1
|
Lin J, Ni S, Li B, Guo Y, Gao X, Liu Y, Yi L, Wang P, Chen R, Yao J, Wood T, Wang X. A noncanonical intrinsic terminator in the HicAB toxin-antitoxin operon promotes the transmission of conjugative antibiotic resistance plasmids. Nucleic Acids Res 2025; 53:gkaf125. [PMID: 40036506 PMCID: PMC11878559 DOI: 10.1093/nar/gkaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin-antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying two TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, rather than the StbDE TA, acts as a crucial addiction module to increase horizontal plasmid-plasmid competition. In contrast to the canonical type II TA systems in which the TA genes are cotranscribed and/or the antitoxin gene has an additional promoter to allow for an increased antitoxin/toxin ratio, the HicAB TA system with the toxin gene preceding the antitoxin gene employs internal transcription termination to allow for a higher toxin production. This intrinsic terminator, featuring a G/C-rich hairpin with a UUU tract, lies upstream of the antitoxin gene, introducing a unique mechanism for the enhancing toxin/antitoxin ratio. Critically, the hicAB TA significantly contributes to plasmid competition and plasmid persistence in the absence of antibiotic selection, and deleting this intrinsic terminator alone diminishes this function. These findings align with the observed high occurrence of hicAB in IncI2 plasmids and the persistence of these plasmids after banning colistin as a feed additive. This study reveals how reprogramming the regulatory circuits of TA operons impacts plasmid occupancy in the microbial community and provides critical targets for combating antibiotic resistance.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songwei Ni
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199 Hunan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xinyu Gao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Lingxian Yi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxia Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jianyun Yao
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, United States
| | - Xiaoxue Wang
- Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
2
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Jin C, Jeon CH, Kim HW, Kang JM, Choi Y, Kang SM, Lee HH, Kim DH, Han BW, Lee BJ. Structural insight into the distinct regulatory mechanism of the HEPN-MNT toxin-antitoxin system in Legionella pneumophila. Nat Commun 2024; 15:10188. [PMID: 39582057 PMCID: PMC11586414 DOI: 10.1038/s41467-024-54551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
HEPN-MNT, a type VII TA module, comprises the HEPN toxin and the MNT antitoxin, which acts as a nucleotidyltransferase that transfers the NMP moiety to the corresponding HEPN toxin, thereby interfering with its toxicity. Here, we report crystal structures of the Legionella pneumophila HEPN-MNT module, including HEPN, AMPylated HEPN, MNT, and the HEPN-MNT complex. Our structural analysis and biochemical assays, suggest that HEPN is a metal-dependent RNase and identify its active site residues. We also elucidate the oligomeric state of HEPN in solution. Interestingly, L. pneumophila MNT, which lacks a long C-terminal α4 helix, controls the toxicity of HEPN toxin via a distinct binding mode with HEPN. Finally, we propose a comprehensive regulatory mechanism of the L. pneumophila HEPN-MNT module based on structural and functional studies. These results provide insight into the type VII HEPN-MNT TA system.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- MasterMediTech, Seoul, Republic of Korea
| | - Cha-Hee Jeon
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Heung Wan Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jin Mo Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Byung Woo Han
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Bong-Jin Lee
- MasterMediTech, Seoul, Republic of Korea.
- College of Pharmacy, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Ciuchcinski K, Stokke R, Steen IH, Dziewit L. Landscape of the metaplasmidome of deep-sea hydrothermal vents located at Arctic Mid-Ocean Ridges in the Norwegian-Greenland Sea: ecological insights from comparative analysis of plasmid identification tools. FEMS Microbiol Ecol 2024; 100:fiae124. [PMID: 39271469 PMCID: PMC11451466 DOI: 10.1093/femsec/fiae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Plasmids are one of the key drivers of microbial adaptation and evolution. However, their diversity and role in adaptation, especially in extreme environments, remains largely unexplored. In this study, we aimed to identify, characterize, and compare plasmid sequences originating from samples collected from deep-sea hydrothermal vents located in Arctic Mid-Ocean Ridges. To achieve this, we employed, and benchmarked three recently developed plasmid identification tools-PlasX, GeNomad, and PLASMe-on metagenomic data from this unique ecosystem. To date, this is the first direct comparison of these computational methods in the context of data from extreme environments. Upon recovery of plasmid contigs, we performed a multiapproach analysis, focusing on identifying taxonomic and functional biases within datasets originating from each tool. Next, we implemented a majority voting system to identify high-confidence plasmid contigs, enhancing the reliability of our findings. By analysing the consensus plasmid sequences, we gained insights into their diversity, ecological roles, and adaptive significance. Within the high-confidence sequences, we identified a high abundance of Pseudomonadota and Campylobacterota, as well as multiple toxin-antitoxin systems. Our findings ensure a deeper understanding of how plasmids contribute to shaping microbial communities living under extreme conditions of hydrothermal vents, potentially uncovering novel adaptive mechanisms.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw,00-927, Warsaw, Poland
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, N-5020, Bergen, Norway
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, N-5020, Bergen, Norway
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw,00-927, Warsaw, Poland
| |
Collapse
|
5
|
Liu J, Yashiro Y, Sakaguchi Y, Suzuki T, Tomita K. Substrate specificity of Mycobacterium tuberculosis tRNA terminal nucleotidyltransferase toxin MenT3. Nucleic Acids Res 2024; 52:5987-6001. [PMID: 38485701 PMCID: PMC11162799 DOI: 10.1093/nar/gkae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 06/11/2024] Open
Abstract
Mycobacterium tuberculosis transfer RNA (tRNA) terminal nucleotidyltransferase toxin, MenT3, incorporates nucleotides at the 3'-CCA end of tRNAs, blocking their aminoacylation and inhibiting protein synthesis. Here, we show that MenT3 most effectively adds CMPs to the 3'-CCA end of tRNA. The crystal structure of MenT3 in complex with CTP reveals a CTP-specific nucleotide-binding pocket. The 4-NH2 and the N3 and O2 atoms of cytosine in CTP form hydrogen bonds with the main-chain carbonyl oxygen of P120 and the side chain of R238, respectively. MenT3 expression in Escherichia coli selectively reduces the levels of seryl-tRNASers, indicating specific inactivation of tRNASers by MenT3. Consistently, MenT3 incorporates CMPs into tRNASer most efficiently, among the tested E. coli tRNA species. The longer variable loop unique to class II tRNASers is crucial for efficient CMP incorporation into tRNASer by MenT3. Replacing the variable loop of E. coli tRNAAla with the longer variable loop of M. tuberculosis tRNASer enables MenT3 to incorporate CMPs into the chimeric tRNAAla. The N-terminal positively charged region of MenT3 is required for CMP incorporation into tRNASer. A docking model of tRNA onto MenT3 suggests that an interaction between the N-terminal region and the longer variable loop of tRNASer facilitates tRNA substrate selection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
6
|
Yuan Y, DeMott MS, Byrne SR, Flores K, Poyet M, Groussin M, Microbiome Conservancy G, Berdy B, Comstock L, Alm EJ, Dedon PC. Phosphorothioate DNA modification by BREX Type 4 systems in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597175. [PMID: 38895356 PMCID: PMC11185695 DOI: 10.1101/2024.06.03.597175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd, ssp, and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Katia Flores
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Experimental Medicine, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Clinical and Molecular Biology, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Global Microbiome Conservancy
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
| | - Brittany Berdy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Laurie Comstock
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
7
|
Gapińska M, Zajko W, Skowronek K, Figiel M, Krawczyk P, Egorov A, Dziembowski A, Johansson MO, Nowotny M. Structure-functional characterization of Lactococcus AbiA phage defense system. Nucleic Acids Res 2024; 52:4723-4738. [PMID: 38587192 PMCID: PMC11077055 DOI: 10.1093/nar/gkae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.
Collapse
Affiliation(s)
- Marta Gapińska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcus J O Johansson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
8
|
Liu X, Li J, Zhang Z, He Y, Wang M, Zhao Y, Lin S, Liu T, Liao Y, Zhang N, Yuan K, Ling Y, Liu Z, Chen X, Chen Z, Chen R, Wang X, Gu B. Acetylation of xenogeneic silencer H-NS regulates biofilm development through the nitrogen homeostasis regulator in Shewanella. Nucleic Acids Res 2024; 52:2886-2903. [PMID: 38142446 PMCID: PMC11014242 DOI: 10.1093/nar/gkad1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jun Li
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhixuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Yizhou He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Mingfang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
9
|
Wei X, Tan H, Lobb B, Zhen W, Wu Z, Parks DH, Neufeld JD, Moreno-Hagelsieb G, Doxey AC. AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods. Brief Bioinform 2024; 25:bbae229. [PMID: 38747283 PMCID: PMC11094555 DOI: 10.1093/bib/bbae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.
Collapse
Affiliation(s)
- Xin Wei
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Huagang Tan
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Briallen Lobb
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William Zhen
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zijing Wu
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Brisbane, Australia
| | - Josh D Neufeld
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Bonabal S, Darfeuille F. Preventing toxicity in toxin-antitoxin systems: An overview of regulatory mechanisms. Biochimie 2024; 217:95-105. [PMID: 37473832 DOI: 10.1016/j.biochi.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.
Collapse
Affiliation(s)
- Simon Bonabal
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France.
| |
Collapse
|
11
|
Danov A, Segev O, Bograd A, Ben Eliyahu Y, Dotan N, Kaplan T, Levy A. Toxinome-the bacterial protein toxin database. mBio 2024; 15:e0191123. [PMID: 38117054 PMCID: PMC10790787 DOI: 10.1128/mbio.01911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Microbes use protein toxins as important tools to attack neighboring cells, microbial or eukaryotic, and for self-killing when attacked by viruses. These toxins work through different mechanisms to inhibit cell growth or kill cells. Microbes also use antitoxin proteins to neutralize the toxin activities. Here, we developed a comprehensive database called Toxinome of nearly two million toxins and antitoxins that are encoded in 59,475 bacterial genomes. We described the distribution of bacterial toxins and identified that they are depleted by bacteria that live in hot and cold temperatures. We found 5,161 cases in which toxins and antitoxins are densely clustered in bacterial genomes and termed these areas "Toxin Islands." The Toxinome database is a useful resource for anyone interested in toxin biology and evolution, and it can guide the discovery of new toxins.
Collapse
Affiliation(s)
- Aleks Danov
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofir Segev
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avi Bograd
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yedidya Ben Eliyahu
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Dotan
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Kang SM. Focused Overview of Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems Regarding Their Structural and Functional Aspects: Including Insights on Biomimetic Peptides. Biomimetics (Basel) 2023; 8:412. [PMID: 37754163 PMCID: PMC10526153 DOI: 10.3390/biomimetics8050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a lethal infectious disease of significant public health concern. The rise of multidrug-resistant and drug-tolerant strains has necessitated novel approaches to combat the disease. Toxin-antitoxin (TA) systems, key players in bacterial adaptive responses, are prevalent in prokaryotic genomes and have been linked to tuberculosis. The genome of M. tuberculosis strains harbors an unusually high number of TA systems, prompting questions about their biological roles. The VapBC family, a representative type II TA system, is characterized by the VapC toxin, featuring a PilT N-terminal domain with nuclease activity. Its counterpart, VapB, functions as an antitoxin, inhibiting VapC's activity. Additionally, we explore peptide mimics designed to replicate protein helical structures in this review. Investigating these synthetic peptides offers fresh insights into molecular interactions, potentially leading to therapeutic applications. These synthetic peptides show promise as versatile tools for modulating cellular processes and protein-protein interactions. We examine the rational design strategies employed to mimic helical motifs, their biophysical properties, and potential applications in drug development and bioengineering. This review aims to provide an in-depth understanding of TA systems by introducing known complex structures, with a focus on both structural aspects and functional and molecular details associated with each system.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
14
|
Chen Z, Yao J, Zhang P, Wang P, Ni S, Liu T, Zhao Y, Tang K, Sun Y, Qian Q, Wang X. Minimized antibiotic-free plasmid vector for gene therapy utilizing a new toxin-antitoxin system. Metab Eng 2023; 79:86-96. [PMID: 37451534 DOI: 10.1016/j.ymben.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Approaches to improve plasmid-mediated transgene expression are needed for gene therapy and genetic immunization applications. The backbone sequences needed for the production of plasmids in bacterial hosts and the use of antibiotic resistance genes as selection markers represent biological safety risks. Here, we report the development of an antibiotic-free expression plasmid vector with a minimized backbone utilizing a new toxin-antitoxin (TA) system. The Rs_0636/Rs_0637 TA pair was derived from the coral-associated bacterium Roseivirga sp. The toxin gene is integrated into the chromosome of Escherichia coli host cells, and a recombinant mammalian expression plasmid is constructed by replacing the antibiotic resistance gene with the antitoxin gene Rs_0637 (here named Tiniplasmid). The Tiniplasmid system affords high selection efficiency (∼80%) for target gene insertion into the plasmid and has high plasmid stability in E. coli (at least 9 days) in antibiotic-free conditions. Furthermore, with the aim of reducing the size of the backbone sequence, we found that the antitoxin gene can be reduced to 153 bp without a significant reduction in selection efficiency. To develop its applications in gene therapy and DNA vaccines, the biosafety and efficiency of the Tiniplasmid-based eukaryotic gene delivery and expression were further evaluated in CHO-K1 cells. The results showed that Rs_0636/Rs_0637 has no cell toxicity and that the Tiniplasmid vector has a higher gene expression efficiency than the commercial vectors pCpGfree and pSTD in the eukaryotic cells. Altogether, the results demonstrate the potential of the Rs_0636/Rs_0637-based antibiotic-free plasmid vector for the development and production of safe and efficacious DNA vaccines.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China.
| | - Pingjing Zhang
- Maxirna (Shanghai) Pharmaceutical Co., Ltd., China; Shanghai Cell Therapy Group Co., Ltd, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- Maxirna (Shanghai) Pharmaceutical Co., Ltd., China; Shanghai Cell Therapy Group Co., Ltd, China
| | - Yi Zhao
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China
| | - Yan Sun
- Shanghai University Mengchao Cancer Hospital, China
| | - Qijun Qian
- Maxirna (Shanghai) Pharmaceutical Co., Ltd., China; Shanghai Cell Therapy Group Co., Ltd, China; Shanghai University Mengchao Cancer Hospital, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, China.
| |
Collapse
|
15
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Choi W, Maharjan A, Im HG, Park JY, Park JT, Park JH. Identification and Characterization of HEPN-MNT Type II TA System from Methanothermobacter thermautotrophicus ΔH. J Microbiol 2023; 61:411-421. [PMID: 37071293 DOI: 10.1007/s12275-023-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/19/2023]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication, gene transcription, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463 expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily archaea HEPN-MNT family.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong, 27909, Republic of Korea
| | - Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae Gang Im
- BIORCHESTRA Co., LTD., Daejeon, 34013, Republic of Korea
| | - Ji-Young Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
17
|
Sonika S, Singh S, Mishra S, Verma S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023; 9:e14220. [PMID: 37101643 PMCID: PMC10123168 DOI: 10.1016/j.heliyon.2023.e14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-Antitoxin (TA) systems are abundant in prokaryotes and play an important role in various biological processes such as plasmid maintenance, phage inhibition, stress response, biofilm formation, and dormant persister cell generation. TA loci are abundant in pathogenic intracellular micro-organisms and help in their adaptation to the harsh host environment such as nutrient deprivation, oxidation, immune response, and antimicrobials. Several studies have reported the involvement of TA loci in establishing successful infection, intracellular survival, better colonization, adaptation to host stresses, and chronic infection. Overall, the TA loci play a crucial role in bacterial virulence and pathogenesis. Nonetheless, there are some controversies about the role of TA system in stress response, biofilm and persister formation. In this review, we describe the role of the TA systems in bacterial virulence. We discuss the important features of each type of TA system and the recent discoveries identifying key contributions of TA loci in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonika Sonika
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Mishra
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashikala Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
18
|
Efremenko E, Aslanli A, Lyagin I. Advanced Situation with Recombinant Toxins: Diversity, Production and Application Purposes. Int J Mol Sci 2023; 24:ijms24054630. [PMID: 36902061 PMCID: PMC10003545 DOI: 10.3390/ijms24054630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Today, the production and use of various samples of recombinant protein/polypeptide toxins is known and is actively developing. This review presents state-of-the-art in research and development of such toxins and their mechanisms of action and useful properties that have allowed them to be implemented into practice to treat various medical conditions (including oncology and chronic inflammation applications) and diseases, as well as to identify novel compounds and to detoxify them by diverse approaches (including enzyme antidotes). Special attention is given to the problems and possibilities of the toxicity control of the obtained recombinant proteins. The recombinant prions are discussed in the frame of their possible detoxification by enzymes. The review discusses the feasibility of obtaining recombinant variants of toxins in the form of protein molecules modified with fluorescent proteins, affine sequences and genetic mutations, allowing us to investigate the mechanisms of toxins' bindings to their natural receptors.
Collapse
Affiliation(s)
- Elena Efremenko
- Correspondence: ; Tel.: +7-(495)-939-3170; Fax: +7-(495)-939-5417
| | | | | |
Collapse
|
19
|
Qiu J, Zhai Y, Wei M, Zheng C, Jiao X. Toxin–antitoxin systems: Classification, biological roles, and applications. Microbiol Res 2022; 264:127159. [DOI: 10.1016/j.micres.2022.127159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
|
20
|
Molecular mechanism of toxin neutralization in the HipBST toxin-antitoxin system of Legionella pneumophila. Nat Commun 2022; 13:4333. [PMID: 35882877 PMCID: PMC9325769 DOI: 10.1038/s41467-022-32049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic modules in bacteria and archaea. Here, we perform structural and biochemical characterization of the Legionella pneumophila effector Lpg2370, demonstrating that it is a Ser/Thr kinase. Together with two upstream genes, lpg2370 constitutes the tripartite HipBST TA. Notably, the toxin Lpg2370 (HipTLp) and the antitoxin Lpg2369 (HipSLp) correspond to the C-terminus and N-terminus of HipA from HipBA TA, respectively. By determining crystal structures of autophosphorylated HipTLp, its complex with AMP-PNP, and the structure of HipTLp-HipSLp complex, we identify residues in HipTLp critical for ATP binding and those contributing to its interactions with HipSLp. Structural analysis reveals that HipSLp binding induces a loop-to-helix shift in the P-loop of HipTLp, leading to the blockage of ATP binding and inhibition of the kinase activity. These findings establish the L. pneumophila effector Lpg2370 as the HipBST TA toxin and elucidate the molecular basis for HipT neutralization in HipBST TA.
Collapse
|
21
|
Ni M, Lin J, Gu J, Lin S, He M, Guo Y. Antitoxin CrlA of CrlTA Toxin-Antitoxin System in a Clinical Isolate Pseudomonas aeruginosa Inhibits Lytic Phage Infection. Front Microbiol 2022; 13:892021. [PMID: 35620101 PMCID: PMC9127804 DOI: 10.3389/fmicb.2022.892021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen in cystic fibrosis patients and immunocompromised individuals, and the toxin–antitoxin (TA) system is involved in bacterial virulence and phage resistance. However, the roles of TA systems in P. aeruginosa are relatively less studied and no phage Cro-like regulators were identified as TA components. Here, we identified and characterized a chromosome-encoded prophage Cro-like antitoxin (CrlA) in the clinical isolate P. aeruginosa WK172. CrlA neutralized the toxicity of the toxin CrlA (CrlT) which cleaves mRNA, and they formed a type II TA system. Specifically, crlA and crlT are co-transcribed and their protein products interact with each other directly. The autorepression of CrlA is abolished by CrlT through the formation of the CrlTA complex. Furthermore, crlTA is induced in the stationary phase, and crlA is expressed at higher levels than crlT. The excess CrlA inhibits the infection of lytic Pseudomonas phages. CrlA is widely distributed among Pseudomonas and in other bacterial strains and may provide antiphage activities.
Collapse
Affiliation(s)
- Muyang Ni
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, School of Resources and Environment, Yangtze University, Wuhan, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei He
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, School of Resources and Environment, Yangtze University, Wuhan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
22
|
Mansour M, Giudice E, Xu X, Akarsu H, Bordes P, Guillet V, Bigot DJ, Slama N, D'urso G, Chat S, Redder P, Falquet L, Mourey L, Gillet R, Genevaux P. Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis. Nat Commun 2022; 13:2641. [PMID: 35552387 PMCID: PMC9098466 DOI: 10.1038/s41467-022-30373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth. Here, we focus on the deleterious toxin of the atypical tripartite toxin-antitoxin-chaperone (TAC) system of Mycobacterium tuberculosis, whose inhibition requires the concerted action of the antitoxin and its dedicated SecB-like chaperone. We show that the TAC toxin is a bona fide ribonuclease and identify exact cleavage sites in mRNA targets on a transcriptome-wide scale in vivo. mRNA cleavage by the toxin occurs after the second nucleotide of the ribosomal A-site codon during translation, with a strong preference for CCA codons in vivo. Finally, we report the cryo-EM structure of the ribosome-bound TAC toxin in the presence of native M. tuberculosis cspA mRNA, revealing the specific mechanism by which the TAC toxin interacts with the ribosome and the tRNA in the P-site to cleave its mRNA target. Toxin-antitoxin systems are widespread in bacteria. Here the authors present structures of M. tuberculosis HigBTAC alone and bound to the ribosome in the presence of native cspA mRNA, shedding light on its mechanism of translation inhibition.
Collapse
Affiliation(s)
- Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giudice
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Xibing Xu
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hatice Akarsu
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland.,Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Donna-Joe Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nawel Slama
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gaetano D'urso
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Sophie Chat
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Peter Redder
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Reynald Gillet
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
23
|
Insights into the Neutralization and DNA Binding of Toxin-Antitoxin System ParE SO-CopA SO by Structure-Function Studies. Microorganisms 2021; 9:microorganisms9122506. [PMID: 34946107 PMCID: PMC8706911 DOI: 10.3390/microorganisms9122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
ParESO-CopASO is a new type II toxin–antitoxin (TA) system in prophage CP4So that plays an essential role in circular CP4So maintenance after the excision in Shewanella oneidensis. The toxin ParESO severely inhibits cell growth, while CopASO functions as an antitoxin to neutralize ParESO toxicity through direct interactions. However, the molecular mechanism of the neutralization and autoregulation of the TA operon transcription remains elusive. In this study, we determined the crystal structure of a ParESO-CopASO complex that adopted an open V-shaped heterotetramer with the organization of ParESO-(CopASO)2-ParESO. The structure showed that upon ParESO binding, the intrinsically disordered C-terminal domain of CopASO was induced to fold into a partially ordered conformation that bound into a positively charged and hydrophobic groove of ParESO. Thermodynamics analysis showed the DNA-binding affinity of CopASO was remarkably higher than that of the purified TA complex, accompanied by the enthalpy change reversion from an exothermic reaction to an endothermic reaction. These results suggested ParESO acts as a de-repressor of the TA operon transcription at the toxin:antitoxin level of 1:1. Site-directed mutagenesis of ParESO identified His91 as the essential residue for its toxicity by cell toxicity assays. Our structure-function studies therefore elucidated the transcriptional regulation mechanism of the ParESO-CopASO pair, and may help to understand the regulation of CP4So maintenance in S. oneidensis.
Collapse
|
24
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
25
|
YgfY Contributes to Stress Tolerance in Shewanella oneidensis Neither as an Antitoxin Nor as a Flavinylation Factor of Succinate Dehydrogenase. Microorganisms 2021; 9:microorganisms9112316. [PMID: 34835442 PMCID: PMC8621075 DOI: 10.3390/microorganisms9112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
YgfY(SdhE/CptB) is highly conserved while has controversial functions in bacteria. It works as an antitoxin and composes a type IV toxin-antitoxin system with YgfX(CptA) typically in Escherichia coli, while functions as an flavinylation factor of succinate dehydrogenase and fumarate reductase typically in Serratia sp. In this study, we report the contribution of YgfY in Shewanella oneidensis MR-1 to tolerance of low temperature and nitrite. YgfY deficiency causes several growth defects of S. oneidensis MR-1 at low temperature, while YgfX do not cause a growth defect or morphological change of S. oneidensis MR1-1 and E. coli. YgfY do not interact with FtsZ and MreB nor with YgfX examined by bacterial two-hybrid assay. YgfY effect on growth under low temperature is not attributed to succinate dehydrogenase (SDH) because a mutant without SDH grows comparably with the wild-type strain in the presence of succinate. The ygfY mutant shows impaired tolerance to nitrite. Transcription of nitrite reductase and most ribosome proteins is significantly decreased in the ygfY mutant, which is consistent with the phenotypes detected above. Effects of YgfY on growth and nitrite tolerance are closely related to the RGXXE motif in YgfY. In summary, this study demonstrates pleiotropic impacts of YgfY in S. oneidensis MR-1, and sheds a light on the physiological versatility of YgfY in bacteria.
Collapse
|
26
|
De Bruyn P, Girardin Y, Loris R. Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function. Protein Sci 2021; 30:1103-1113. [PMID: 33786944 PMCID: PMC8138530 DOI: 10.1002/pro.4071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
Toxin–antitoxin (TA) modules are small operons in bacteria and archaea that encode a metabolic inhibitor (toxin) and a matching regulatory protein (antitoxin). While their biochemical activities are often well defined, their biological functions remain unclear. In Type II TA modules, the most common class, both toxin and antitoxin are proteins, and the antitoxin inhibits the biochemical activity of the toxin via complex formation with the toxin. The different TA modules vary significantly regarding structure and biochemical activity. Both regulation of protein activity by the antitoxin and regulation of transcription can be highly complex and sometimes show striking parallels between otherwise unrelated TA modules. Interplay between the multiple levels of regulation in the broader context of the cell as a whole is most likely required for optimum fine‐tuning of these systems. Thus, TA modules can go through great lengths to prevent activation and to reverse accidental activation, in agreement with recent in vivo data. These complex mechanisms seem at odds with the lack of a clear biological function.
Collapse
Affiliation(s)
- Pieter De Bruyn
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yana Girardin
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
27
|
Identification of a Toxin-Antitoxin System That Contributes to Persister Formation by Reducing NAD in Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9040753. [PMID: 33918483 PMCID: PMC8065639 DOI: 10.3390/microorganisms9040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial persisters are slow-growing or dormant cells that are highly tolerant to bactericidal antibiotics and contribute to recalcitrant and chronic infections. Toxin/antitoxin (TA) systems play important roles in controlling persister formation. Here, we examined the roles of seven predicted type II TA systems in the persister formation of a Pseudomonas aeruginosa wild-type strain PA14. Overexpression of a toxin gene PA14_51010 or deletion of the cognate antitoxin gene PA14_51020 increased the bacterial tolerance to antibiotics. Co-overexpression of PA14_51010 and PA14_51020 or simultaneous deletion of the two genes resulted in a wild-type level survival rate following antibiotic treatment. The two genes were located in the same operon that was repressed by PA14_51020. We further demonstrated the interaction between PA14_51010 and PA14_51020. Sequence analysis revealed that PA14_51010 contained a conserved RES domain. Overexpression of PA14_51010 reduced the intracellular level of nicotinamide adenine dinucleotide (NAD+). Mutation of the RES domain abolished the abilities of PA14_51010 in reducing NAD+ level and promoting persister formation. In addition, overproduction of NAD+ by mutation in an nrtR gene counteracted the effect of PA14_51010 overexpression in promoting persister formation. In combination, our results reveal a novel TA system that contributes to persister formation through reducing the intracellular NAD+ level in P. aeruginosa.
Collapse
|
28
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
29
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
30
|
Wang X, Yao J, Sun YC, Wood TK. Type VII Toxin/Antitoxin Classification System for Antitoxins that Enzymatically Neutralize Toxins. Trends Microbiol 2020; 29:388-393. [PMID: 33342606 DOI: 10.1016/j.tim.2020.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Toxin/antitoxin (TA) systems are present in nearly all bacterial and archaeal strains and consist of a toxin that reduces growth and an antitoxin that masks toxin activity. Currently there are six primary classes for TA systems based on the nature of the antitoxin and the way that the antitoxin inactivates the toxin. Here we show that there now are at least three additional and distinct TA systems in which the antitoxin is an enzyme and the cognate toxin is the direct target of the antitoxin: Hha/TomB (antitoxin oxidizes Cys18 of the toxin), TglT/TakA (antitoxin phosphorylates Ser78 of the toxin), and HepT/MntA (antitoxin adds three AMPs to Tyr104 of the toxin). Thus, we suggest the type VII TA system should be used to designate those TA systems in which the enzyme antitoxin chemically modifies the toxin post-translationally to neutralize it. Defining the type VII TA system using this specific criterion will aid researchers in classifying newly discovered TA systems as well as refine the framework for recognizing the diverse biochemical functions in TA systems.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA.
| |
Collapse
|
31
|
Songailiene I, Juozapaitis J, Tamulaitiene G, Ruksenaite A, Šulčius S, Sasnauskas G, Venclovas Č, Siksnys V. HEPN-MNT Toxin-Antitoxin System: The HEPN Ribonuclease Is Neutralized by OligoAMPylation. Mol Cell 2020; 80:955-970.e7. [PMID: 33290744 DOI: 10.1016/j.molcel.2020.11.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.
Collapse
Affiliation(s)
- Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Jonas Juozapaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|