1
|
Webster MW. Initiation of Translation in Bacteria and Chloroplasts. J Mol Biol 2025:169137. [PMID: 40221131 DOI: 10.1016/j.jmb.2025.169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Relative rates of protein synthesis in bacteria generally depend on the number of copies of a messenger RNA (mRNA) and the efficiency of their loading with ribosomes. Translation initiation involves the multi-stage assembly of the ribosome on the mRNA to begin protein synthesis. In bacteria, the small ribosomal subunit (30S) and mRNA form a complex that can be supported by RNA-protein and RNA-RNA interactions and is extensively modulated by mRNA folding. The initiator transfer RNA (tRNA) and large ribosomal subunit (50S) are recruited with aid of three initiation factors (IFs). Equivalent translation initiation processes occur in chloroplasts due to their endosymbiotic origin from photosynthetic bacteria. This review first summarizes the molecular basis of translation initiation in bacteria, highlighting recent insight into the initial, intermediate and late stages of the pathway obtained by structural analyses. The molecular basis of chloroplast translation initiation is then reviewed, integrating our mechanistic understanding of bacterial gene expression supported by detailed in vitro experiments with data on chloroplast gene expression derived primarily from genetic studies.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Alom M, Arpin D, Zhu H, Hay B, Foster L, Ortega J, Fredrick K. Protein bL38 facilitates incorporation of uL6 during assembly of the 50S subunit in Flavobacterium johnsoniae. Nucleic Acids Res 2025; 53:gkaf120. [PMID: 39997215 PMCID: PMC11851116 DOI: 10.1093/nar/gkaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Previous studies of the 70S ribosome from Flavobacterium johnsoniae revealed a novel ribosomal protein, bL38, which interacts with uL6 on the 50S subunit. This 5.6 kDa protein is conserved across the Bacteroidia and encoded downstream of bL28 and bL33 in a three-gene operon. Here, we show that bL38 is critical for the growth of F. johnsoniae, and depletion of bL38 leads to accumulation of immature 50S particles, which lack uL6 and retain precursor rRNA sequences. Cryo-EM analysis of these particles reveals several putative assembly intermediates, all showing an absence of electron density for uL6 and the entire uL12 stalk region and additional densities corresponding to the unprocessed ends of the pre-23S rRNA. Extra copies of the uL6 gene can rescue the phenotypes caused by bL38 depletion, suggesting that bL38 facilitates uL6 incorporation during 50S subunit biogenesis. Cryo-EM analysis of 50S particles from this rescued strain reveals nearly twice as many intermediates, suggesting a broader and more robust assembly landscape. Differential scanning fluorimetry shows that uL6 of F. johnsoniae is intrinsically unstable, and bL38 increases the melting temperature of uL6 by 12°C. Collectively, these data suggest that bL38 binds and stabilizes uL6, thereby promoting 50S biogenesis in the Bacteroidia.
Collapse
Affiliation(s)
- Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Dominic Arpin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Haojun Zhu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Brenna N Hay
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Bourgeois G, Coureux PD, Lazennec-Schurdevin C, Madru C, Gaillard T, Duchateau M, Chamot-Rooke J, Bourcier S, Mechulam Y, Schmitt E. Structures of Saccharolobus solfataricus initiation complexes with leaderless mRNAs highlight archaeal features and eukaryotic proximity. Nat Commun 2025; 16:348. [PMID: 39753558 PMCID: PMC11698992 DOI: 10.1038/s41467-024-55718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs. We characterize the small ribosomal subunit of S. solfataricus bound to SD-leadered or leaderless mRNAs. Cryo-EM structures show eS25, eS26 and eS30 bound to the small subunit. We identify two ribosomal proteins, aS33 and aS34, and an additional domain of eS6. Leaderless mRNAs are bound to the small subunit with contribution of their 5'-triphosphate group. Archaeal eS26 binds to the mRNA exit channel wrapped around the 3' end of rRNA, as in eukaryotes. Its position is not compatible with an SD:antiSD duplex. Our results suggest a positive role of eS26 in leaderless mRNAs translation and possible evolutionary routes from archaeal to eukaryotic translation.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, Lyon, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Clément Madru
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Thomas Gaillard
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
| |
Collapse
|
4
|
Ambrose A, Bahl S, Sharma S, Zhang D, Hung C, Jain-Ghai S, Chan A, Mercimek-Andrews S. Genetic landscape of primary mitochondrial diseases in children and adults using molecular genetics and genomic investigations of mitochondrial and nuclear genome. Orphanet J Rare Dis 2024; 19:424. [PMID: 39533303 PMCID: PMC11555972 DOI: 10.1186/s13023-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMD) are one of the most common metabolic genetic disorders. They are due to pathogenic variants in the mitochondrial genome (mtDNA) or nuclear genome (nDNA) that impair mitochondrial function and/or structure. We hypothesize that there is overlap between PMD and other genetic diseases that are mimicking PMD. For this reason, we performed a retrospective cohort study. METHODS All individuals with suspected PMD that underwent molecular genetic and genomic investigations were included. Individuals were grouped for comparison: (1) individuals with mtDNA-PMD; (2) individuals with nDNA-PMD; (3) individuals with other genetic diseases mimicking PMD (non-PMD); (4) individuals without a confirmed genetic diagnosis. RESULTS 297 individuals fulfilled inclusion criteria. The diagnostic yield of molecular genetics and genomic investigations was 31.3%, including 37% for clinical exome sequencing and 15.8% for mitochondrial genome sequencing. We identified 71 individuals with PMD (mtDNA n = 41, nDNA n = 30) and 22 individuals with non-PMD. Adults had higher percentage of mtDNA-PMD compared to children (p-value = 0.00123). There is a statistically significant phenotypic difference between children and adults with PMD. CONCLUSION We report a large cohort of individuals with PMD and the diagnostic yield of urine mitochondrial genome sequencing (16.1%). We think liver phenotype might be progressive and should be studied further in PMD. We showed a relationship between non-PMD genes and their indirect effects on mitochondrial machinery. Differentiation of PMD from non-PMD can be achieved using specific phenotypes as there was a statistically significant difference for muscular, cardiac, and ophthalmologic phenotypes, seizures, hearing loss, peripheral neuropathy in PMD group compared to non-PMD group.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Saloni Sharma
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Dan Zhang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
- Alberta Health Services, Edmonton Zone, AB, Canada.
| |
Collapse
|
5
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
6
|
Naeem FM, Gemler BT, McNutt ZA, Bundschuh R, Fredrick K. Analysis of programmed frameshifting during translation of prfB in Flavobacterium johnsoniae. RNA (NEW YORK, N.Y.) 2024; 30:136-148. [PMID: 37949662 PMCID: PMC10798248 DOI: 10.1261/rna.079721.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Ribosomes of Bacteroidia fail to recognize Shine-Dalgarno (SD) sequences due to sequestration of the 3' tail of the 16S rRNA on the 30S platform. Yet in these organisms, the prfB gene typically contains the programmed +1 frameshift site with its characteristic SD sequence. Here, we investigate prfB autoregulation in Flavobacterium johnsoniae, a member of the Bacteroidia. We find that the efficiency of prfB frameshifting in F. johnsoniae is low (∼7%) relative to that in Escherichia coli (∼50%). Mutation or truncation of bS21 in F. johnsoniae increases frameshifting substantially, suggesting that anti-SD (ASD) sequestration is responsible for the reduced efficiency. The frameshift site of certain Flavobacteriales, such as Winogradskyella psychrotolerans, has no SD. In F. johnsoniae, this W. psychrotolerans sequence supports frameshifting as well as the native sequence, and mutation of bS21 causes no enhancement. These data suggest that prfB frameshifting normally occurs without SD-ASD pairing, at least under optimal laboratory growth conditions. Chromosomal mutations that remove the frameshift or ablate the SD confer subtle growth defects in the presence of paraquat or streptomycin, respectively, indicating that both the autoregulatory mechanism and the SD element contribute to F. johnsoniae cell fitness. Analysis of prfB frameshift sites across 2686 representative bacteria shows loss of the SD sequence in many clades, with no obvious relationship to genome-wide SD usage. These data reveal unexpected variation in the mechanism of frameshifting and identify another group of organisms, the Verrucomicrobiales, that globally lack SD sequences.
Collapse
Affiliation(s)
- Fawwaz M Naeem
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
7
|
Estrada K, Garciarrubio A, Merino E. Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence. PLoS One 2024; 19:e0289914. [PMID: 38206950 PMCID: PMC10783764 DOI: 10.1371/journal.pone.0289914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/28/2023] [Indexed: 01/13/2024] Open
Abstract
Translation initiation in prokaryotes is mainly defined, although not exclusively, by the interaction between the anti-Shine-Dalgarno sequence (antiSD), located at the 3'-terminus of the 16S ribosomal RNA, and a complementary sequence, the ribosome binding site, or Shine-Dalgarno (SD), located upstream of the start codon in prokaryotic mRNAs. The antiSD has a conserved 5'-CCUCC-3' core, but inter-species variations have been found regarding the participation of flanking bases in binding. These variations have been described for certain bacteria and, to a lesser extent, for some archaea. To further analyze these variations, we conducted binding-energy prediction analyses on over 6,400 genomic sequences from both domains. We identified 15 groups of antiSD variants that could be associated with the organisms' phylogenetic origin. Additionally, our findings revealed that certain organisms exhibit variations in the core itself. Importantly, an unaltered core is not necessarily required for the interaction between the 3'-terminus of the rRNA and the region preceding the AUG of the mRNA. In our study, we classified organisms into four distinct categories: i) those possessing a conserved core and demonstrating binding; ii) those with a conserved core but lacking evidence of binding; iii) those exhibiting binding in the absence of a conserved core; and iv) those lacking both a conserved core and evidence of binding. Our results demonstrate the flexibility of organisms in evolving different sequences involved in translation initiation beyond the traditional Shine-Dalgarno sequence. These findings are discussed in terms of the evolution of translation initiation in prokaryotic organisms.
Collapse
Affiliation(s)
- Karel Estrada
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
- Massive Sequencing and Bioinformatics Unit, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Garciarrubio
- Department of Cell Engineering and Biocatalysis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
8
|
Sharma MR, Manjari SR, Agrawal EK, Keshavan P, Koripella RK, Majumdar S, Marcinkiewicz AL, Lin YP, Agrawal RK, Banavali NK. The structure of a hibernating ribosome in a Lyme disease pathogen. Nat Commun 2023; 14:6961. [PMID: 37907464 PMCID: PMC10618245 DOI: 10.1038/s41467-023-42266-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Swati R Manjari
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ekansh K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- University of California at Berkeley, Berkeley, CA, USA
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA, USA
| | - Soneya Majumdar
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | - Nilesh K Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
9
|
Nissley AJ, Kamal TS, Cate JHD. Interactions between terminal ribosomal RNA helices stabilize the E. coli large ribosomal subunit. RNA (NEW YORK, N.Y.) 2023; 29:1500-1508. [PMID: 37419664 PMCID: PMC10578474 DOI: 10.1261/rna.079690.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro. RNA tags in the Escherichia coli 50S subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild-type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.
Collapse
Affiliation(s)
- Amos J Nissley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Tammam S Kamal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Trautmann HS, Schmidt SS, Gregory ST, Ramsey KM. Ribosome heterogeneity results in leader sequence-mediated regulation of protein synthesis in Francisella tularensis. J Bacteriol 2023; 205:e0014023. [PMID: 37676009 PMCID: PMC10521369 DOI: 10.1128/jb.00140-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/07/2023] [Indexed: 09/08/2023] Open
Abstract
Although ribosomes are generally examined in aggregate, ribosomes can be heterogenous in composition. Evidence is accumulating that changes in ribosome composition may result in altered function, such that ribosome heterogeneity may provide a mechanism to regulate protein synthesis. Ribosome heterogeneity in the human pathogen Francisella tularensis results from incorporation of one of three homologs of bS21, a small ribosomal subunit protein demonstrated to regulate protein synthesis in other bacteria. Loss of one homolog, bS21-2, results in genome-wide post-transcriptional changes in protein abundance. This suggests that bS21-2 can, either directly or indirectly, lead to preferential translation of particular mRNAs. Here, we examine the potential of bS21-2 to function in a leader sequence-dependent manner and to function indirectly, via Hfq. We found that the 5´ untranslated region (UTR) of some bS21-2-responsive genes, including key virulence genes, is sufficient to alter translation in cells lacking bS21-2. We further identify features of a 5´ UTR that allow responsiveness to bS21-2. These include an imperfect Shine-Dalgarno sequence and a particular six nucleotide sequence. Our results are consistent with a model in which a bS21 homolog increases the efficiency of translation initiation through interactions with specific leader sequences. With respect to bS21-2 indirectly regulating translation via the RNA-binding protein Hfq, we found that Hfq controls transcript abundance rather than protein synthesis, impacting virulence gene expression via a distinct mechanism. Together, we determined that ribosome composition in F. tularensis regulates translation in a leader sequence-dependent manner, a regulatory mechanism which may be used in other bacteria. IMPORTANCE Ribosome heterogeneity is common in bacteria, and there is mounting evidence that ribosome composition plays a regulatory role in protein synthesis. However, mechanisms of ribosome-driven gene regulation are not well understood. In the human pathogen Francisella tularensis, which encodes multiple homologs for the ribosomal protein bS21, loss of one homolog impacts protein synthesis and virulence. Here, we explore the mechanism behind bS21-mediated changes in protein synthesis, finding that they can be linked to altered translation initiation and are dependent on specific sequences in the leaders of transcripts. Our data support a model in which ribosome composition regulates gene expression through translation, a strategy that may be conserved in diverse organisms with various sources of ribosome heterogeneity.
Collapse
Affiliation(s)
- Hannah S. Trautmann
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sierra S. Schmidt
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Steven T. Gregory
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathryn M. Ramsey
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
11
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Ghosh A, Bharmal MHM, Ghaleb AM, Nandana V, Schrader JM. Initiator AUGs Are Discriminated from Elongator AUGs Predominantly through mRNA Accessibility in C. crescentus. J Bacteriol 2023; 205:e0042022. [PMID: 37092987 PMCID: PMC10210977 DOI: 10.1128/jb.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
The initiation of translation in bacteria is thought to occur upon base pairing between the Shine-Dalgarno (SD) site in the mRNA and the anti-SD site in the rRNA. However, in many bacterial species, such as Caulobacter crescentus, a minority of mRNAs have SD sites. To examine the functional importance of SD sites in C. crescentus, we analyzed the transcriptome and found that more SD sites exist in the coding sequence than in the preceding start codons. To examine the function of SD sites in initiation, we designed a series of mutants with altered ribosome accessibility and SD content in translation initiation regions (TIRs) and in elongator AUG regions (EARs). A lack of mRNA structure content is required for initiation in TIRs, and, when introduced into EARs, can stimulate initiation, thereby suggesting that low mRNA structure content is a major feature that is required for initiation. SD sites appear to stimulate initiation in TIRs, which generally lack structure content, but SD sites only stimulate initiation in EARs if RNA secondary structures are destabilized. Taken together, these results suggest that the difference in secondary structure between TIRs and EARs directs ribosomes to start codons where SD base pairing can tune the efficiency of initiation, but SDs in EARs do not stimulate initiation, as they are blocked by stable secondary structures. This highlights the importance of studying translation initiation mechanisms in diverse bacterial species. IMPORTANCE Start codon selection is an essential process that is thought to occur via the base pairing of the rRNA to the SD site in the mRNA. This model is based on studies in E. coli, yet whole-genome sequencing revealed that SD sites are absent at start codons in many species. By examining the transcriptome of C. crescentus, we found more SD-AUG pairs in the CDS of mRNAs than preceding start codons, yet these internal sites do not initiate. Instead, start codon regions have lower mRNA secondary structure content than do internal SD-AUG regions. Therefore, we find that start codon selection is not controlled by the presence of SD sites, which tune initiation efficiency, but by lower mRNA structure content surrounding the start codon.
Collapse
Affiliation(s)
- Aishwarya Ghosh
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Amar M. Ghaleb
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jared M. Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
Sharma MR, Manjari SR, Agrawal EK, Keshavan P, Koripella RK, Majumdar S, Marcinkiewicz AL, Lin YP, Agrawal RK, Banavali NK. The structure of a hibernating ribosome in a Lyme disease pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537070. [PMID: 37131667 PMCID: PMC10153394 DOI: 10.1101/2023.04.16.537070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The spirochete bacterial pathogen Borrelia ( Borreliella) burgdorferi ( Bbu ) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. We determined the structure of the Bbu 70S ribosome by single particle cryo-electron microscopy (cryo-EM) at a resolution of 2.9 Å, revealing its distinctive features. In contrast to a previous study suggesting that the single hibernation promoting factor protein present in Bbu (bbHPF) may not bind to its ribosome, our structure reveals a clear density for bbHPF bound to the decoding center of the small ribosomal 30S subunit. The 30S subunit has a non-annotated ribosomal protein, bS22, that has been found only in mycobacteria and Bacteroidetes so far. The protein bL38, recently discovered in Bacteroidetes, is also present in the Bbu large 50S ribosomal subunit. The protein bL37, previously seen only in mycobacterial ribosomes, is replaced by an N-terminal α-helical extension of uL30, suggesting that the two bacterial ribosomal proteins uL30 and bL37 may have evolved from one longer uL30 protein. The longer uL30 protein interacts with both the 23S rRNA and the 5S rRNA, is near the peptidyl transferase center (PTC), and could impart greater stability to this region. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energies are predicted for antibiotics, bound to the decoding center or PTC and are in clinical use for Lyme disease, that account for subtle distinctions in antibiotic-binding regions in the Bbu ribosome structure. Besides revealing unanticipated structural and compositional features for the Bbu ribosome, our study thus provides groundwork to enable ribosome-targeted antibiotic design for more effective treatment of Lyme disease.
Collapse
|
14
|
Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick C. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Res 2023; 51:2915-2930. [PMID: 36864821 PMCID: PMC10085706 DOI: 10.1093/nar/gkad103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Acne vulgaris is a chronic disfiguring skin disease affecting ∼1 billion people worldwide, often having persistent negative effects on physical and mental health. The Gram-positive anaerobe, Cutibacterium acnes is implicated in acne pathogenesis and is, therefore, a main target for antibiotic-based acne therapy. We determined a 2.8-Å resolution structure of the 70S ribosome of Cutibacterium acnes by cryogenic electron microscopy and discovered that sarecycline, a narrow-spectrum antibiotic against Cutibacterium acnes, may inhibit two active sites of this bacterium's ribosome in contrast to the one site detected previously on the model ribosome of Thermus thermophilus. Apart from the canonical binding site at the mRNA decoding center, the second binding site for sarecycline exists at the nascent peptide exit tunnel, reminiscent of the macrolides class of antibiotics. The structure also revealed Cutibacterium acnes-specific features of the ribosomal RNA and proteins. Unlike the ribosome of the Gram-negative bacterium Escherichia coli, Cutibacterium acnes ribosome has two additional proteins, bS22 and bL37, which are also present in the ribosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis. We show that bS22 and bL37 have antimicrobial properties and may be involved in maintaining the healthy homeostasis of the human skin microbiome.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
15
|
McNutt ZA, Roy B, Gemler BT, Shatoff EA, Moon KM, Foster L, Bundschuh R, Fredrick K. Ribosomes lacking bS21 gain function to regulate protein synthesis in Flavobacterium johnsoniae. Nucleic Acids Res 2023; 51:1927-1942. [PMID: 36727479 PMCID: PMC9976891 DOI: 10.1093/nar/gkad047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Ribosomes of Bacteroidia (formerly Bacteroidetes) fail to recognize Shine-Dalgarno (SD) sequences even though they harbor the anti-SD (ASD) of 16S rRNA. Inhibition of SD-ASD pairing is due to sequestration of the 3' tail of 16S rRNA in a pocket formed by bS21, bS18, and bS6 on the 30S platform. Interestingly, in many Flavobacteriales, the gene encoding bS21, rpsU, contains an extended SD sequence. In this work, we present genetic and biochemical evidence that bS21 synthesis in Flavobacterium johnsoniae is autoregulated via a subpopulation of ribosomes that specifically lack bS21. Mutation or depletion of bS21 in the cell increases translation of reporters with strong SD sequences, such as rpsU'-gfp, but has no effect on other reporters. Purified ribosomes lacking bS21 (or its C-terminal region) exhibit higher rates of initiation on rpsU mRNA and lower rates of initiation on other (SD-less) mRNAs than control ribosomes. The mechanism of autoregulation depends on extensive pairing between mRNA and 16S rRNA, and exceptionally strong SD sequences, with predicted pairing free energies of < -13 kcal/mol, are characteristic of rpsU across the Bacteroidota. This work uncovers a clear example of specialized ribosomes in bacteria.
Collapse
Affiliation(s)
- Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Bappaditya Roy
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elan A Shatoff
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Cooper HB, Krause KL, Gardner PP. Finding priority bacterial ribosomes for future structural and antimicrobial research based upon global RNA and protein sequence analysis. PeerJ 2023; 11:e14969. [PMID: 36974140 PMCID: PMC10039652 DOI: 10.7717/peerj.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Ribosome-targeting antibiotics comprise over half of antibiotics used in medicine, but our fundamental knowledge of their binding sites is derived primarily from ribosome structures of non-pathogenic species. These include Thermus thermophilus, Deinococcus radiodurans and the archaean Haloarcula marismortui, as well as the commensal and sometimes pathogenic organism, Escherichia coli. Advancements in electron cryomicroscopy have allowed for the determination of more ribosome structures from pathogenic bacteria, with each study highlighting species-specific differences that had not been observed in the non-pathogenic structures. These observed differences suggest that more novel ribosome structures, particularly from pathogens, are required for a more accurate understanding of the level of diversity of the entire bacterial ribosome, with the potential of leading to innovative advancements in antibiotic research. In this study, high accuracy covariance and hidden Markov models were used to annotate ribosomal RNA and protein sequences respectively from genomic sequence, allowing us to determine the underlying ribosomal sequence diversity using phylogenetic methods. This analysis provided evidence that the current non-pathogenic ribosome structures are not sufficient representatives of some pathogenic bacteria, such as Campylobacter pylori, or of whole phyla such as Bacteroidota (Bacteroidetes).
Collapse
Affiliation(s)
- Helena B. Cooper
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Paul P. Gardner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Trautmann HS, Ramsey KM. A Ribosomal Protein Homolog Governs Gene Expression and Virulence in a Bacterial Pathogen. J Bacteriol 2022; 204:e0026822. [PMID: 36121290 PMCID: PMC9578407 DOI: 10.1128/jb.00268-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The molecular machine necessary for protein synthesis, the ribosome, is generally considered constitutively functioning and lacking any inherent regulatory capacity. Yet ribosomes are commonly heterogeneous in composition and the impact of ribosome heterogeneity on translation is not well understood. Here, we determined that changes in ribosome protein composition govern gene expression in the intracellular bacterial pathogen Francisella tularensis. F. tularensis encodes three distinct homologs for bS21, a ribosomal protein involved in translation initiation, and analysis of purified F. tularensis ribosomes revealed they are heterogeneous with respect to bS21. The loss of one homolog, bS21-2, resulted in significant changes to the cellular proteome unlinked to changes in the transcriptome. Among the reduced proteins were components of the type VI secretion system (T6SS), an essential virulence factor encoded by the Francisella Pathogenicity Island. Furthermore, loss of bS21-2 led to an intramacrophage growth defect. Although multiple bS21 homologs complemented the loss of bS21-2 with respect to T6SS protein abundance, bS21-2 was uniquely necessary for robust intramacrophage growth, suggesting bS21-2 modulates additional virulence gene(s) distinct from the T6SS. Our results indicate that ribosome composition in F. tularensis, either directly or indirectly, posttranscriptionally modulates gene expression and virulence. Our findings are consistent with a model in which bS21 homologs function as posttranscriptional regulators, allowing preferential translation of specific subsets of mRNAs, likely at the stage of translation initiation. This work also raises the possibility that bS21 in other organisms may function similarly and that ribosome heterogeneity may permit many bacteria to posttranscriptionally regulate gene expression. IMPORTANCE While bacterial ribosomes are commonly heterogeneous in composition (e.g., incorporating different homologs for a ribosomal protein), how heterogeneity impacts translation is unclear. We found that the intracellular human pathogen Francisella tularensis has heterogeneous ribosomes, incorporating one of three homologs for ribosomal protein bS21. Furthermore, one bS21 homolog posttranscriptionally governs the expression of the F. tularensis type VI secretion system, an essential virulence factor. This bS21 homolog is also uniquely important for robust intracellular growth. Our data support a model in which bS21 heterogeneity leads to modulation of translation, providing another source of posttranscriptional gene regulation. Regulation of translation by bS21, or other sources of ribosomal heterogeneity, may be a conserved mechanism to control gene expression across the bacterial phylogeny.
Collapse
Affiliation(s)
- Hannah S. Trautmann
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathryn M. Ramsey
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
18
|
Guo Y, Zhang H, Bao Y, Tan H, Liu X, Rahman ZU. Distribution characteristics of soil AM fungi community in soft sandstone area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115193. [PMID: 35550954 DOI: 10.1016/j.jenvman.2022.115193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
To explore the diversity and distribution characteristics of soil arbuscular mycorrhizae fungi (AMF) communities in the soft sandstone area, thirteen arsenic sandstone rock samples were collected from three planting plots (SI, SII and SIII) and one bare control plot (CK), separately. The sampling locations are as follows: the top of the slope (denoted by the number 1), sunny slope (2), shady slope (3) and gully bottom (4). These samples were then tested with an Illumina HiSeq PE250 high-throughput sequencing platform. Experimental results show that the SIII4 sample (from the gully bottom of the SIII plot) has the highest moisture content of 9.1%, while the CK sample in the control plot has lowest moisture content. SI2 has the highest pH of 9.58 and CK has the lowest pH of 8.73. SII1 has the highest available phosphorus (AP) content of 9.61 mg/kg, while SII3 has the lowest AP content of 2.29 mg/kg. Furthermore, SI2 has the highest NH4-N content of 11.24 mg/kg, while SII1 has the lowest NH4-N of 4.09 mg/kg. SII1 has the highest available potassium (AK) content of 48.92 mg/kg and CK has the lowest AK content of 1.82 mg/kg. In the observed-species index reflecting AMF genetic diversity, SI1 differences significantly from SII4 and SIII3 (P < 0.05). In the Shannon index, SI1 is significantly different from SI2, SI3, SI4; SII2 is significantly different from SII3; SI2, SI4, SII1 and SII3 are quite different from CK (P < 0.05). The dominant genera of AMF in these plots include Glomus (17.24%-65.53%), Scutellospora (0.04%-67.38%), Septoglomus (2.83%-43.03%) and Kamienskia (0.64%-46.38%). The dominant genera of AMF vary significantly between sunny slope and shady slope. Positive correlation exists between soil NH4-N and the AM fungal community structure. There are prominent positive correlations exist among genetic diversity index chao1, observed-species, pH and AP (P < 0.05), and obviously negative correlation between observed species and AK (P < 0.05). The research findings on the distribution characteristics of AM fungus community in the arsenic sandstone plot and their relationship with environmental factors can help with arsenic sandstone management in other similar areas.
Collapse
Affiliation(s)
- Yangnan Guo
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Life Sciences, Inner Mongolia University, Hohhot, 010018, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 100000, China; China Energy Group, Shendong Coal Group Technology Research Institute, Ordos, 017200, China
| | - Huandi Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010018, China
| | - Yuying Bao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010018, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 100000, China.
| | - Houzhang Tan
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xianghong Liu
- China Coal Research Institute, Beijing, 100013, China
| | - Zia Ur Rahman
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Chen LX, Jaffe AL, Borges AL, Penev PI, Nelson TC, Warren LA, Banfield JF. Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication. ISME COMMUNICATIONS 2022; 2:31. [PMID: 37938675 PMCID: PMC9723584 DOI: 10.1038/s43705-022-00111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 06/16/2023]
Abstract
The ribosomal protein S21 (bS21) gene has been detected in diverse viruses with a large range of genome sizes, yet its in situ expression and potential significance have not been investigated. Here, we report five closely related clades of bacteriophages (phages) represented by 47 genomes (8 curated to completion and up to 331 kbp in length) that encode a bS21 gene. The bS21 gene is on the reverse strand within a conserved region that encodes the large terminase, major capsid protein, prohead protease, portal vertex proteins, and some hypothetical proteins. Based on CRISPR spacer targeting, the predominance of bacterial taxonomic affiliations of phage genes with those from Bacteroidetes, and the high sequence similarity of the phage bS21 genes and those from Bacteroidetes classes of Flavobacteriia, Cytophagia and Saprospiria, these phages are predicted to infect diverse Bacteroidetes species that inhabit a range of depths in freshwater lakes. Thus, bS21 phages have the potential to impact microbial community composition and carbon turnover in lake ecosystems. The transcriptionally active bS21-encoding phages were likely in the late stage of replication when collected, as core structural genes and bS21 were highly expressed. Thus, our analyses suggest that the phage bS21, which is involved in translation initiation, substitutes into the Bacteroidetes ribosomes and selects preferentially for phage transcripts during the late-stage replication when large-scale phage protein production is required for assembly of phage particles.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
20
|
Annealing synchronizes the 70 S ribosome into a minimum-energy conformation. Proc Natl Acad Sci U S A 2022; 119:2111231119. [PMID: 35177473 PMCID: PMC8872765 DOI: 10.1073/pnas.2111231119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Researchers commonly anneal metals, alloys, and semiconductors to repair defects and improve microstructures via recrystallization. Theoretical studies indicate that simulated annealing on biological macromolecules helps predict the final structures with minimum free energy. Experimental validation of this homogenizing effect and further exploration of its applications are fascinating scientific questions that remain elusive. Here, we chose the apo-state 70S ribosome from Escherichia coli as a model, wherein the 30S subunit undergoes a thermally driven intersubunit rotation and exhibits substantial structural flexibility as well as distinct free energy. We experimentally demonstrate that annealing at a fast cooling rate enhances the 70S ribosome homogeneity and improves local resolution on the 30S subunit. After annealing, the 70S ribosome is in a nonrotated state with respect to corresponding intermediate structures in unannealed or heated ribosomes. Manifold-based analysis further indicates that the annealed 70S ribosome takes a narrow conformational distribution and exhibits a minimum-energy state in the free-energy landscape. Our experimental results offer a facile yet robust approach to enhance protein stability, which is ideal for high-resolution cryogenic electron microscopy. Beyond structure determination, annealing shows great potential for synchronizing proteins on a single-molecule level and can be extended to study protein folding and explore conformational and energy landscapes.
Collapse
|
21
|
McNutt ZA, Gandhi MD, Shatoff EA, Roy B, Devaraj A, Bundschuh R, Fredrick K. Comparative Analysis of anti-Shine- Dalgarno Function in Flavobacterium johnsoniae and Escherichia coli. Front Mol Biosci 2021; 8:787388. [PMID: 34966783 PMCID: PMC8710568 DOI: 10.3389/fmolb.2021.787388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
The anti-Shine-Dalgarno (ASD) sequence of 16S rRNA is highly conserved across Bacteria, and yet usage of Shine-Dalgarno (SD) sequences in mRNA varies dramatically, depending on the lineage. Here, we compared the effects of ASD mutagenesis in Escherichia coli, a Gammaproteobacteria which commonly employs SD sequences, and Flavobacterium johnsoniae, a Bacteroidia which rarely does. In E. coli, 30S subunits carrying any single substitution at positions 1,535–1,539 confer dominant negative phenotypes, whereas subunits with mutations at positions 1,540–1,542 are sufficient to support cell growth. These data suggest that CCUCC (1,535–1,539) represents the functional core of the element in E. coli. In F. johnsoniae, deletion of three ribosomal RNA (rrn) operons slowed growth substantially, a phenotype largely rescued by a plasmid-borne copy of the rrn operon. Using this complementation system, we found that subunits with single mutations at positions 1,535–1,537 are as active as control subunits, in sharp contrast to the E. coli results. Moreover, subunits with quadruple substitution or complete replacement of the ASD retain substantial, albeit reduced, activity. Sedimentation analysis revealed that these mutant subunits are overrepresented in the subunit fractions and underrepresented in polysome fractions, suggesting some defect in 30S biogenesis and/or translation initiation. Nonetheless, our collective data indicate that the ASD plays a much smaller role in F. johnsoniae than in E. coli, consistent with SD usage in the two organisms.
Collapse
Affiliation(s)
- Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Mai D Gandhi
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Elan A Shatoff
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States.,Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Bappaditya Roy
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Aishwarya Devaraj
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States.,Department of Physics, The Ohio State University, Columbus, OH, United States.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United, States.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Shatoff EA, Gemler BT, Bundschuh R, Fredrick K. Maturation of 23S rRNA includes removal of helix H1 in many bacteria. RNA Biol 2021; 18:856-865. [PMID: 34812116 PMCID: PMC8782170 DOI: 10.1080/15476286.2021.2000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, the three ribosomal RNAs (rRNAs) are encoded together in each of several near-identical operons. As soon as the nascent precursor rRNA emerges from RNA polymerase, ribosome assembly begins. This process entails ribosomal protein binding, rRNA folding, rRNA modification, and rRNA processing. In the model organisms Escherichia coli and Bacillus subtilis, rRNA processing results in similar mature rRNAs, despite substantial differences in the cohort of RNAses involved. A recent study of Flavobacterium johnsoniae, a member of the phylum Bacteroidota (formerly Bacteroidetes), revealed that helix H1 of 23S rRNA is absent from ribosomes, apparently a consequence of rRNA maturation. In this work, we mined RNA-seq data from 19 individual organisms and ocean metatranscriptomic samples to compare rRNA processing across diverse bacterial lineages. We found that mature ribosomes from multiple clades lack H1, and typically these ribosomes also lack an encoded H98. For all groups analysed, H1 is predicted to form in precursor rRNA as part of a longer leader-trailer helix. Hence, we infer that evolutionary loss of H98 sets the stage for H1 removal during 50S subunit maturation.
Collapse
Affiliation(s)
- Elan A Shatoff
- Department of Physics, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Physics, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Kurt Fredrick
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|