1
|
Sun M, Yu Z, Wang S, Qiu J, Huang Y, Chen X, Zhang Y, Wang C, Zhang X, Liang Y, Liu H, She Q, Zhang Y, Han L. Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor. NANO-MICRO LETTERS 2025; 17:242. [PMID: 40304961 PMCID: PMC12044126 DOI: 10.1007/s40820-025-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/09/2025] [Indexed: 05/02/2025]
Abstract
Amplification-free, highly sensitive, and specific nucleic acid detection is crucial for health monitoring and diagnosis. The type III CRISPR-Cas10 system, which provides viral immunity through CRISPR-associated protein effectors, enables a new amplification-free nucleic acid diagnostic tool. In this study, we develop a CRISPR-graphene field-effect transistors (GFETs) biosensor by combining the type III CRISPR-Cas10 system with GFETs for direct nucleic acid detection. This biosensor exploits the target RNA-activated continuous ssDNA cleavage activity of the dCsm3 CRISPR-Cas10 effector and the high charge density of a hairpin DNA reporter on the GFET channel to achieve label-free, amplification-free, highly sensitive, and specific RNA detection. The CRISPR-GFET biosensor exhibits excellent performance in detecting medium-length RNAs and miRNAs, with detection limits at the aM level and a broad linear range of 10-15 to 10-11 M for RNAs and 10-15 to 10-9 M for miRNAs. It shows high sensitivity in throat swabs and serum samples, distinguishing between healthy individuals (N = 5) and breast cancer patients (N = 6) without the need for extraction, purification, or amplification. This platform mitigates risks associated with nucleic acid amplification and cross-contamination, making it a versatile and scalable diagnostic tool for molecular diagnostics in human health.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Zhenxiao Yu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yuzhen Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiaoshuang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Xue Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, People's Republic of China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China.
- School of Integrated Circuits, Shandong University, Ji'nan, Shandong, 250100, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China.
- School of Integrated Circuits, Shandong University, Ji'nan, Shandong, 250100, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Zheng R, Zhang L. Sequestering survival: sponge-like proteins in phage evasion of bacterial immune defenses. Front Immunol 2025; 16:1545308. [PMID: 40313938 PMCID: PMC12043709 DOI: 10.3389/fimmu.2025.1545308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
By executing abortive infection, bacterial immune defense systems recognize phage components and initiate the production of various second messengers that target specific downstream effectors responsible for nucleic acid degradation, membrane destruction, or metabolite depletion. Notably, the sponge-like proteins encoded by phages, such as Tad1, Tad2, and Acb2, can inhibit abortive infection by sequestering, rather than degrading, these bacterial second messengers. This interference disrupts the activation of the effectors involved in the immune response. Most significantly, sponge-like proteins can simultaneously encapsulate diverse signals, effectively preventing the cell suicide mechanisms triggered by different bacterial immune systems, such as the cyclic nucleotide-based antiphage signaling system (CBASS) and Thoeris. The discovery of these sponge-like proteins reveals a remarkable strategy for suppressing innate immunity, ensuring viral replication and propagation. This greatly enhances our understanding of the ongoing arms race between hosts and viruses.
Collapse
Affiliation(s)
- Lan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ruoqi Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Ahsan M, Pindi C, Palermo G. Emerging Mechanisms of Metal-Catalyzed RNA and DNA Modifications. Annu Rev Phys Chem 2025; 76:497-518. [PMID: 39952635 DOI: 10.1146/annurev-physchem-082423-030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Metal ions play a critical role in various chemical, biological, and environmental processes. This review reports on emerging chemical mechanisms in the catalysis of DNA and RNA. We provide an overview of the metal-dependent mechanisms of DNA cleavage in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems that are transforming life sciences through genome editing technologies, and showcase intriguing metal-dependent mechanisms of RNA cleavages. We show that newly discovered CRISPR-Cas complexes operate as protein-assisted ribozymes, highlighting RNA's versatility and the enhancement of CRISPR-Cas functions through strategic metal ion use. We demonstrate the power of computer simulations in observing chemical processes as they unfold and in advancing structural biology through innovative approaches for refining cryo-electron microscopy maps. Understanding metal ion involvement in nucleic acid catalysis is crucial for advancing genome editing, aiding therapeutic interventions for genetic disorders, and improving the editing tools' specificity and efficiency.
Collapse
Affiliation(s)
- Mohd Ahsan
- Department of Bioengineering, University of California, Riverside, California, USA; , ,
| | - Chinmai Pindi
- Department of Bioengineering, University of California, Riverside, California, USA; , ,
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, California, USA; , ,
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Grüschow S, Steketee PC, Paxton E, Matthews KR, Morrison LJ, White MF, Grey F. Cas10 based 7SL-sRNA diagnostic for the detection of active trypanosomosis. PLoS Negl Trop Dis 2025; 19:e0012937. [PMID: 40096045 PMCID: PMC12051490 DOI: 10.1371/journal.pntd.0012937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/02/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Animal Trypanosomosis (AT) is a significant disease affecting cattle across sub-Saharan Africa, Latin America, and Asia, posing a major threat to economic productivity and animal welfare. The absence of reliable diagnostic tests has led to an over-reliance on widespread pre-emptive drug treatments, which not only compromise animal health but also heighten the risk of drug resistance. The chronic nature of AT, characterized by cyclical low or undetectable parasite levels, and the necessity for field-applicable tests that can distinguish between active infection and prior exposure, present considerable challenges in developing effective diagnostics. In previous work, we identified a parasite-specific small RNA, 7SL-sRNA, which is detectable in the serum of infected cattle, even during the chronic stages of infection. However, existing methods for detecting sRNA require specialized equipment, making them unsuitable for field use. In this study, we have developed both a fluorescence-based and a lateral flow diagnostic test utilizing Cas10 technology for the detection of 7SL-sRNA from Trypanosoma congolense and Trypanosoma brucei. The fluorescence assay detects 10 - 100 fM T. congolense 7SL-sRNA and 1 pM T. brucei 7SL-sRNA, and the lateral flow assay showed a limit of detection of 1 - 10 pM for both species. Either assay can effectively identify active infections in cattle, including during chronic phases (with positive signals observed up to the experimental end point, 63 days post infection). This also highlights the effective use of Cas10 for small RNA detection, paving the way for a cost-effective, user-friendly, and field-deployable diagnostic test for AT, while establishing Cas10 technology for the detection of small RNAs in general.
Collapse
Affiliation(s)
- Sabine Grüschow
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Pieter C. Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Keith R. Matthews
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm F. White
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Finn Grey
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Smalakyte D, Ruksenaite A, Sasnauskas G, Tamulaitiene G, Tamulaitis G. Filament formation activates protease and ring nuclease activities of CRISPR Lon-SAVED. Mol Cell 2024; 84:4239-4255.e8. [PMID: 39362215 DOI: 10.1016/j.molcel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
To combat phage infection, type III CRISPR-Cas systems utilize cyclic oligoadenylates (cAn) signaling to activate various auxiliary effectors, including the CRISPR-associated Lon-SAVED protease CalpL, which forms a tripartite effector system together with an anti-σ factor, CalpT, and an ECF-like σ factor, CalpS. Here, we report the characterization of the Candidatus Cloacimonas acidaminovorans CalpL-CalpT-CalpS. We demonstrate that cA4 binding triggers CalpL filament formation and activates it to cleave CalpT within the CalpT-CalpS dimer. This cleavage exposes the CalpT C-degron, which targets it for further degradation by cellular proteases. Consequently, CalpS is released to bind to RNA polymerase, causing growth arrest in E. coli. Furthermore, the CalpL-CalpT-CalpS system is regulated by the SAVED domain of CalpL, which is a ring nuclease that cleaves cA4 in a sequential three-step mechanism. These findings provide key mechanistic details for the activation, proteolytic events, and regulation of the signaling cascade in the type III CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Dalia Smalakyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
6
|
Li D, Xiao Y, Fedorova I, Xiong W, Wang Y, Liu X, Huiting E, Ren J, Gao Z, Zhao X, Cao X, Zhang Y, Bondy-Denomy J, Feng Y. Single phage proteins sequester signals from TIR and cGAS-like enzymes. Nature 2024; 635:719-727. [PMID: 39478223 DOI: 10.1038/s41586-024-08122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication1-3. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad14 and Tad25 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides. Apart from binding to the Thoeris signals 1''-3'-gcADPR and 1''-2'-gcADPR, Tad1 also binds to numerous CBASS CDNs and CTNs with high affinity, inhibiting CBASS systems that use these molecules in vivo and in vitro. The hexameric Tad1 has six binding sites for CDNs or gcADPR, which are independent of the two high-affinity binding sites for CTNs. Tad2 forms a tetramer that also sequesters various CDNs in addition to gcADPR molecules, using distinct binding sites to simultaneously bind to these signals. Thus, Tad1 and Tad2 are both two-pronged inhibitors that, alongside anti-CBASS protein 2 (Acb26-8), establish a paradigm of phage proteins that use distinct binding sites to flexibly sequester a considerable breadth of cyclic nucleotides.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yu Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Iana Fedorova
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Weijia Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zirui Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xingyu Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xueli Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
7
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
8
|
Goswami HN, Ahmadizadeh F, Wang B, Addo-Yobo D, Zhao Y, Whittington A, He H, Terns M, Li H. Molecular basis for cA6 synthesis by a type III-A CRISPR-Cas enzyme and its conversion to cA4 production. Nucleic Acids Res 2024; 52:10619-10629. [PMID: 38989619 PMCID: PMC11417356 DOI: 10.1093/nar/gkae603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
The type III-A (Csm) CRISPR-Cas systems are multi-subunit and multipronged prokaryotic enzymes in guarding the hosts against viral invaders. Beyond cleaving activator RNA transcripts, Csm confers two additional activities: shredding single-stranded DNA and synthesizing cyclic oligoadenylates (cOAs) by the Cas10 subunit. Known Cas10 enzymes exhibit a fascinating diversity in cOA production. Three major forms-cA3, cA4 and cA6have been identified, each with the potential to trigger unique downstream effects. Whereas the mechanism for cOA-dependent activation is well characterized, the molecular basis for synthesizing different cOA isoforms remains unclear. Here, we present structural characterization of a cA6-producing Csm complex during its activation by an activator RNA. Analysis of the captured intermediates of cA6 synthesis suggests a 3'-to-5' nucleotidyl transferring process. Three primary adenine binding sites can be identified along the chain elongation path, including a unique tyrosine-threonine dyad found only in the cA6-producing Cas10. Consistently, disrupting the tyrosine-threonine dyad specifically impaired cA6 production while promoting cA4 production. These findings suggest that Cas10 utilizes a unique enzymatic mechanism for forming the phosphodiester bond and has evolved distinct strategies to regulate the cOA chain length.
Collapse
Affiliation(s)
- Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Fozieh Ahmadizadeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Bing Wang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Doreen Addo-Yobo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - A Carl Whittington
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Michael P Terns
- Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Hoikkala V, Graham S, White MF. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families. Nucleic Acids Res 2024; 52:7129-7141. [PMID: 38808661 PMCID: PMC11229360 DOI: 10.1093/nar/gkae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Recognition of RNA from invading mobile genetic elements (MGE) prompts type III CRISPR systems to activate an HD nuclease domain and/or a nucleotide cyclase domain in the Cas10 subunit, eliciting an immune response. The cyclase domain can generate a range of nucleotide second messengers, which in turn activate a diverse family of ancillary effector proteins. These provide immunity by non-specific degradation of host and MGE nucleic acids or proteins, perturbation of membrane potentials, transcriptional responses, or the arrest of translation. The wide range of nucleotide activators and downstream effectors generates a complex picture that is gradually being resolved. Here, we carry out a global bioinformatic analysis of type III CRISPR loci in prokaryotic genomes, defining the relationships of Cas10 proteins and their ancillary effectors. Our study reveals that cyclic tetra-adenylate is by far the most common signalling molecule used and that many loci have multiple effectors. These typically share the same activator and may work synergistically to combat MGE. We propose four new candidate effector protein families and confirm experimentally that the Csm6-2 protein, a highly diverged, fused Csm6 effector, is a ribonuclease activated by cyclic hexa-adenylate.
Collapse
Affiliation(s)
- Ville Hoikkala
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
10
|
Krüger L, Gaskell-Mew L, Graham S, Shirran S, Hertel R, White MF. Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection. Nat Microbiol 2024; 9:1579-1592. [PMID: 38589469 PMCID: PMC11153139 DOI: 10.1038/s41564-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase-PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.
Collapse
Affiliation(s)
- Larissa Krüger
- School of Biology, University of St Andrews, St Andrews, UK.
| | | | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- School of Biology, University of St Andrews, St Andrews, UK
| | - Robert Hertel
- Genomic and Applied Microbiology, Göttingen Centre for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
11
|
Schwartz EA, Bravo JPK, Ahsan M, Macias LA, McCafferty CL, Dangerfield TL, Walker JN, Brodbelt JS, Palermo G, Fineran PC, Fagerlund RD, Taylor DW. RNA targeting and cleavage by the type III-Dv CRISPR effector complex. Nat Commun 2024; 15:3324. [PMID: 38637512 PMCID: PMC11026444 DOI: 10.1038/s41467-024-47506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.
Collapse
Affiliation(s)
- Evan A Schwartz
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mohd Ahsan
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, CA, USA
| | - Luis A Macias
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Caitlyn L McCafferty
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, CA, USA.
| | - Peter C Fineran
- Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Robert D Fagerlund
- Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin, New Zealand.
- Genetics Otago, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - David W Taylor
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Grüschow S, McQuarrie S, Ackermann K, McMahon S, Bode B, Gloster T, White M. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23. Nucleic Acids Res 2024; 52:2761-2775. [PMID: 38471818 PMCID: PMC11014256 DOI: 10.1093/nar/gkae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.
Collapse
Affiliation(s)
- Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Stuart McQuarrie
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Katrin Ackermann
- Biomedical Sciences Research Complex, School of Chemistry, Centre of Magnetic Resonance, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Stephen McMahon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Bela E Bode
- Biomedical Sciences Research Complex, School of Chemistry, Centre of Magnetic Resonance, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
13
|
Li X, Han J, Yang J, Zhang H. The structural biology of type III CRISPR-Cas systems. J Struct Biol 2024; 216:108070. [PMID: 38395113 DOI: 10.1016/j.jsb.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
CRISPR-Cas system is an RNA-guided adaptive immune system widespread in bacteria and archaea. Among them, type III CRISPR-Cas systems are the most ancient throughout the CRISPR-Cas family, proving anti-phage defense through a crRNA-guided RNA targeting manner and possessing multiple enzymatic activities. Type III CRISPR-Cas systems comprise four typical members (type III-A to III-D) and two atypical members (type III-E and type III-F), providing immune defense through distinct mechanisms. Here, we delve into structural studies conducted on three well-characterized members: the type III-A, III-B, and III-E systems, provide an overview of the structural insights into the crRNA-guided target RNA cleavage, self/non-self discrimination, and the target RNA-dependent regulation of enzymatic subunits in the effector complex.
Collapse
Affiliation(s)
- Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Han
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
14
|
Hilton J, Nanao Y, Flokstra M, Askari M, Smith TK, Di Falco A, King PDC, Wahl P, Adamson CS. The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2. Appl Environ Microbiol 2024; 90:e0155323. [PMID: 38259079 PMCID: PMC10880620 DOI: 10.1128/aem.01553-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.
Collapse
Affiliation(s)
- Jane Hilton
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Yoshiko Nanao
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Machiel Flokstra
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Meisam Askari
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Andrea Di Falco
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Phil D. C. King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Catherine S. Adamson
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
15
|
Wang Z, Feng N, Zhou Y, Cheng X, Zhou C, Ma A, Wang Q, Li Y, Chen Y. Mesophilic Argonaute-Mediated Polydisperse Droplet Biosensor for Amplification-Free, One-Pot, and Multiplexed Nucleic Acid Detection Using Deep Learning. Anal Chem 2024; 96:2068-2077. [PMID: 38259216 DOI: 10.1021/acs.analchem.3c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinyu Wang
- Department of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430000, Hubei China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
16
|
Steens JA, Bravo JP, Salazar CRP, Yildiz C, Amieiro AM, Köstlbacher S, Prinsen SH, Andres AS, Patinios C, Bardis A, Barendregt A, Scheltema RA, Ettema TJ, van der Oost J, Taylor DW, Staals RH. Type III-B CRISPR-Cas cascade of proteolytic cleavages. Science 2024; 383:512-519. [PMID: 38301007 PMCID: PMC11220425 DOI: 10.1126/science.adk0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The generation of cyclic oligoadenylates and subsequent allosteric activation of proteins that carry sensory domains is a distinctive feature of type III CRISPR-Cas systems. In this work, we characterize a set of associated genes of a type III-B system from Haliangium ochraceum that contains two caspase-like proteases, SAVED-CHAT and PCaspase (prokaryotic caspase), co-opted from a cyclic oligonucleotide-based antiphage signaling system (CBASS). Cyclic tri-adenosine monophosphate (AMP)-induced oligomerization of SAVED-CHAT activates proteolytic activity of the CHAT domains, which specifically cleave and activate PCaspase. Subsequently, activated PCaspase cleaves a multitude of proteins, which results in a strong interference phenotype in vivo in Escherichia coli. Taken together, our findings reveal how a CRISPR-Cas-based detection of a target RNA triggers a cascade of caspase-associated proteolytic activities.
Collapse
Affiliation(s)
- Jurre A. Steens
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
- Scope Biosciences B.V.; Wageningen, The Netherlands
| | - Jack P.K. Bravo
- Department of Molecular Biosciences, University of Texas at Austin; Austin, USA
| | | | - Caglar Yildiz
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Afonso M. Amieiro
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | | | - Ane S. Andres
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Andreas Bardis
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht; Utrecht, The Netherlands
| | - Richard A. Scheltema
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht; Utrecht, The Netherlands
| | - Thijs J.G. Ettema
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas at Austin; Austin, USA
| | - Raymond H.J. Staals
- Laboratory of Microbiology, Wageningen University and Research; Wageningen, The Netherlands
| |
Collapse
|
17
|
Stella G, Marraffini L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends Biochem Sci 2024; 49:28-37. [PMID: 37949766 PMCID: PMC10844953 DOI: 10.1016/j.tibs.2023.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Type III CRISPR-Cas loci encode some of the most abundant, yet complex, immune systems of prokaryotes. They are composed of a Cas10 complex that uses an RNA guide to recognize transcripts from bacteriophage and plasmid invaders. Target recognition triggers three activities within this complex: ssDNA degradation, synthesis of cyclic oligoadenylates (cOA) that act as second messengers to activate CARF-domain effectors, and cleavage of target RNA. This review covers recent research in type III CRISPR-Cas systems that looked beyond the activity of the canonical Cas10 complexes towards: (i) ancillary nucleases and understanding how they provide defense by sensing cOA molecules; (ii) ring nucleases and their role in regulating cOA production; and (iii) CRISPR-associated proteases, including the function of the Craspase complex in a transcriptional response to phage infection.
Collapse
Affiliation(s)
- Gianna Stella
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
18
|
Wang B, Yang H. Progress of CRISPR-based programmable RNA manipulation and detection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1804. [PMID: 37282821 DOI: 10.1002/wrna.1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Chi H, Hoikkala V, Grüschow S, Graham S, Shirran S, White MF. Antiviral type III CRISPR signalling via conjugation of ATP and SAM. Nature 2023; 622:826-833. [PMID: 37853119 PMCID: PMC10600005 DOI: 10.1038/s41586-023-06620-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine-aspartate (HD) nuclease domain3-5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6-9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an 'off switch' analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.
Collapse
Affiliation(s)
- Haotian Chi
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
| | - Ville Hoikkala
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
20
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Colognori D, Trinidad M, Doudna JA. Precise transcript targeting by CRISPR-Csm complexes. Nat Biotechnol 2023; 41:1256-1264. [PMID: 36690762 PMCID: PMC10497410 DOI: 10.1038/s41587-022-01649-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/15/2022] [Indexed: 01/24/2023]
Abstract
Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate trans-cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the Streptococcus thermophilus Csm complex, we observe high-efficiency RNA knockdown (90-99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes.
Collapse
Affiliation(s)
- David Colognori
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marena Trinidad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
22
|
Rousset F, Sorek R. The evolutionary success of regulated cell death in bacterial immunity. Curr Opin Microbiol 2023; 74:102312. [PMID: 37030143 DOI: 10.1016/j.mib.2023.102312] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023]
Abstract
Bacteria employ a complex arsenal of immune mechanisms to defend themselves against phages. Recent studies demonstrate that these immune mechanisms frequently involve regulated cell death in response to phage infection. By sacrificing infected cells, this strategy prevents the spread of phages within the surrounding population. In this review, we discuss the principles of regulated cell death in bacterial defense, and show that over 70% of sequenced prokaryotes employ this strategy as part of their defensive arsenals. We highlight the modularity of defense systems involving regulated cell death, explaining how shuffling between phage-sensing and cell-killing protein domains dominates their evolution. Some of these defense systems are the evolutionary ancestors of key components of eukaryotic immunity, highlighting their importance in shaping the evolutionary trajectory of immune systems across the tree of life.
Collapse
|
23
|
Paraan M, Nasef M, Chou-Zheng L, Khweis SA, Schoeffler AJ, Hatoum-Aslan A, Stagg SM, Dunkle JA. The structure of a Type III-A CRISPR-Cas effector complex reveals conserved and idiosyncratic contacts to target RNA and crRNA among Type III-A systems. PLoS One 2023; 18:e0287461. [PMID: 37352230 PMCID: PMC10289348 DOI: 10.1371/journal.pone.0287461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Type III CRISPR-Cas systems employ multiprotein effector complexes bound to small CRISPR RNAs (crRNAs) to detect foreign RNA transcripts and elicit a complex immune response that leads to the destruction of invading RNA and DNA. Type III systems are among the most widespread in nature, and emerging interest in harnessing these systems for biotechnology applications highlights the need for detailed structural analyses of representatives from diverse organisms. We performed cryo-EM reconstructions of the Type III-A Cas10-Csm effector complex from S. epidermidis bound to an intact, cognate target RNA and identified two oligomeric states, a 276 kDa complex and a 318 kDa complex. 3.1 Å density for the well-ordered 276 kDa complex allowed construction of atomic models for the Csm2, Csm3, Csm4 and Csm5 subunits within the complex along with the crRNA and target RNA. We also collected small-angle X-ray scattering data which was consistent with the 276 kDa Cas10-Csm architecture we identified. Detailed comparisons between the S. epidermidis Cas10-Csm structure and the well-resolved bacterial (S. thermophilus) and archaeal (T. onnurineus) Cas10-Csm structures reveal differences in how the complexes interact with target RNA and crRNA which are likely to have functional ramifications. These structural comparisons shed light on the unique features of Type III-A systems from diverse organisms and will assist in improving biotechnologies derived from Type III-A effector complexes.
Collapse
Affiliation(s)
- Mohammadreza Paraan
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States of America
| | - Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, United States of America
| | - Lucy Chou-Zheng
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL, United States of America
| | - Sarah A. Khweis
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, United States of America
| | - Allyn J. Schoeffler
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, LA, United States of America
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL, United States of America
| | - Scott M. Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States of America
| | - Jack A. Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, United States of America
| |
Collapse
|
24
|
Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Rep 2023; 42:112672. [PMID: 37347666 DOI: 10.1016/j.celrep.2023.112672] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
25
|
Molina-Quiroz RC, Silva-Valenzuela CA. Interactions of Vibrio phages and their hosts in aquatic environments. Curr Opin Microbiol 2023; 74:102308. [PMID: 37062175 DOI: 10.1016/j.mib.2023.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
Bacteriophages (phages) are viruses that specifically infect bacteria. These viruses were discovered a century ago and have been used as a model system in microbial genetics and molecular biology. In order to survive, bacteria have to quickly adapt to phage challenges in their natural settings. In turn, phages continuously develop/evolve mechanisms for battling host defenses. A deeper understanding of the arms race between bacteria and phages is essential for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections. Vibrio species and their phages (vibriophages) are a suitable model to study these interactions. Phages are highly ubiquitous in aquatic environments and Vibrio are waterborne bacteria that must survive the constant attack by phages for successful transmission to their hosts. Here, we review relevant literature from the past two years to delve into the molecular interactions of Vibrio species and their phages in aquatic niches.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | | |
Collapse
|
26
|
Wiegand T, Wilkinson R, Santiago-Frangos A, Lynes M, Hatzenpichler R, Wiedenheft B. Functional and Phylogenetic Diversity of Cas10 Proteins. CRISPR J 2023; 6:152-162. [PMID: 36912817 PMCID: PMC10123807 DOI: 10.1089/crispr.2022.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Cas10 proteins are large subunits of type III CRISPR RNA (crRNA)-guided surveillance complexes, many of which have nuclease and cyclase activities. Here, we use computational and phylogenetic methods to identify and analyze 2014 Cas10 sequences from genomic and metagenomic databases. Cas10 proteins cluster into five distinct clades that mirror previously established CRISPR-Cas subtypes. Most Cas10 proteins (85.0%) have conserved polymerase active-site motifs, while HD-nuclease domains are less well conserved (36.0%). We identify Cas10 variants that are split over multiple genes or genetically fused to nucleases activated by cyclic nucleotides (i.e., NucC) or components of toxin-antitoxin systems (i.e., AbiEii). To clarify the functional diversification of Cas10 proteins, we cloned, expressed, and purified five representatives from three phylogenetically distinct clades. None of the Cas10s are functional cyclases in isolation, and activity assays performed with polymerase domain active site mutants indicate that previously reported Cas10 DNA-polymerase activity may be a result of contamination. Collectively, this work helps clarify the phylogenetic and functional diversity of Cas10 proteins in type III CRISPR systems.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Royce Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mackenzie Lynes
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Roland Hatzenpichler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
27
|
Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. Trends Microbiol 2023; 31:405-418. [PMID: 36463018 DOI: 10.1016/j.tim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-Cas and prokaryotic Argonaute (pAgo) are nucleic acid (NA)-guided defense systems that protect prokaryotes against the invasion of mobile genetic elements. Previous studies established that they are directed by NA fragments (guides) to recognize invading complementary NA (targets), and that they cleave the targets to silence the invaders. Nevertheless, growing evidence indicates that many CRISPR-Cas and pAgo systems exploit the abortive infection (Abi) strategy to confer immunity. The CRISPR-Cas and pAgo Abi systems typically sense invaders using the NA recognition ability and activate various toxic effectors to kill the infected cells to prevent the invaders from spreading. This review summarizes the diverse mechanisms of these CRISPR-Cas and pAgo systems, and highlights their critical roles in the arms race between microbes and invaders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, 266237, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
28
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
29
|
Cannone G, Kompaniiets D, Graham S, White MF, Spagnolo L. Structure of the Saccharolobus solfataricus type III-D CRISPR effector. Curr Res Struct Biol 2023; 5:100098. [PMID: 36843655 PMCID: PMC9945777 DOI: 10.1016/j.crstbi.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system, classified into six different types, each characterised by a signature protein. Type III systems, classified based on the presence of a Cas10 subunit, are rather diverse multi-subunit assemblies with a range of enzymatic activities and downstream ancillary effectors. The broad array of current biotechnological CRISPR applications is mainly based on proteins classified as Type II, however recent developments established the feasibility and efficacy of multi-protein Type III CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The crenarchaeon Saccharolobus solfataricus has two type III system subtypes (III-B and III-D). Here, we report the cryo-EM structure of the Csm Type III-D complex from S. solfataricus (SsoCsm), which uses CRISPR RNA to bind target RNA molecules, activating the Cas10 subunit for antiviral defence. The structure reveals the complex organisation, subunit/subunit connectivity and protein/guide RNA interactions of the SsoCsm complex, one of the largest CRISPR effectors known.
Collapse
Affiliation(s)
- Giuseppe Cannone
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Dmytro Kompaniiets
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Graham
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Malcolm F. White
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Laura Spagnolo
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Yu Z, Xu J, She Q. Harnessing the LdCsm RNA Detection Platform for Efficient microRNA Detection. Int J Mol Sci 2023; 24:ijms24032857. [PMID: 36769177 PMCID: PMC9918065 DOI: 10.3390/ijms24032857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.
Collapse
Affiliation(s)
| | | | - Qunxin She
- Correspondence: ; Tel.: +86-532-58631522
| |
Collapse
|
31
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
32
|
Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 2023; 613:588-594. [PMID: 36599979 PMCID: PMC9811890 DOI: 10.1038/s41586-022-05559-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 01/05/2023]
Abstract
Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.
Collapse
|
33
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
34
|
Patel DJ, Yu Y, Jia N. Bacterial origins of cyclic nucleotide-activated antiviral immune signaling. Mol Cell 2022; 82:4591-4610. [PMID: 36460008 PMCID: PMC9772257 DOI: 10.1016/j.molcel.2022.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
Second-messenger-mediated signaling by cyclic oligonucleotides (cOs) composed of distinct base, ring size, and 3'-5'/2'-5' linkage combinations constitutes the initial trigger resulting in activation of signaling pathways that have an impact on immune-mediated antiviral defense against invading viruses and phages. Bacteria and archaea have evolved CRISPR, CBASS, Pycsar, and Thoeris surveillance complexes that involve cO-mediated activation of effectors resulting in antiviral defense through either targeted nuclease activity, effector oligomerization-mediated depletion of essential cellular metabolites or disruption of host cell membrane functions. Notably, antiviral defense capitalizes on an abortive infection mechanism, whereby infected cells die prior to completion of the phage replication cycle. In turn, phages have evolved small proteins that target and degrade/sequester cOs, thereby suppressing host immunity. This review presents a structure-based mechanistic perspective of recent advances in the field of cO-mediated antiviral defense, in particular highlighting the ancient evolutionary adaptation by metazoans of bacterial cell-autonomous innate immune mechanisms.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - You Yu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
35
|
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall LN, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nat Commun 2022; 13:7762. [PMID: 36522348 PMCID: PMC9751510 DOI: 10.1038/s41467-022-35445-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Shishir Pandey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Laina N Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Aidan McVey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Helen H Lee
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
36
|
Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Mol Cell 2022; 82:4471-4486.e9. [PMID: 36395770 DOI: 10.1016/j.molcel.2022.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.
Collapse
|
37
|
Li J, Wang Y, Wang B, Lou J, Ni P, Jin Y, Chen S, Duan G, Zhang R. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics (Basel) 2022; 12:2455. [PMID: 36292145 PMCID: PMC9600689 DOI: 10.3390/diagnostics12102455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
The CRISPR/Cas system is a protective adaptive immune system against attacks from foreign mobile genetic elements. Since the discovery of the excellent target-specific sequence recognition ability of the CRISPR/Cas system, the CRISPR/Cas system has shown excellent performance in the development of pathogen nucleic-acid-detection technology. In combination with various biosensing technologies, researchers have made many rapid, convenient, and feasible innovations in pathogen nucleic-acid-detection technology. With an in-depth understanding and development of the CRISPR/Cas system, it is no longer limited to CRISPR/Cas9, CRISPR/Cas12, and other systems that had been widely used in the past; other CRISPR/Cas families are designed for nucleic acid detection. We summarized the application of CRISPR/Cas-related technology in infectious-disease detection and its development in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Junwei Li
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Rongguang Zhang
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
38
|
Abstract
Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.
Collapse
Affiliation(s)
- Januka S Athukoralage
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, United Kingdom;
| |
Collapse
|
39
|
Santiago-Frangos A, Nemudryi A, Nemudraia A, Wiegand T, Nichols JE, Krishna P, Scherffius AM, Zahl TR, Wilkinson RA, Wiedenheft B. CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods 2022; 205:1-10. [PMID: 35690249 PMCID: PMC9181078 DOI: 10.1016/j.ymeth.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 01/04/2023] Open
Abstract
Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Pushya Krishna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Trevor R Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
40
|
Cyclic nucleotide-induced helical structure activates a TIR immune effector. Nature 2022; 608:808-812. [PMID: 35948638 DOI: 10.1038/s41586-022-05070-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023]
Abstract
Cyclic nucleotide signalling is a key component of antiviral defence in all domains of life. Viral detection activates a nucleotide cyclase to generate a second messenger, resulting in activation of effector proteins. This is exemplified by the metazoan cGAS-STING innate immunity pathway1, which originated in bacteria2. These defence systems require a sensor domain to bind the cyclic nucleotide and are often coupled with an effector domain that, when activated, causes cell death by destroying essential biomolecules3. One example is the Toll/interleukin-1 receptor (TIR) domain, which degrades the essential cofactor NAD+ when activated in response to infection in plants and bacteria2,4,5 or during programmed nerve cell death6. Here we show that a bacterial antiviral defence system generates a cyclic tri-adenylate that binds to a TIR-SAVED effector, acting as the 'glue' to allow assembly of an extended superhelical solenoid structure. Adjacent TIR subunits interact to organize and complete a composite active site, allowing NAD+ degradation. Activation requires extended filament formation, both in vitro and in vivo. Our study highlights an example of large-scale molecular assembly controlled by cyclic nucleotides and reveals key details of the mechanism of TIR enzyme activation.
Collapse
|
41
|
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall L, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. RESEARCH SQUARE 2022:rs.3.rs-1466718. [PMID: 35475170 PMCID: PMC9040678 DOI: 10.21203/rs.3.rs-1466718/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Andrew M. Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Shishir Pandey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph E. Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Laina Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Aidan McVey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Helen H Lee
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Royce A. Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Laura R. Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Lead contact
| |
Collapse
|
42
|
Das A, Goswami HN, Whyms CT, Sridhara S, Li H. Structural Principles of CRISPR-Cas Enzymes Used in Nucleic Acid Detection. J Struct Biol 2022; 214:107838. [PMID: 35123001 PMCID: PMC8924977 DOI: 10.1016/j.jsb.2022.107838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based technology has revolutionized the field of biomedicine with broad applications in genome editing, therapeutics and diagnostics. While a majority of applications involve the RNA-guided site-specific DNA or RNA cleavage by CRISPR enzymes, recent successes in nucleic acid detection rely on their collateral and non-specific cleavage activated by viral DNA or RNA. Ranging in enzyme composition, the mechanism for distinguishing self- from foreign-nucleic acids, the usage of second messengers, and enzymology, the CRISPR enzymes provide a diverse set of diagnosis tools in further innovations. Structural biology plays an important role in elucidating the mechanisms of these CRISPR enzymes. Here we summarize and compare structures of three types of CRISPR enzymes used in nucleic acid detection captured in their respective functional forms and illustrate the current understanding of their activation mechanism.
Collapse
Affiliation(s)
- Anuska Das
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Charlisa T Whyms
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Sagar Sridhara
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
43
|
Nasef M, Khweis SA, Dunkle JA. The effect of crRNA-target mismatches on cOA-mediated interference by a type III-A CRISPR-Cas system. RNA Biol 2022; 19:1293-1304. [PMID: 36424814 PMCID: PMC9704408 DOI: 10.1080/15476286.2022.2150812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CRISPR systems elicit interference when a foreign nucleic acid is detected by its ability to base-pair to crRNA. Understanding what degree of complementarity between a foreign nucleic acid and crRNA is required for interference is a central question in the study of CRISPR systems. A clear description of which target-crRNA mismatches abrogate interference in type III, Cas10-containing, CRISPR systems has proved elusive due to the complexity of the system which utilizes three distinct interference activities. We characterized the effect of target-crRNA mismatches on in vitro cyclic oligoadenylate (cOA) synthesis and in vivo in an interference assay that depends on cOA synthesis. We found that sequence context affected whether a mismatched target was recognized by crRNA both in vitro and in vivo. We also investigated how the position of a mismatch within the target-crRNA duplex affected recognition by crRNA. Our data provide support for the hypothesis that a Cas10-activating region exists in the crRNA-target duplex, that the Cas10-proximal region of the duplex is the most critical in regulating cOA synthesis. Understanding the rules governing target recognition by type III CRISPR systems is critical: as one of the most prevalent CRISPR systems in nature, it plays an important role in the survival of many genera of bacteria. Recently, type III systems were re-purposed as a sensitive and accurate molecular diagnostic tool. Understanding the rules of target recognition in this system will be critical as it is engineered for biotechnology purposes.
Collapse
Affiliation(s)
- Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| | - Sarah A. Khweis
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| | - Jack A. Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA,CONTACT Jack A. Dunkle Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|