyond Burkitt lymphoma, it is unknown whether these observations extend to other cancers or MYC family members, and whether WDR5 can be deemed as a "universal" MYC recruiter. Here, we focus on N-MYC amplified neuroblastoma to determine the extent of colocalization between N-MYC and WDR5 on chromatin while also demonstrating that like c-MYC, WDR5 can facilitate the recruitment of N-MYC to conserved WDR5-bound genes. We conclude based on this analysis that N-MYC and WDR5 colocalize invariantly across cell lines at predicted sites of facilitated recruitment associated with protein synthesis genes. Surprisingly, we also identify N-MYC-WDR5 cobound genes that are associated with DNA repair and cell cycle processes. Dissection of chromatin binding characteristics for N-MYC and WDR5 at all cobound genes reveals that sites of facilitated recruitment are inherently different than most N-MYC-WDR5 cobound sites. Our data reveals that WDR5 acts as a universal MYC recruiter at a small cohort of previously identified genes and highlights novel biological functions that may be coregulated by N-MYC and WDR5 to sustain the neuroblastoma state.
Collapse
Affiliation(s)
- Leigh A Bumpous
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Kylie C Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Logan A Carver
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexandria G Williams
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Alexander S Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jesse D Scobee
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jack N Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Dai H Chung
- Department of Pediatric Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, 75234, USA
| | - William P Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
27
|
Mocciaro E, Giambruno R, Micheloni S, Cernilogar FM, Andolfo A, Consonni C, Pannese M, Ferri G, Runfola V, Schotta G, Gabellini D. WDR5 is required for DUX4 expression and its pathological effects in FSHD muscular dystrophy. Nucleic Acids Res 2023; 51:5144-5161. [PMID: 37021550 PMCID: PMC10250208 DOI: 10.1093/nar/gkad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent neuromuscular disorders. The disease is linked to copy number reduction and/or epigenetic alterations of the D4Z4 macrosatellite on chromosome 4q35 and associated with aberrant gain of expression of the transcription factor DUX4, which triggers a pro-apoptotic transcriptional program leading to muscle wasting. As today, no cure or therapeutic option is available to FSHD patients. Given its centrality in FSHD, blocking DUX4 expression with small molecule drugs is an attractive option. We previously showed that the long non protein-coding RNA DBE-T is required for aberrant DUX4 expression in FSHD. Using affinity purification followed by proteomics, here we identified the chromatin remodeling protein WDR5 as a novel DBE-T interactor and a key player required for the biological activity of the lncRNA. We found that WDR5 is required for the expression of DUX4 and its targets in primary FSHD muscle cells. Moreover, targeting WDR5 rescues both cell viability and myogenic differentiation of FSHD patient cells. Notably, comparable results were obtained by pharmacological inhibition of WDR5. Importantly, WDR5 targeting was safe to healthy donor muscle cells. Our results support a pivotal role of WDR5 in the activation of DUX4 expression identifying a druggable target for an innovative therapeutic approach for FSHD.
Collapse
Affiliation(s)
- Emanuele Mocciaro
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Roberto Giambruno
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano Micheloni
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Consonni
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Pannese
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Ferri
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Valeria Runfola
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
28
|
Liu X, Wang A, Shi Y, Dai M, Liu M, Cai HB. PROTACs in Epigenetic Cancer Therapy: Current Status and Future Opportunities. Molecules 2023; 28:molecules28031217. [PMID: 36770884 PMCID: PMC9919707 DOI: 10.3390/molecules28031217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
The epigenetic regulation of gene functions has been proven to be strongly associated with the development and progression of cancer. Reprogramming the cancer epigenome landscape is one of the most promising target therapies in both treatments and in reversing drug resistance. Proteolytic targeted chimeras (PROTACs) are an emerging therapeutic modality for selective degradation via the native ubiquitin-proteasome system. Rapid advances in PROTACs have facilitated the exploration of targeting epigenetic proteins, a lot of PROTAC degraders have already been designed in the field of epigenetic cancer therapy, and PROTACs targeting epigenetic proteins can better exploit target druggability and improve the mechanistic understanding of the epigenetic regulation of cancer. Thus, this review focuses on the progress made in the development of PROTAC degraders and PROTAC drugs targeting epigenetics in cancer and discusses challenges and future opportunities for the field.
Collapse
Affiliation(s)
- Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Yuying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
- Correspondence: (M.D.); (H.-B.C.)
| | - Miao Liu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Bing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Wuhan 430071, China
- Correspondence: (M.D.); (H.-B.C.)
| |
Collapse
|
29
|
Teuscher KB, Chowdhury S, Meyers KM, Tian J, Sai J, Van Meveren M, South TM, Sensintaffar JL, Rietz TA, Goswami S, Wang J, Grieb BC, Lorey SL, Howard GC, Liu Q, Moore WJ, Stott GM, Tansey WP, Lee T, Fesik SW. Structure-based discovery of potent WD repeat domain 5 inhibitors that demonstrate efficacy and safety in preclinical animal models. Proc Natl Acad Sci U S A 2023; 120:e2211297120. [PMID: 36574664 PMCID: PMC9910433 DOI: 10.1073/pnas.2211297120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/30/2022] [Indexed: 12/28/2022] Open
Abstract
WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Somenath Chowdhury
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Kenneth M. Meyers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Jianhua Tian
- Molecular Design and Synthesis Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN37232-0142
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Mayme Van Meveren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Taylor M. South
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - John L. Sensintaffar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Tyson A. Rietz
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232-0004
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232-0004
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232-0011
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232-0004
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232-0004
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37232-0146
- Department of Chemistry, Vanderbilt University, Nashville, TN37232-0146
| |
Collapse
|
30
|
Yang K, Yu C, Ruan L, Hu S, Zhu W, Xia F. MiR-193-3p inhibits the malignant progression of atherosclerosis by targeting WDR5. Clin Appl Thromb Hemost 2022; 28:10760296221119458. [PMID: 36523143 PMCID: PMC9768835 DOI: 10.1177/10760296221119458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The aberrantly increased proliferation and migration of vascular smooth muscle cells (VSMCs) was critically associated with atherosclerosis (AS) progression. MiR-197-3p has been confirmed to regulate various biological processes, such as tumorigenesis; however, whether miR-197-3p is involved with the pathological development of AS remains largely unknown. METHODS The serum levels of miR-197-3p in AS patients and healthy donors were determined by polymerase chain reaction (PCR) assay. The transfection efficacies of miR-197-3p mimic or inhibitor in VSMCs were evaluated by PCR assay. The effects of miR-197-3p on VSMC proliferation and migration were determined by EdU cell proliferation and Traswell migration assays. Western blotting was conducted to evaluate the effect of miR-197-3p on WDR5 expression in VSMCs. RESULTS In the present study, we found that the expression of miR-197-3p was decreased in the serum of AS patients compared to healthy donors. Overexpression of miR-197-3p inhibited the proliferation and migration of VSMCs, while silencing miR-197-3p showed opposite effects. Mechanistical study revealed that WD Repeat Domain 5 (WDR5) was a target of miR-197-3p. Moreover, miR-197-3p was downregulated in VSMCs upon IL6 treatment and inhibited IL6-induced proliferation and migration in VSMCs. CONCLUSIONS These findings indicate that miR-197-3p could serve as a promising diagnostic marker for AS and that targeting IL6/miR-197-3p/WDR5 axis might be a potential approach to treat AS.
Collapse
Affiliation(s)
- Kai Yang
- Department of Cardiovascular Surgery, WuHan Asia General Hospital, Wuhan City, Hubei Province, China
| | - Chunjun Yu
- Department of Cardiovascular Surgery, WuHan Asia General Hospital, Wuhan City, Hubei Province, China
| | - Lin Ruan
- Department of Cardiovascular Surgery, WuHan Asia General Hospital, Wuhan City, Hubei Province, China
| | - Shengpeng Hu
- Department of Cardiovascular Surgery, WuHan Asia General Hospital, Wuhan City, Hubei Province, China
| | - Wenjie Zhu
- Department of Cardiovascular Surgery, WuHan Asia General Hospital, Wuhan City, Hubei Province, China
| | - Feng Xia
- Department of Cardiovascular Surgery, WuHan Asia General Hospital, Wuhan City, Hubei Province, China,Feng Xia, WuHan Asia General Hospital, No. 300, Taizihu North Road, Hanyang District, Wuhan City, Hubei Province, 430050, China.
| |
Collapse
|
31
|
Yuan J, Peng H, Mo B, Yin C, Fang G, Li Y, Wang Y, Chen R, Wang Q. Inhibition of Wdr5 Attenuates Ang-II-Induced Fibroblast-to-Myofibroblast Transition in Cardiac Fibrosis by Regulating Mdm2/P53/P21 Pathway. Biomolecules 2022; 12:1574. [PMID: 36358925 PMCID: PMC9687631 DOI: 10.3390/biom12111574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Cardiac fibrosis is an important pathological process in many diseases. Wdr5 catalyzes the trimethylation of lysine K4 on histone H3. The effects of Wdr5 on the cardiac fibrosis phenotype and the activation or transformation of cardiac fibroblasts were investigated by Ang-II-infused mice by osmotic mini-pump and isolated primary neonatal rat cardiac fibroblasts. We found that the Wdr5 expression and histone H3K4me3 modification were significantly increased in Ang-II-infused mice. By stimulating primary neonatal rat cardiac fibroblasts with Ang II, we detected that the expression of Wdr5 and H3K4me3 modification were also significantly increased. Two Wdr5-specific inhibitors, and the lentivirus that transfected Sh-Wdr5, were used to treat primary mouse cardiac fibroblasts, which not only inhibited the histone methylation by Wdr5 but also significantly reduced the activation and migration ability of Ang-II-treated fibroblasts. To explore its mechanism, we found that the inhibition of Wdr5 increased the expression of P53, P21. Cut&Tag-qPCR showed that the inhibition of Wdr5 significantly reduced the enrichment of H3K4me3 in the Mdm2 promoter region. For in vivo experiments, we finally proved that the Wdr5 inhibitor OICR9429 significantly reduced Ang-II-induced cardiac fibrosis and increased the expression of P21 in cardiac fibroblasts. Inhibition of Wdr5 may mediate cardiac fibroblast cycle arrest through the Mdm2/P53/P21 pathway and alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Hong Peng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Renhua Chen
- Department of Cardiology, Quanzhou Hospital of Traditional Chinese Medicine, #388 SunJiang Road, Quanzhou 362000, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| |
Collapse
|
32
|
Cai WL, Chen JFY, Chen H, Wingrove E, Kurley SJ, Chan LH, Zhang M, Arnal-Estape A, Zhao M, Balabaki A, Li W, Yu X, Krop ED, Dou Y, Liu Y, Jin J, Westbrook TF, Nguyen DX, Yan Q. Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation. eLife 2022; 11:e78163. [PMID: 36043466 PMCID: PMC9584608 DOI: 10.7554/elife.78163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/24/2022] [Indexed: 12/26/2022] Open
Abstract
Metastatic breast cancer remains a major cause of cancer-related deaths in women, and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, a combination of WDR5 targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Wesley L Cai
- Hillman Cancer Center, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Pathology, Yale UniversityNew HavenUnited States
| | | | - Huacui Chen
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Emily Wingrove
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Sarah J Kurley
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Lok Hei Chan
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Meiling Zhang
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Anna Arnal-Estape
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
| | - Minghui Zhao
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Amer Balabaki
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Wenxue Li
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ethan D Krop
- Department of Pathology, Yale UniversityNew HavenUnited States
- Department of Biosciences, Rice University,HoustonUnited States
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann ArborAnn ArborUnited States
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Yansheng Liu
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Thomas F Westbrook
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Don X Nguyen
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Stem Cell Center, Yale School of MedicineNew HavenUnited States
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine,New HavenUnited States
| | - Qin Yan
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Stem Cell Center, Yale School of MedicineNew HavenUnited States
- Yale Center for Immuno-Oncology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
33
|
Imran A, Moyer BS, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Convergent Alterations of a Protein Hub Produce Divergent Effects within a Binding Site. ACS Chem Biol 2022; 17:1586-1597. [PMID: 35613319 PMCID: PMC9207812 DOI: 10.1021/acschembio.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
| | - Dan Kalina
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Thomas M. Duncan
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Kelsey J. Moody
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
34
|
Florian AC, Woodley CM, Wang J, Grieb BC, Slota MJ, Guerrazzi K, Hsu CY, Matlock B, Flaherty D, Lorey S, Fesik SW, Howard G, Liu Q, Weissmiller A, Tansey W. Synergistic action of WDR5 and HDM2 inhibitors in SMARCB1-deficient cancer cells. NAR Cancer 2022; 4:zcac007. [PMID: 35252869 PMCID: PMC8892060 DOI: 10.1093/narcan/zcac007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of SMARCB1, which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of SMARCB1 is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation. Here, we characterize how WIN site inhibitors act in RT cells. As in leukemia cells, WIN site inhibition in RT cells causes the comprehensive displacement of WDR5 from chromatin, resulting in a decrease in protein synthesis gene expression. Unlike leukemia cells, however, the growth response of RT cells to WIN site blockade is independent of p53. Exploiting this observation, we demonstrate that WIN site inhibitor synergizes with an HDM2 antagonist to induce p53 and block RT cell proliferation in vitro. These data reveal a p53-independent action of WIN site inhibitors and forecast that future strategies to treat RT could be based on dual WDR5/HDM2 inhibition.
Collapse
Affiliation(s)
- Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian C Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
35
|
Mayse LA, Imran A, Larimi MG, Cosgrove MS, Wolfe AJ, Movileanu L. Disentangling the recognition complexity of a protein hub using a nanopore. Nat Commun 2022; 13:978. [PMID: 35190547 PMCID: PMC8861093 DOI: 10.1038/s41467-022-28465-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
WD40 repeat proteins are frequently involved in processing cell signaling and scaffolding large multi-subunit machineries. Despite their significance in physiological and disease-like conditions, their reversible interactions with other proteins remain modestly examined. Here, we show the development and validation of a protein nanopore for the detection and quantification of WD40 repeat protein 5 (WDR5), a chromatin-associated hub involved in epigenetic regulation of histone methylation. Our nanopore sensor is equipped with a 14-residue Win motif of mixed lineage leukemia 4 methyltransferase (MLL4Win), a WDR5 ligand. Our approach reveals a broad dynamic range of MLL4Win-WDR5 interactions and three distant subpopulations of binding events, representing three modes of protein recognition. The three binding events are confirmed as specific interactions using a weakly binding WDR5 derivative and various environmental contexts. These outcomes demonstrate the substantial sensitivity of our nanopore sensor, which can be utilized in protein analytics. Nanopores are powerful tools for sampling protein-peptide interactions. Here, the authors convert a protein-based nanopore into a sensitive biosensor to characterize the complex binding of WDR5 protein to a 14-residue ligand.
Collapse
|
36
|
Siladi AJ, Wang J, Florian AC, Thomas LR, Creighton JH, Matlock BK, Flaherty DK, Lorey SL, Howard GC, Fesik SW, Weissmiller AM, Liu Q, Tansey WP. WIN site inhibition disrupts a subset of WDR5 function. Sci Rep 2022; 12:1848. [PMID: 35115608 PMCID: PMC8813994 DOI: 10.1038/s41598-022-05947-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
WDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me). Therapeutic application of WIN site inhibitors is complicated by the disparate functions of WDR5, but is generally guided by two assumptions-that WIN site inhibitors disable all functions of WDR5, and that changes in H3K4me drive the transcriptional response of cancer cells to WIN site blockade. Here, we test these assumptions by comparing the impact of WIN site inhibition versus WDR5 degradation on H3K4me and transcriptional processes. We show that WIN site inhibition disables only a specific subset of WDR5 activity, and that H3K4me changes induced by WDR5 depletion do not explain accompanying transcriptional responses. These data recast WIN site inhibitors as selective loss-of-function agents, contradict H3K4me as a relevant mechanism of action for WDR5 inhibitors, and indicate distinct clinical applications of WIN site inhibitors and WDR5 degraders.
Collapse
Affiliation(s)
- Andrew J Siladi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
- Oncocyte Corporation, 2 International Drive, Suite 510, Nashville, TN, 37217, USA
| | - Joy H Creighton
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 32132, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
37
|
Nguyen N, Gudmundsson KO, Soltis AR, Oakley K, Roy KR, Han Y, Gurnari C, Maciejewski JP, Crouch G, Ernst P, Dalgard CL, Du Y. Recruitment of MLL1 complex is essential for SETBP1 to induce myeloid transformation. iScience 2022; 25:103679. [PMID: 35036869 PMCID: PMC8749219 DOI: 10.1016/j.isci.2021.103679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal activation of SETBP1 due to overexpression or missense mutations occurs frequently in various myeloid neoplasms and associates with poor prognosis. Direct activation of Hoxa9/Hoxa10/Myb transcription by SETBP1 and its missense mutants is essential for their transforming capability; however, the underlying epigenetic mechanisms remain elusive. We found that both SETBP1 and its missense mutant SETBP1(D/N) directly interact with histone methyltransferase MLL1. Using a combination of ChIP-seq and RNA-seq analysis in primary hematopoietic stem and progenitor cells, we uncovered extensive overlap in their genomic occupancy and their cooperation in activating many oncogenic transcription factor genes including Hoxa9/Hoxa10/Myb and a large group of ribosomal protein genes. Genetic ablation of Mll1 as well as treatment with an inhibitor of the MLL1 complex OICR-9429 abrogated Setbp1/Setbp1(D/N)-induced transcriptional activation and transformation. Thus, the MLL1 complex plays a critical role in Setbp1-induced transcriptional activation and transformation and represents a promising target for treating myeloid neoplasms with SETBP1 activation.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kristbjorn O. Gudmundsson
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anthony R. Soltis
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kevin Oakley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kartik R. Roy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yufen Han
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary Crouch
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
38
|
Yang C, Wang X, Qiu C, Zheng Z, Lin K, Tu M, Zhang K, Jiang K, Gao W. Identification of FEZ2 as a potential oncogene in pancreatic ductal adenocarcinoma. PeerJ 2022; 9:e12736. [PMID: 35036176 PMCID: PMC8742541 DOI: 10.7717/peerj.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the common malignant tumors with high lethal rate and poor prognosis. Dysregulation of many genes have been reported to be involved in the occurrence and development of PDAC. However, as a highly conserved gene in eukaryotes, the role of Fasciculation and Elongation protein Zeta 2 (FEZ2) in pancreatic cancer progression is not clear. In this study, we identified the oncogenic effect of FEZ2 on PDAC. By mining of The Cancer Genome Atlas (TCGA) database, we found that FEZ2 was upregulated in PDAC tissues and FEZ2 expression was negatively regulated by its methylation. Moreover, high expression and low methylation of FEZ2 correlated with poor prognosis in PDAC patients. Besides, we found that FEZ2 could promote PDAC cells proliferation, migration and 5-FU resistance in vitro. Furthermore, Gene pathway enrichment analysis demonstrated a positive correlation between Wnt signaling activation and FEZ2 expression in PDAC patients. Western blot showed that FEZ2 knockdown significantly suppressed β-catenin expression. Collectively, our finding revealed that FEZ2 functioned as a potential oncogene on PDAC progression and migration, and the expression of FEZ2 had guidance value for the treatment and chemotherapy program of PDAC patients.
Collapse
Affiliation(s)
- Chaozhi Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuebing Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenjie Qiu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ziruo Zheng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
39
|
Chi Z, Zhang B, Sun R, Wang Y, Zhang L, Xu G. USP44 accelerates the growth of T-cell acute lymphoblastic leukemia through interacting with WDR5 and repressing its ubiquitination. Int J Med Sci 2022; 19:2022-2032. [PMID: 36483601 PMCID: PMC9724245 DOI: 10.7150/ijms.74535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a common hematologic malignancy. Based on the data from GSE66638 and GSE141140, T-ALL patients depicted a higher USP44 level. However, its role in T-ALL is still unclear. In the present study, we investigated the role of USP44 in T-ALL growth. USP44 overexpression elevated the proliferation of CCRF-CEM cells, while USP44 knockdown suppressed the proliferation of Jurkat and MOLT-4 cells. In addition, USP44 accelerated the cell cycle progression, with boosted cyclinD and PCNA levels. However, USP44 knockdown induced apoptosis in Jurkat and MOLT-4 cells, with an upheaval among cleaved caspase-3 and PARP levels. Mechanistically, USP44 co-localized and interacted with WDR5, leading to the repression of its ubiquitination and degradation. Interestingly, WDR5 overexpression abolished the apoptosis induced by USP44 knockdown. Consistently, the in vivo study revealed that USP44 knockdown restricted the leukemic engraftments in the bone marrow and spleens and reduced the infiltration of T-ALL cells in the livers and lungs. In conclusion, this study indicated that USP44 enhanced the growth of T-ALL through interacting with WDR5 and repressing its ubiquitination. This study highlights the potential use of USP44 as a therapeutic target of T-ALL.
Collapse
Affiliation(s)
- Zuofei Chi
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bin Zhang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ruowen Sun
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ye Wang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Linlin Zhang
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Gang Xu
- The Second Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
40
|
Koch J, Lang A, Whongsiri P, Schulz WA, Hoffmann MJ, Greife A. KDM6A mutations promote acute cytoplasmic DNA release, DNA damage response and mitosis defects. BMC Mol Cell Biol 2021; 22:54. [PMID: 34702163 PMCID: PMC8549169 DOI: 10.1186/s12860-021-00394-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background KDM6A, encoding a histone demethylase, is one of the top ten mutated epigenetic cancer genes. The effect of mutations on its structure and function are however poorly characterized. Methods Database search identified nonsense and missense mutations in the N-terminal TPR motifs and the C-terminal, catalytic JmjC domain, but also in the intrinsically disordered region connecting both these two well-structured domains. KDM6A variants with cancer-derived mutations were generated using site directed mutagenesis and fused to eGFP serving as an all-in-one affinity and fluorescence tag to study demethylase activity by an ELISA-based assay in vitro, apoptosis by FACS, complex assembly by Co-immunoprecipitation and localization by microscopy in urothelial cells and apoptosis by FACS. Results Independent of the mutation and demethylase activity, all KDM6A variants were detectable in the nucleus. Truncated KDM6A variants displayed changes in complex assemblies affecting (1) known interactions with the COMPASS complex component RBBP5 and (2) KDM6A-DNA associated assemblies with the nuclear protein Nucleophosmin. Some KDM6A variants induced a severe cellular phenotype characterized by multiple acute effects on nuclear integrity, namely, release of nuclear DNA into the cytoplasm, increased level of DNA damage indicators RAD51 and p-γH2A.X, and mitosis defects. These damaging effects were correlated with increased cell death. Conclusion These observations reveal novel effects of pathogenic variants pointing at new specific functions of KDM6A variants. The underlying mechanisms and affected pathways have to be investigated in future research to understand how tumor cells cope with and benefit from KDM6A truncations. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00394-2.
Collapse
Affiliation(s)
- J Koch
- Department of Molecular Physical Chemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - A Lang
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - P Whongsiri
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkog, Bangkok, Thailand
| | - W A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - M J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - A Greife
- Department of Molecular Physical Chemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
41
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Zhao FY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119077. [PMID: 34111434 DOI: 10.1016/j.bbamcr.2021.119077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignant cancer, frequently due to its late diagnosis and high recurrence. Cancer stem cells (CSCs) from different malignancies including ovarian cancer have been linked to chemotherapy resistance and poor prognosis. Therefore, identifying the molecular mechanisms mediating therapy resistance is urgent to finding novel targets for therapy-resistant tumors. Aberrant O-glycosylation ascribed to subtle alteration of GALNT family members during malignant transformation facilitate metastasis in various cancers. The current study demonstrated that BAG3 was upregulated in platin-resistant ovarian cancer tissues and cells, and high BAG3 predicted dismal disease-free survival of patients with ovarian cancer. In addition, the current study showed that BAG3 facilitated CSC-like properties of ovarian cancer cells via regulation of GALTN10. In a term of mechanism, BAG3 epigenetically regulated GALNT10 transactivation via histone H3 lysine 4 (H3K4) presenter WDR5. We demonstrated that WDR5 increased H3K4 trimethylation (H3K4me3) modification at the promoter regions of GALNT10, facilitating recruitment of transcription factor ZBTB2 to the GALNT10 promoter. Collectively, our study uncovers an epigenetic upregulation of GALNT10 by BAG3 via WDR5 to facilitate CSCs of platin-resistant ovarian cancers, providing additional information for further identification of attractive targets with therapeutic significance in platin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China.
| |
Collapse
|
43
|
Chen X, Xu J, Wang X, Long G, You Q, Guo X. Targeting WD Repeat-Containing Protein 5 (WDR5): A Medicinal Chemistry Perspective. J Med Chem 2021; 64:10537-10556. [PMID: 34283608 DOI: 10.1021/acs.jmedchem.1c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is a member of the WD40 protein family, and it is widely involved in various biological activities and not limited to epigenetic regulation in vivo. WDR5 is also involved in the initiation and development of many diseases and plays a key role in these diseases. Since WDR5 was discovered, it has been suggested as a potential disease treatment target, and a large number of inhibitors targeting WDR5 have been discovered. In this review, we discussed the development of inhibitors targeting WDR5 over the years, and the biological mechanisms of these inhibitors based on previous mechanistic studies were explored. Finally, we describe the development potential of inhibitors targeting WDR5 and prospects for further applications.
Collapse
Affiliation(s)
- Xin Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junjie Xu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xianghan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guanlu Long
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
44
|
Boileau E, Altmüller J, Naarmann-de Vries IS, Dieterich C. A comparison of metabolic labeling and statistical methods to infer genome-wide dynamics of RNA turnover. Brief Bioinform 2021; 22:6315814. [PMID: 34228787 PMCID: PMC8574959 DOI: 10.1093/bib/bbab219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Metabolic labeling of newly transcribed RNAs coupled with RNA-seq is being increasingly used for genome-wide analysis of RNA dynamics. Methods including standard biochemical enrichment and recent nucleotide conversion protocols each require special experimental and computational treatment. Despite their immediate relevance, these technologies have not yet been assessed and benchmarked, and no data are currently available to advance reproducible research and the development of better inference tools. Here, we present a systematic evaluation and comparison of four RNA labeling protocols: 4sU-tagging biochemical enrichment, including spike-in RNA controls, SLAM-seq, TimeLapse-seq and TUC-seq. All protocols are evaluated based on practical considerations, conversion efficiency and wet lab requirements to handle hazardous substances. We also compute decay rate estimates and confidence intervals for each protocol using two alternative statistical frameworks, pulseR and GRAND-SLAM, for over 11 600 human genes and evaluate the underlying computational workflows for their robustness and ease of use. Overall, we demonstrate a high inter-method reliability across eight use case scenarios. Our results and data will facilitate reproducible research and serve as a resource contributing to a fuller understanding of RNA biology.
Collapse
Affiliation(s)
- Etienne Boileau
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Kön, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrük Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Isabel S Naarmann-de Vries
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Intensive Care Medicine, University Hospital Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim
| |
Collapse
|
45
|
Imran A, Moyer BS, Canning AJ, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Kinetics of the multitasking high-affinity Win binding site of WDR5 in restricted and unrestricted conditions. Biochem J 2021; 478:2145-2161. [PMID: 34032265 PMCID: PMC8214142 DOI: 10.1042/bcj20210253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Brandon S. Moyer
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
| | - Ashley J. Canning
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Dan Kalina
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Thomas M. Duncan
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Kelsey J. Moody
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Michael S. Cosgrove
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- The BioInspired Institute, Syracuse University, Syracuse, New York, 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
46
|
Dölle A, Adhikari B, Krämer A, Weckesser J, Berner N, Berger LM, Diebold M, Szewczyk MM, Barsyte-Lovejoy D, Arrowsmith CH, Gebel J, Löhr F, Dötsch V, Eilers M, Heinzlmeir S, Kuster B, Sotriffer C, Wolf E, Knapp S. Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. J Med Chem 2021; 64:10682-10710. [PMID: 33980013 DOI: 10.1021/acs.jmedchem.1c00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone H3K4 methylation serves as a post-translational hallmark of actively transcribed genes and is introduced by histone methyltransferase (HMT) and its regulatory scaffolding proteins. One of these is the WD-repeat-containing protein 5 (WDR5) that has also been associated with controlling long noncoding RNAs and transcription factors including MYC. The wide influence of dysfunctional HMT complexes and the typically upregulated MYC levels in diverse tumor types suggested WDR5 as an attractive drug target. Indeed, protein-protein interface inhibitors for two protein interaction interfaces on WDR5 have been developed. While such compounds only inhibit a subset of WDR5 interactions, chemically induced proteasomal degradation of WDR5 might represent an elegant way to target all oncogenic functions. This study presents the design, synthesis, and evaluation of two diverse WDR5 degrader series based on two WIN site binding scaffolds and shows that linker nature and length strongly influence degradation efficacy.
Collapse
Affiliation(s)
- Anja Dölle
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Janik Weckesser
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nicola Berner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lena-Marie Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Mathias Diebold
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Jakob Gebel
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Frank Löhr
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Volker Dötsch
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Christoph Sotriffer
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Charrier A, Xu X, Guan BJ, Ngo J, Wynshaw-Boris A, Hatzoglou M, Buchner DA. Adipocyte-specific deletion of zinc finger protein 407 results in lipodystrophy and insulin resistance in mice. Mol Cell Endocrinol 2021; 521:111109. [PMID: 33285243 PMCID: PMC7813145 DOI: 10.1016/j.mce.2020.111109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023]
Abstract
PPARγ deficiency in humans and model organisms impairs the transcriptional control of adipogenesis and mature adipocyte function resulting in lipodystrophy and insulin resistance. Zinc finger protein 407 (ZFP407) positively regulates PPARγ target gene expression and insulin-stimulated glucose uptake in cultured adipocytes. The in vivo physiological role of ZFP407 in mature adipocytes, however, remains to be elucidated. Here we generated adipocyte-specific ZFP407 knockout (AZKO) mice and discovered a partial lipodystrophic phenotype with reduced fat mass, hypertrophic adipocytes in inguinal and brown adipose tissue, and reduced adipogenic gene expression. The lipodystrophy was further exacerbated in AZKO mice fed a high-fat diet. Glucose and insulin tolerance tests revealed decreased insulin sensitivity in AZKO mice compared to control littermates. Cell-based assays demonstrated that ZFP407 is also required for adipogenesis, which may also contribute to the lipodystrophic phenotype. These results demonstrate an essential in vivo role of ZFP407 in brown and white adipose tissue formation and organismal insulin sensitivity.
Collapse
Affiliation(s)
- Alyssa Charrier
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xuan Xu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Justine Ngo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
48
|
Guarnaccia AD, Rose KL, Wang J, Zhao B, Popay TM, Wang CE, Guerrazzi K, Hill S, Woodley CM, Hansen TJ, Lorey SL, Shaw JG, Payne WG, Weissmiller AM, Olejniczak ET, Fesik SW, Liu Q, Tansey WP. Impact of WIN site inhibitor on the WDR5 interactome. Cell Rep 2021; 34:108636. [PMID: 33472061 PMCID: PMC7871196 DOI: 10.1016/j.celrep.2020.108636] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition. We show that the WIN site inhibitor alters the interaction of WDR5 with dozens of proteins, including those linked to phosphatidylinositol 3-kinase (PI3K) signaling. As proof of concept, we demonstrate that the master kinase PDPK1 is a bona fide high-affinity WIN site binding protein that engages WDR5 to modulate transcription of genes expressed in the G2 phase of the cell cycle. This dataset expands our understanding of WDR5 and serves as a resource for deciphering the action of WIN site inhibitors.
Collapse
Affiliation(s)
- Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christina E Wang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Grace Shaw
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William G Payne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Edward T Olejniczak
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
49
|
Popay TM, Wang J, Adams CM, Howard GC, Codreanu SG, Sherrod SD, McLean JA, Thomas LR, Lorey SL, Machida YJ, Weissmiller AM, Eischen CM, Liu Q, Tansey WP. MYC regulates ribosome biogenesis and mitochondrial gene expression programs through its interaction with host cell factor-1. eLife 2021; 10:e60191. [PMID: 33416496 PMCID: PMC7793627 DOI: 10.7554/elife.60191] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies.
Collapse
Affiliation(s)
- Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Clare M Adams
- Department of Cancer Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Simona G Codreanu
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Stacy D Sherrod
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - John A McLean
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | | | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Christine M Eischen
- Department of Cancer Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
50
|
Nabet B. Charting a New Path Towards Degrading Every Protein. Chembiochem 2020; 22:483-484. [PMID: 33103843 DOI: 10.1002/cbic.202000531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Indexed: 11/07/2022]
Abstract
Strategies to directly alter protein abundance such as small-molecule-induced targeted protein degradation (TPD) are innovative pharmacological modalities with promising clinical potential. Herein, I describe my experience with the development of the degradation tag (dTAG) system, which is a chemical biology strategy to induce rapid and precise degradation of any target protein. Open-source collaborative discovery has been critical for advancing the versatility and accessibility of the dTAG system and will be necessary to understand the benefits and limits of TPD-based strategies in the clinic.
Collapse
Affiliation(s)
- Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|