1
|
Campos-Chavez E, Paul S, Zhou Z, Alonso D, Verma AR, Fei J, Mondragón A. Translational T-box riboswitches bind tRNA by modulating conformational flexibility. Nat Commun 2024; 15:6592. [PMID: 39097611 PMCID: PMC11297988 DOI: 10.1038/s41467-024-50885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
T-box riboswitches are noncoding RNA elements involved in genetic regulation of most Gram-positive bacteria. They regulate amino acid metabolism by assessing the aminoacylation status of tRNA, subsequently affecting the transcription or translation of downstream amino acid metabolism-related genes. Here we present single-molecule FRET studies of the Mycobacterium tuberculosis IleS T-box riboswitch, a paradigmatic translational T-box. Results support a two-step binding model, where the tRNA anticodon is recognized first, followed by interactions with the NCCA sequence. Furthermore, after anticodon recognition, tRNA can transiently dock into the discriminator domain even in the absence of the tRNA NCCA-discriminator interactions. Establishment of the NCCA-discriminator interactions significantly stabilizes the fully bound state. Collectively, the data suggest high conformational flexibility in translational T-box riboswitches; and supports a conformational selection model for NCCA recognition. These findings provide a kinetic framework to understand how specific RNA elements underpin the binding affinity and specificity required for gene regulation.
Collapse
Affiliation(s)
- Eduardo Campos-Chavez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Sneha Paul
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Institute of Molecular Sciences of Orsay, Paris-Saclay University, 91405, Orsay, France
| | - Zunwu Zhou
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Dulce Alonso
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Anjali R Verma
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Biophysics Program and Institute for Physical Sciences and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
2
|
Hossain MI, Myers M, Herath D, Aldhumani AH, Boesger H, Hines JV. 4-Aminoquinolines modulate RNA structure and function: Pharmacophore implications of a conformationally restricted polyamine. Biochem Biophys Res Commun 2023; 644:55-61. [PMID: 36630735 PMCID: PMC10473465 DOI: 10.1016/j.bbrc.2022.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
RNA structure plays an important role in regulating cellular function and there is a significant emerging interest in targeting RNA for drug discovery. Here we report the identification of 4-aminoquinolines as modulators of RNA structure and function. Aminoquinolines have a broad range of pharmacological activities, but their specific mechanism of action is often not fully understood. Using electrophoretic mobility shift assays and enzymatic probing we identified 4-aminoquinolines that bind the stem-loop II motif (s2m) of SARS-CoV-2 RNA site-specifically and induce dimerization. Using fluorescence-based RNA binding and T-box riboswitch functional assays we identified that hydroxychloroquine binds the T-box riboswitch antiterminator RNA element and inhibits riboswitch function. Based on its structure and riboswitch dose-response activity we identified that the antagonist activity of hydroxychloroquine is consistent with it being a conformationally restricted analog of the polyamine spermidine. Given the known role that polyamines play in RNA function, the identification of an RNA binding ligand with the pharmacophore of a conformationally restricted polyamine has significant implications for further elucidation of RNA structure-function relationships and RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Md Ismail Hossain
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Mason Myers
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Danushika Herath
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hannah Boesger
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
3
|
Laalami S, Cavaiuolo M, Roque S, Chagneau C, Putzer H. Escherichia coli RNase E can efficiently replace RNase Y in Bacillus subtilis. Nucleic Acids Res 2021; 49:4643-4654. [PMID: 33788929 PMCID: PMC8096251 DOI: 10.1093/nar/gkab216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
RNase Y and RNase E are disparate endoribonucleases that govern global mRNA turnover/processing in the two evolutionary distant bacteria Bacillus subtilis and Escherichia coli, respectively. The two enzymes share a similar in vitro cleavage specificity and subcellular localization. To evaluate the potential equivalence in biological function between the two enzymes in vivo we analyzed whether and to what extent RNase E is able to replace RNase Y in B. subtilis. Full-length RNase E almost completely restores wild type growth of the rny mutant. This is matched by a surprising reversal of transcript profiles both of individual genes and on a genome-wide scale. The single most important parameter to efficient complementation is the requirement for RNase E to localize to the inner membrane while truncation of the C-terminal sequences corresponding to the degradosome scaffold has only a minor effect. We also compared the in vitro cleavage activity for the major decay initiating ribonucleases Y, E and J and show that no conclusions can be drawn with respect to their activity in vivo. Our data confirm the notion that RNase Y and RNase E have evolved through convergent evolution towards a low specificity endonuclease activity universally important in bacteria.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Marina Cavaiuolo
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Sylvain Roque
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Carine Chagneau
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, UMR8261, Institut de Biologie Physico-Chimique, Université de Paris, 75005 Paris, France
| |
Collapse
|
4
|
Zhang J. Unboxing the T-box riboswitches-A glimpse into multivalent and multimodal RNA-RNA interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1600. [PMID: 32633085 PMCID: PMC7583486 DOI: 10.1002/wrna.1600] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
The T-box riboswitches are widespread bacterial noncoding RNAs that directly bind specific tRNAs, sense aminoacylation on bound tRNAs, and switch conformations to control amino-acid metabolism and to maintain nutritional homeostasis. The core mechanisms of tRNA recognition, amino acid sensing, and conformational switching by the T-boxes have been recently elucidated, providing a wealth of new insights into multivalent and multimodal RNA-RNA interactions. This review dissects the structures and tRNA-recognition mechanisms by the Stem I, Stem II, and Discriminator domains, which collectively compose the T-box riboswitches. It further compares and contrasts the two classes of T-boxes that regulate transcription and translation, respectively, and integrates recent findings to derive general themes, trends, and insights into complex RNA-RNA interactions. Specifically, the T-box paradigm reveals that noncoding RNAs can interact with each other through multiple coordinated contacts, concatenation of stacked helices, and mutually induced fit. Numerous tertiary contacts, especially those emanating from strings of single-stranded purines, act in concert to reinforce long-range base-pairing and stacking interactions. These coordinated, mixed-mode contacts allow the T-box RNA to sterically sense aminoacylation on the tRNA using a bipartite steric sieve, and to couple this readout to a conformational switch mediated by tRNA-T-box stacking. Together, the insights gleaned from the T-box riboswitches inform investigations into other complex RNA structures and assemblies, development of T-box-targeted antimicrobials, and may inspire design and engineering of novel RNA sensors, regulators, and interfaces. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Riboswitches.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Battaglia RA, Grigg JC, Ke A. Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators. Nat Struct Mol Biol 2019; 26:1106-1113. [PMID: 31740853 PMCID: PMC6953718 DOI: 10.1038/s41594-019-0327-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023]
Abstract
T-box riboregulators are a class of cis-regulatory RNAs that govern the bacterial response to amino acid starvation by binding, decoding and reading the aminoacylation status of specific transfer RNAs. Here we provide a high-resolution crystal structure of a full-length T-box from Mycobacterium tuberculosis that explains tRNA decoding and aminoacylation sensing by this riboregulator. Overall, the T-box consists of decoding and aminoacylation sensing modules bridged by a rigid pseudoknot structure formed by the mid-region domains. Stem-I and the Stem-II S-turn assemble a claw-like decoding module, while the antiterminator, Stem-III, and the adjacent linker form a tightly interwoven aminoacylation sensing module. The uncharged tRNA is selectively recognized by an unexpected set of favorable contacts from the linker region in the aminoacylation sensing module. A complex structure with a charged tRNA mimic shows that the extra moiety dislodges the linker, which is indicative of the possible chain of events that lead to alternative base-pairing and altered expression output.
Collapse
Affiliation(s)
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Ithaca, NY, USA.
| |
Collapse
|
6
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
7
|
Shin SM, Song SH, Lee JW, Kwak MK, Kang SO. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis. Int J Biochem Cell Biol 2017; 91:14-28. [PMID: 28807600 DOI: 10.1016/j.biocel.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023]
Abstract
Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA-) and -overexpressing (mgsAOE) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB- and speE-) and -overexpressing (speBOE and speEOE) mutants. Importantly, both mgsA-depleted speBOE and speEOE mutants (speBOE/mgsA- and speEOE/mgsA-) were drastically shortened to 24.5% and 23.8% of parental speBOE and speEOE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ.
Collapse
Affiliation(s)
- Sang-Min Shin
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Hyun Song
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin-Woo Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
8
|
Guo Z, Han J, Yang XY, Cao K, He K, Du G, Zeng G, Zhang L, Yu G, Sun Z, He QY, Sun X. Proteomic analysis of the copper resistance of Streptococcus pneumoniae. Metallomics 2015; 7:448-54. [PMID: 25608595 DOI: 10.1039/c4mt00276h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterial pathogen causing a variety of diseases, including otitis media, bacteraemia and meningitis. Although copper is an essential trace metal for bacterial growth, high intracellular levels of free-copper are toxic. Copper resistance has emerged as an important virulence determinant of microbial pathogens. In this study, we determined the minimum inhibition concentration of copper for the growth inhibition of S. pneumoniae. Two-dimensional-electrophoresis coupled with mass spectrometry was applied to identify proteins involved in copper resistance of S. pneumoniae. In total, forty-four proteins with more than 1.5-fold alteration in expression (p < 0.05) were identified. Quantitative reverse transcription PCR was used to confirm the proteomic results. Bioinformatics analysis showed that the differentially expressed proteins were mainly involved in the cell wall biosynthesis, protein biosynthesis, purine biosynthesis, pyrimidine biosynthesis, primary metabolic process, and the nitrogen compound metabolic process. Many up-regulated proteins in response to the copper treatment directly or indirectly participated in the cell wall biosynthesis, indicating that the cell wall is a critical determinant in copper resistance of S. pneumoniae.
Collapse
Affiliation(s)
- Zhong Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA. Chem Biol Drug Des 2015; 87:182-9. [PMID: 26348362 DOI: 10.1111/cbdd.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
The T-box transcription antitermination riboswitch controls bacterial gene expression by structurally responding to uncharged, cognate tRNA. Previous studies indicated that cofactors, such as the polyamine spermidine, might serve a specific functional role in enhancing riboswitch efficacy. As riboswitch function depends on key RNA structural changes involving the antiterminator element, the interaction of spermidine with the T-box riboswitch antiterminator element was investigated. Spermidine binds antiterminator model RNA with high affinity (micromolar Kd ) based on isothermal titration calorimetry and fluorescence-monitored binding assays. NMR titration studies, molecular modeling, and inline and enzymatic probing studies indicate that spermidine binds at the 3' portion of the highly conserved seven-nucleotide bulge in the antiterminator. Together, these results support the conclusion that spermidine binds the T-box antiterminator RNA preferentially in a location important for antiterminator function. The implications of these findings are significant both for better understanding of the T-box riboswitch mechanism and for antiterminator-targeted drug discovery efforts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Chunxi Zeng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Vivian Hogan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Md Masud Monwar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
10
|
Liu LC, Grundy FJ, Henkin TM. Non-Conserved Residues in Clostridium acetobutylicum tRNA(Ala) Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch. Life (Basel) 2015; 5:1567-82. [PMID: 26426057 PMCID: PMC4695836 DOI: 10.3390/life5041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.
Collapse
Affiliation(s)
- Liang-Chun Liu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Frank J Grundy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Caserta E, Liu LC, Grundy FJ, Henkin TM. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch: RNA-DEPENDENT CODON SELECTION OUTSIDE THE RIBOSOME. J Biol Chem 2015; 290:23336-47. [PMID: 26229106 DOI: 10.1074/jbc.m115.673236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/28/2022] Open
Abstract
Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.
Collapse
Affiliation(s)
- Enrico Caserta
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Liang-Chun Liu
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Frank J Grundy
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Tina M Henkin
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
12
|
Abstract
The T box riboswitch is an intriguing potential target for antibacterial drug discovery. Found primarily in Gram-positive bacteria, the riboswitch regulates gene expression by selectively responding to uncharged tRNA to control transcription readthrough. Polyamines and molecular crowding are known to specifically affect RNA function, but their effect on T box riboswitch efficacy and tRNA affinity have not been fully characterized. A fluorescence-monitored in vitro transcription assay was developed to readily quantify these molecular interactions and to provide a moderate-throughput functional assay for a comprehensive drug discovery screening cascade. The polyamine spermidine specifically enhanced T box riboswitch readthrough efficacy with an EC50 = 0.58 mM independent of tRNA binding. Molecular crowding, simulated by the addition of polyethylene glycol, had no effect on tRNA affinity for the riboswitch, but did reduce the efficacy of tRNA-induced readthrough. These results indicate that the T box riboswitch tRNA affinity and readthrough efficacy are intricately modulated by environmental factors.
Collapse
|
13
|
Zhang J, Ferré-D'Amaré AR. Structure and mechanism of the T-box riboswitches. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:419-33. [PMID: 25959893 DOI: 10.1002/wrna.1285] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023]
Abstract
In most Gram-positive bacteria, including many clinically devastating pathogens from genera such as Bacillus, Clostridium, Listeria, and Staphylococcus, T-box riboswitches sense and regulate intracellular availability of amino acids through a multipartite messenger RNA (mRNA)-transfer RNA (tRNA) interaction. The T-box mRNA leaders respond to nutrient starvation by specifically binding cognate tRNAs and sensing whether the bound tRNA is aminoacylated, as a proxy for amino acid availability. Based on this readout, T-boxes direct a transcriptional or translational switch to control the expression of downstream genes involved in various aspects of amino acid metabolism: biosynthesis, transport, aminoacylation, transamidation, and so forth. Two decades after its discovery, the structural and mechanistic underpinnings of the T-box riboswitch were recently elucidated, producing a wealth of insights into how two structured RNAs can recognize each other with robust affinity and exquisite selectivity. The T-box paradigm exemplifies how natural noncoding RNAs can interact not just through sequence complementarity but can add molecular specificity by precisely juxtaposing RNA structural motifs, exploiting inherently flexible elements and the biophysical properties of post-transcriptional modifications, ultimately achieving a high degree of shape complementarity through mutually induced fit. The T-box also provides a proof-of-principle that compact RNA domains can recognize minute chemical changes (such as tRNA aminoacylation) on another RNA. The unveiling of the structure and mechanism of the T-box system thus expands our appreciation of the range of capabilities and modes of action of structured noncoding RNAs, and hints at the existence of networks of noncoding RNAs that communicate through both, structural and sequence specificity.
Collapse
Affiliation(s)
- Jinwei Zhang
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
14
|
Zhang J, Ferré-D'Amaré AR. Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout. Mol Cell 2014; 55:148-55. [PMID: 24954903 DOI: 10.1016/j.molcel.2014.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 01/01/2023]
Abstract
T-boxes are gene-regulatory mRNA elements with which Gram-positive bacteria sense amino acid availability. T-boxes have two functional domains. Stem I recognizes the overall shape and anticodon of tRNA, while a 3' domain evaluates its aminoacylation status, overcoming an otherwise stable transcriptional terminator if the bound tRNA is uncharged. Although T-boxes are believed to evaluate tRNA charge status without using any proteins, this has not been demonstrated experimentally because of the instability of aminoacyl-tRNA. Using a simple method to prepare homogeneous aminoacyl-tRNA, we show that the Bacillus subtilis glyQS T-box functions independently of any tRNA-binding protein. Comparison of aminoacyl-tRNA analogs demonstrates that the T-box detects the molecular volume of tRNA 3'-substituents. Calorimetry and fluorescence lifetime analysis of labeled RNAs shows that the tRNA acceptor end coaxially stacks on a helix in the T-box 3' domain. This intimate intermolecular association, selective for uncharged tRNA, stabilizes the antiterminator conformation of the T-box.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
15
|
Henkin TM. The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:959-963. [PMID: 24816551 DOI: 10.1016/j.bbagrm.2014.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
The T box riboswitch is a cis-acting regulatory RNA that controls expression of amino acid-related genes in response to the aminoacylation state of a specific tRNA. Multiple genes in the same organism can utilize this mechanism, with each gene responding independently to its cognate tRNA. The uncharged tRNA interacts directly with the regulatory RNA element, and this interaction promotes readthrough of an intrinsic transcriptional termination site upstream of the regulated coding sequence. A second class of T box elements uses a similar tRNA-dependent response to regulate translation initiation. This review will describe the current state of our knowledge about this regulatory system. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS One 2013; 8:e80956. [PMID: 24348917 PMCID: PMC3858371 DOI: 10.1371/journal.pone.0080956] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.
Collapse
|
17
|
Saad NY, Stamatopoulou V, Brayé M, Drainas D, Stathopoulos C, Becker HD. Two-codon T-box riboswitch binding two tRNAs. Proc Natl Acad Sci U S A 2013; 110:12756-61. [PMID: 23858450 PMCID: PMC3732954 DOI: 10.1073/pnas.1304307110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Asparagine/biosynthesis
- Asparagine/genetics
- Clostridium acetobutylicum/chemistry
- Clostridium acetobutylicum/genetics
- Clostridium acetobutylicum/metabolism
- Glutamic Acid/biosynthesis
- Glutamic Acid/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- Riboswitch/physiology
Collapse
Affiliation(s)
- Nizar Y. Saad
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | | | - Mélanie Brayé
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
18
|
Lioliou E, Sharma CM, Caldelari I, Helfer AC, Fechter P, Vandenesch F, Vogel J, Romby P. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression. PLoS Genet 2012; 8:e1002782. [PMID: 22761586 PMCID: PMC3386247 DOI: 10.1371/journal.pgen.1002782] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 05/09/2012] [Indexed: 11/18/2022] Open
Abstract
RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. Control of mRNA stability is crucial for bacteria to survive and rapidly adapt to environmental changes and stress conditions. The molecular players and the degradation pathways involved in these adaptive processes are poorly understood in Staphylococcus aureus. The universally conserved double-strand-specific endoribonuclease III (RNase III) in S. aureus is known to repress the synthesis of several virulence factors and was recently implicated in genome-wide mRNA processing mediated by antisense transcripts. We present here the first global map of direct RNase III targets in S. aureus. Deep sequencing was used to identify RNAs associated with epitope-tagged wild-type RNase III and two catalytically impaired but binding-competent mutant proteins in vivo. Experimental validation revealed an unexpected variety of structured RNA transcripts as novel RNase III substrates. In addition to rRNA operon maturation, autoregulation, degradation of structured RNAs, and antisense regulation, we propose novel mechanisms by which RNase III increases mRNA translation. Overall, this study shows that RNase III has a broad function in gene regulation of S. aureus. We can now address more specifically the roles of this universally conserved enzyme in gene regulation in response to stress and during host infection.
Collapse
Affiliation(s)
- Efthimia Lioliou
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | - Isabelle Caldelari
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Anne-Catherine Helfer
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - François Vandenesch
- Inserm U851, Centre National de Référence des Staphylocoques, Université de Lyon, Lyon, France
| | - Jörg Vogel
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
- * E-mail: (JV); (PR)
| | - Pascale Romby
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (JV); (PR)
| |
Collapse
|
19
|
Saad NY, Schiel B, Brayé M, Heap JT, Minton NP, Dürre P, Becker HD. Riboswitch (T-box)-mediated control of tRNA-dependent amidation in Clostridium acetobutylicum rationalizes gene and pathway redundancy for asparagine and asparaginyl-trnaasn synthesis. J Biol Chem 2012; 287:20382-94. [PMID: 22505715 DOI: 10.1074/jbc.m111.332304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the Gram-positive Clostridium acetobutylicum genome reveals an inexplicable level of redundancy for the genes putatively involved in asparagine (Asn) and Asn-tRNA(Asn) synthesis. Besides a duplicated set of gatCAB tRNA-dependent amidotransferase genes, there is a triplication of aspartyl-tRNA synthetase genes and a duplication of asparagine synthetase B genes. This genomic landscape leads to the suspicion of the incoherent simultaneous use of the direct and indirect pathways of Asn and Asn-tRNA(Asn) formation. Through a combination of biochemical and genetic approaches, we show that C. acetobutylicum forms Asn and Asn-tRNA(Asn) by tRNA-dependent amidation. We demonstrate that an entire transamidation pathway composed of aspartyl-tRNA synthetase and one set of GatCAB genes is organized as an operon under the control of a tRNA(Asn)-dependent T-box riboswitch. Finally, our results suggest that this exceptional gene redundancy might be interconnected to control tRNA-dependent Asn synthesis, which in turn might be involved in controlling the metabolic switch from acidogenesis to solventogenesis in C. acetobutylicum.
Collapse
Affiliation(s)
- Nizar Y Saad
- Unité Mixte de Recherche "Génétique Moléculaire, Génomique, Microbiologie," CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Brill J, Hoffmann T, Putzer H, Bremer E. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology (Reading) 2011; 157:977-987. [DOI: 10.1099/mic.0.047357-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ–ProA–ProH route is responsible for the production of proline as an osmoprotectant, and the ProB–ProA–ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB–treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine.
Collapse
Affiliation(s)
- Jeanette Brill
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | - Tamara Hoffmann
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | - Harald Putzer
- CNRS UPR 9073 Insitut de Biologie Physico-Chimique (affiliated with Université de Paris 7 – Denis Diderot), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| |
Collapse
|
21
|
Condon C, Bechhofer DH. Regulated RNA stability in the Gram positives. Curr Opin Microbiol 2011; 14:148-54. [PMID: 21334965 DOI: 10.1016/j.mib.2011.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Regulation of bacterial gene expression at the post-transcriptional level has emerged as a major control mechanism, although not yet as well recognized as the mechanisms of control at the transcriptional level. In this article, we focus on regulated RNA decay in the control of gene expression in Gram-positive organisms, with an emphasis on Bacillus subtilis. Discovery of new ribonuclease activities in B. subtilis and other Gram-positive species, especially the dual-functioning RNase J1, which specifies both an endonuclease activity and the long-sought bacterial 5'-to-3' exoribonuclease activity, has led to the recognition of intriguing mechanisms of gene regulation at the level of RNA decay.
Collapse
Affiliation(s)
- Ciarán Condon
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | |
Collapse
|
22
|
Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 2009; 584:318-24. [PMID: 19932103 DOI: 10.1016/j.febslet.2009.11.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The T box mechanism is widely used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase genes and genes involved in amino acid biosynthesis and uptake. Binding of a specific uncharged tRNA to a riboswitch element in the nascent transcript causes a structural change in the transcript that promotes expression of the downstream coding sequence. In most cases, this occurs by stabilization of an antiterminator element that competes with formation of a terminator helix. Specific tRNA recognition by the nascent transcript results in increased expression of genes important for tRNA aminoacylation in response to decreased pools of charged tRNA.
Collapse
Affiliation(s)
- Nicholas J Green
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
23
|
Dawid A, Cayrol B, Isambert H. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation. Phys Biol 2009; 6:025007. [PMID: 19571368 DOI: 10.1088/1478-3975/6/2/025007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.
Collapse
Affiliation(s)
- Alexandre Dawid
- Institut Curie, Research Division, CNRS UMR168, 11 rue P. & M. Curie, 75005 Paris, France
| | | | | |
Collapse
|
24
|
Isambert H. The jerky and knotty dynamics of RNA. Methods 2009; 49:189-96. [PMID: 19563894 DOI: 10.1016/j.ymeth.2009.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/15/2009] [Accepted: 06/19/2009] [Indexed: 11/16/2022] Open
Abstract
RNA is known to exhibit a jerky dynamics, as intramolecular thermal motion, on <0.1 micros time scales, is punctuated by infrequent structural rearrangements on much longer time scales, i.e. from >10 micros up to a few minutes or even hours. These rare stochastic events correspond to the formation or dissociation of entire stems through cooperative base pairing/unpairing transitions. Such a clear separation of time scales in RNA dynamics has made it possible to implement coarse grained RNA simulations, which predict RNA folding and unfolding pathways including kinetically trapped structures on biologically relevant time scales of seconds to minutes. RNA folding simulations also enable to predict the formation of pseudoknots, that is, helices interior to loops, which mechanically restrain the relative orientations of other non-nested helices. But beyond static structural constraints, pseudoknots can also strongly affect the folding and unfolding dynamics of RNA, as the order by which successive helices are formed and dissociated can lead to topologically blocked transition intermediates. The resulting knotty dynamics can enhance the stability of RNA switches, improve the efficacy of co-transcriptional folding pathways and lead to unusual self-assembly properties of RNA.
Collapse
Affiliation(s)
- Hervé Isambert
- RNA Dynamics and Biomolecular Systems, Institut Curie, Centre de Recherche, CNRS UMR168, Paris, France.
| |
Collapse
|
25
|
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 2009; 73:36-61. [PMID: 19258532 DOI: 10.1128/mmbr.00026-08] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The T-box mechanism is a common regulatory strategy used for modulating the expression of genes of amino acid metabolism-related operons in gram-positive bacteria, especially members of the Firmicutes. T-box regulation is usually based on a transcription attenuation mechanism in which an interaction between a specific uncharged tRNA and the 5' region of the transcript stabilizes an antiterminator structure in preference to a terminator structure, thereby preventing transcription termination. Although single T-box regulatory elements are common, double or triple T-box arrangements are also observed, expanding the regulatory range of these elements. In the present study, we predict the functional implications of T-box regulation in genes encoding aminoacyl-tRNA synthetases, proteins of amino acid biosynthetic pathways, transporters, and regulatory proteins. We also consider the global impact of the use of this regulatory mechanism on cell physiology. Novel biochemical relationships between regulated genes and their corresponding metabolic pathways were revealed. Some of the genes identified, such as the quorum-sensing gene luxS, in members of the Lactobacillaceae were not previously predicted to be regulated by the T-box mechanism. Our analyses also predict an imbalance in tRNA sensing during the regulation of operons containing multiple aminoacyl-tRNA synthetase genes or biosynthetic genes involved in pathways common to more than one amino acid. Based on the distribution of T-box regulatory elements, we propose that this regulatory mechanism originated in a common ancestor of members of the Firmicutes, Chloroflexi, Deinococcus-Thermus group, and Actinobacteria and was transferred into the Deltaproteobacteria by horizontal gene transfer.
Collapse
|
26
|
Fauzi H, Agyeman A, Hines JV. T box transcription antitermination riboswitch: influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:185-91. [PMID: 19152843 PMCID: PMC2656570 DOI: 10.1016/j.bbagrm.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022]
Abstract
Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5'-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation.
Collapse
Affiliation(s)
- Hamid Fauzi
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Akwasi Agyeman
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V. Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
27
|
Chen Y, Gollnick P. Alanine scanning mutagenesis of anti-TRAP (AT) reveals residues involved in binding to TRAP. J Mol Biol 2008; 377:1529-43. [PMID: 18334255 DOI: 10.1016/j.jmb.2008.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/16/2008] [Accepted: 02/03/2008] [Indexed: 11/30/2022]
Abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free l-tryptophan in many Gram-positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT(3)) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT(12)) structure. Using alanine-scanning mutagenesis we found four residues, all located on the "top" region of AT(3), that are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260-1300, USA
| | | |
Collapse
|
28
|
Henkin TM, Grundy FJ. Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:231-7. [PMID: 17381302 DOI: 10.1101/sqb.2006.71.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies in a variety of bacterial systems have revealed a number of regulatory systems in which the 5' region of a gene plays a key role in regulation of the downstream coding sequences. These RNA regions act in cis to determine if the full-length transcript will be synthesized or if the coding sequence(s) will be translated. Each class of system includes an RNA element whose structure is modulated in response to a specific regulatory signal, and the signals measured can include small molecules, small RNAs (including tRNA), and physical parameters such as temperature. Multiple sets of genes can be regulated by a particular mechanism, and multiple systems of this type, each of which responds to a specific signal, can be present in a single organism. In addition, different classes of RNA elements can be found that respond to a particular signal, indicating the existence of multiple alternate solutions to the same regulatory problem. The T box and S box systems, which respond to uncharged tRNA and S-adenosylmethionine (SAM), respectively, provide paradigms of two systems of this type.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
29
|
Dominski Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 2007; 42:67-93. [PMID: 17453916 DOI: 10.1080/10409230701279118] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Proteins of the metallo-beta-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5' to 3' exonucleases and or endonucleases in such processes as 3' end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-beta-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3' end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-beta-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3' processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-beta-lactamase family and the recent advances in studying these proteins.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
30
|
Grundy FJ, Henkin TM. From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol 2007; 41:329-38. [PMID: 17092822 DOI: 10.1080/10409230600914294] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structural elements in the 5' region of a bacterial mRNA can have major effects on expression of downstream coding sequences. Folding of the nascent RNA into the helix of an intrinsic transcriptional terminator results in premature termination of transcription and in failure to synthesize the full-length transcript. Structure in the translation initiation region of an mRNA blocks access of the translation initiation complex to the ribosome binding site, thereby preventing protein synthesis. RNA structures can also affect the stability of an RNA by altering sensitivity to ribonucleases. A wide variety of mechanisms have been uncovered in which changes in mRNA structure in response to a regulatory signal are used to modulate gene expression in bacteria. These systems allow the cell to recognize an impressive array of signals, and to monitor those signals in many different ways.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
31
|
Abstract
RNA co-transcriptional folding has long been suspected to play an active role in helping proper native folding of ribozymes and structured regulatory motifs in mRNA untranslated regions (UTRs). Yet, the underlying mechanisms and coding requirements for efficient co-transcriptional folding remain unclear. Traditional approaches have intrinsic limitations to dissect RNA folding paths, as they rely on sequence mutations or circular permutations that typically perturb both RNA folding paths and equilibrium structures. Here, we show that exploiting sequence symmetries instead of mutations can circumvent this problem by essentially decoupling folding paths from equilibrium structures of designed RNA sequences. Using bistable RNA switches with symmetrical helices conserved under sequence reversal, we demonstrate experimentally that native and transiently formed helices can guide efficient co-transcriptional folding into either long-lived structure of these RNA switches. Their folding path is controlled by the order of helix nucleations and subsequent exchanges during transcription, and may also be redirected by transient antisense interactions. Hence, transient intra- and inter-molecular base pair interactions can effectively regulate the folding of nascent RNA molecules into different native structures, provided limited coding requirements, as discussed from an information theory perspective. This constitutive coupling between RNA synthesis and RNA folding regulation may have enabled the early emergence of autonomous RNA-based regulation networks.
Collapse
Affiliation(s)
- A. Xayaphoummine
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
| | - V. Viasnoff
- RNA Dynamics and Biomolecular Systems, Physico-chimie CurieCNRS UMR168, Institut Curie, Section de Recherche, 11 rue P. & M. Curie, 75005 Paris, France
| | - S. Harlepp
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
| | - H. Isambert
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
- RNA Dynamics and Biomolecular Systems, Physico-chimie CurieCNRS UMR168, Institut Curie, Section de Recherche, 11 rue P. & M. Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 1 42 34 64 74;
| |
Collapse
|
32
|
Nelson AR, Henkin TM, Agris PF. tRNA regulation of gene expression: interactions of an mRNA 5'-UTR with a regulatory tRNA. RNA (NEW YORK, N.Y.) 2006; 12:1254-61. [PMID: 16741230 PMCID: PMC1484421 DOI: 10.1261/rna.29906] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Many genes encoding aminoacyl-tRNA synthetases and other amino acid-related products in Gram-positive bacteria, including important pathogens, are regulated through interaction of unacylated tRNA with the 5'-untranslated region (5'-UTR) of the mRNA. Each gene regulated by this mechanism responds specifically to the cognate tRNA, and specificity is determined by pairing of the anticodon of the tRNA with a codon sequence in the "Specifier Loop" of the 5'-UTR. For the 5'-UTR to function in gene regulation, the mRNA folding interactions must be sufficiently stable to present the codon sequence for productive binding to the anticodon of the matching tRNA. A model bimolecular system was developed in which the interaction between two half molecules ("Common" and "Specifier") would reconstitute the Specifier Loop region of the 5'-UTR of the Bacillus subtilis glyQS gene, encoding GlyRS mRNA. Gel mobility shift analysis and fluorescence spectroscopy yielded experimental Kds of 27.6 +/- 1.0 microM and 10.5 +/- 0.7 microM, respectively, for complex formation between Common and Specifier half molecules. The reconstituted 5'-UTR of the glyQS mRNA bound the anticodon stem and loop of tRNA(Gly) (ASL(Gly)(GCC)) specifically and with a significant affinity (Kd = 20.2 +/- 1.4 microM). Thus, the bimolecular 5'-UTR and ASL(Gly)(GCC) models mimic the RNA-RNA interaction required for T box gene regulation in vivo.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Bacillus subtilis/genetics
- Base Sequence
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Spectrometry, Fluorescence
Collapse
Affiliation(s)
- Audrey R Nelson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | | | |
Collapse
|
33
|
Ryckelynck M, Giegé R, Frugier M. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie 2006; 87:835-45. [PMID: 15925436 DOI: 10.1016/j.biochi.2005.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 12/31/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Structural plasticity of transfer RNA (tRNA) molecules is essential for interactions with their biological partners in aminoacylation reactions and during ribosome-dependent protein synthesis. This holds true when tRNAs are recruited for other functions than translation. Here we review regulation pathways where tRNAs and tRNA mimics play a pivotal role. We further discuss the importance of the identity signals used in aminoacylation that are also required to specify regulatory mechanisms. Such mechanisms are diverse and intervene in transcription, splicing and translation. Altogether, the review highlights the many manners architectural features of tRNA were selected by evolution to control biological key processes.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, F-67084 Strasbourg cedex, France
| | | | | |
Collapse
|
34
|
Abstract
Riboswitches are structured domains that usually reside in the noncoding regions of mRNAs, where they bind metabolites and control gene expression. Like their protein counterparts, these RNA gene control elements form highly specific binding pockets for the target metabolite and undergo allosteric changes in structure. Numerous classes of riboswitches are present in bacteria and they comprise a common and robust metabolite-sensing system.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
35
|
Fauzi H, Jack KD, Hines JV. In vitro selection to identify determinants in tRNA for Bacillus subtilis tyrS T box antiterminator mRNA binding. Nucleic Acids Res 2005; 33:2595-602. [PMID: 15879350 PMCID: PMC1090546 DOI: 10.1093/nar/gki546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The T box transcription antitermination regulatory system, found in Gram-positive bacteria, is dependent on a complex set of interactions between uncharged tRNA and the 5'-untranslated mRNA leader region of the regulated gene. One of these interactions involves the base pairing of the acceptor end of cognate tRNA with four bases in a 7 nt bulge of the antiterminator RNA. In vitro selection of randomized tRNA binding to Bacillus subtilis tyrS antiterminator model RNAs was used to determine what, if any, sequence trends there are for binding beyond the known base pair complementarity. The model antiterminator RNAs were selected for the wild-type tertiary fold of tRNA. While there were no obvious sequence correlations between the selected tRNAs, there were correlations between certain tertiary structural elements and binding efficiency to different antiterminator model RNAs. In addition, one antiterminator model selected primarily for a kissing tRNA T loop-antiterminator bulge interaction, while another antiterminator model resulted in no such selection. The selection results indicate that, at the level of tertiary structure, there are ideal matches between tRNAs and antiterminator model RNAs consistent with in vivo observations and that additional recognition features, beyond base pair complementarity, may play a role in the formation of the complex.
Collapse
Affiliation(s)
| | | | - Jennifer V. Hines
- To whom correspondence should be addressed. Tel: +1 740 517 8482; Fax: +1 740 593 0148;
| |
Collapse
|
36
|
Even S, Pellegrini O, Zig L, Labas V, Vinh J, Bréchemmier-Baey D, Putzer H. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res 2005; 33:2141-52. [PMID: 15831787 PMCID: PMC1079966 DOI: 10.1093/nar/gki505] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many prokaryotic organisms lack an equivalent of RNase E, which plays a key role in mRNA degradation in Escherichia coli. In this paper, we report the purification and identification by mass spectrometry in Bacillus subtilis of two paralogous endoribonucleases, here named RNases J1 and J2, which share functional homologies with RNase E but no sequence similarity. Both enzymes are able to cleave the B.subtilis thrS leader at a site that can also be cleaved by E.coli RNase E. We have previously shown that cleavage at this site increases the stability of the downstream messenger. Moreover, RNases J1/J2 are sensitive to the 5′ phosphorylation state of the substrate in a site-specific manner. Orthologues of RNases J1/J2, which belong to the metallo-β-lactamase family, are evolutionarily conserved in many prokaryotic organisms, representing a new family of endoribonucleases. RNases J1/J2 appear to be implicated in regulatory processing/maturation of specific mRNAs, such as the T-box family members thrS and thrZ, but may also contribute to global mRNA degradation.
Collapse
Affiliation(s)
| | | | | | - Valerie Labas
- CNRS UMR7637, ESPCI10 rue Vauquelin 75005 Paris, France
| | - Joelle Vinh
- CNRS UMR7637, ESPCI10 rue Vauquelin 75005 Paris, France
| | | | - Harald Putzer
- To whom correspondence should be addressed. Tel: +33 1 58 41 51 27; Fax: +33 1 58 41 50 20;
| |
Collapse
|
37
|
Yousef MR, Grundy FJ, Henkin TM. Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA. J Mol Biol 2005; 349:273-87. [PMID: 15890195 DOI: 10.1016/j.jmb.2005.03.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/18/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The T box system regulates expression of amino acid-related genes in Gram-positive bacteria through premature termination of transcription. Synthesis of the full-length mRNA requires stabilization of an antiterminator element in the 5' untranslated leader RNA by the cognate uncharged tRNA. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS gene (encoding glycyl-tRNA synthetase) can be reproduced in a purified in vitro transcription system, indicating that the nascent transcript is sufficient for interaction with the tRNA. Genetic analyses previously demonstrated base pairing of a single codon in the leader RNA with the tRNA anticodon, and between the antiterminator and the tRNA acceptor end. In this study, we established conditions for specific binding of tRNA(Gly) to glyQS leader RNA generated by phage T7 RNA polymerase. Structural mapping studies revealed tRNA(Gly)-induced protection in the glyQS leader RNA at the two known sites of interaction with the tRNA, as well as at other regions between these sites. The proposed tRNA-dependent structural switch between the competing terminator and antiterminator forms of the leader RNA was demonstrated directly. Changes in tRNA(Gly) upon binding to glyQS leader RNA were detected in the anticodon loop, consistent with pairing with the specifier sequence, and in the highly conserved G19 in the D-loop, similar to effects induced by codon-anticodon interaction in the ribosome. This study provides biochemical evidence for direct interaction of tRNA(Gly) with full-length in vitro transcribed glyQS leader RNA, and an initial view of structural modulations of both RNA partners within the complex.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Bacillus subtilis/genetics
- Glycine-tRNA Ligase/genetics
- Magnesium/pharmacology
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gly/chemistry
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Gly/metabolism
- Ribonuclease H/metabolism
Collapse
Affiliation(s)
- Mary R Yousef
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
38
|
Pellegrini O, Mathy N, Gogos A, Shapiro L, Condon C. The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor. Mol Microbiol 2005; 56:1139-48. [PMID: 15882409 DOI: 10.1111/j.1365-2958.2005.04606.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Operons encoding stable toxins and their labile antidote are widespread in prokaryotes and play important roles in plasmid partitioning and cellular responses to stress. One such family of toxins MazF/ChpAK/PemK encodes an endoribonuclease that inactivates cellular mRNAs by cleaving them at specific, but frequently occurring sites. Here we show that the Bacillus subtilis ydcE gene encodes a member of this family of RNases, which we have called EndoA. Overexpression of EndoA is toxic for bacterial cell growth and this toxicity is reversed by coexpression of the gene immediately upstream, ydcD. Furthermore, YdcD inhibits EndoA activity directly in vitro. EndoA has similar cleavage specificity to MazF and PemK and yields cleavage products with 3'-phosphate and 5'-hydroxyl groups, typical of EDTA-resistant degradative RNases. This is the first example of an antitoxin-toxin system in B. subtilis.
Collapse
Affiliation(s)
- Olivier Pellegrini
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
39
|
Winkler WC. Metabolic monitoring by bacterial mRNAs. Arch Microbiol 2005; 183:151-9. [PMID: 15750802 DOI: 10.1007/s00203-005-0758-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/05/2005] [Accepted: 01/12/2005] [Indexed: 02/04/2023]
Abstract
There is growing appreciation for diversity in the strategies that bacteria utilize in regulating gene expression. Bacteria must be able to respond in different ways to different stresses and thus require unique regulatory solutions for the physiological challenges they encounter. Recent data indicate that bacteria commonly employ a variety of posttranscriptional regulatory mechanisms to coordinate expression of their genes. In many instances, RNA structures embedded at the 5' ends of mRNAs are utilized to sense particular metabolic cues and regulate the encoded genes. These RNA elements are likely to range in structural sophistication, from short sequences recognized by RNA-binding proteins to complex shapes that fold into high-affinity receptors for small organic molecules. Enough examples of RNA-mediated genetic strategies have been found that it is becoming useful to view this overall mode of regulatory control at a genomic level. Eventually, a complete picture of bacterial gene regulation within a single bacterium, from control at transcription initiation to control of mRNA stability, will emerge. But for now, this article seeks to provide a brief overview of the known categories of RNA-mediated genetic mechanisms within the bacterium Bacillus subtilis, with the expectation that it is representative of bacteria as a whole.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Biochemistry, Room L1.404 , University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|
40
|
Grundy FJ, Yousef MR, Henkin TM. Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene. J Mol Biol 2004; 346:73-81. [PMID: 15663928 DOI: 10.1016/j.jmb.2004.11.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/19/2004] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
Expression of the Bacillus subtilis glyQS gene, encoding glycyl-tRNA synthetase, depends on stabilization of an antiterminator element during transcription of the 5' region of the mRNA by binding of uncharged tRNA(Gly). The glyQS gene is a member of the T box family of genes, all of which are involved in generation of charged tRNA. Each gene in this family exhibits an increase in readthrough of a termination signal located upstream of the start of the coding sequence in response to a decrease in the ratio of charged to uncharged tRNA. Many structural features of T box RNAs that are necessary for tRNA-dependent antitermination have been defined, but little is known about the timing or sequence of events that lead to a productive interaction with uncharged tRNA and discrimination against charged tRNA. To investigate these issues, transcription complexes were blocked artificially at specific positions along the leader sequence and tested for the ability to recognize tRNA. Although the sequence element that binds the tRNA anticodon is located more than 100 nt before the termination signal, complexes with nascent transcripts extending to just upstream of the termination site were still competent for antitermination. This result indicates that the transcript can fold into a receptive structure in the absence of the tRNA, and that tRNA is not necessary prior to this point. A mimic of charged tRNA(Gly) inhibited antitermination by uncharged tRNA unless the leader RNA-tRNA(Gly) complexes contained the complete antiterminator. These results suggest that the transcription complex can interact with either uncharged or charged tRNA until it approaches the termination point, allowing maximal flexibility in monitoring the ratio of charged to uncharged tRNA.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
41
|
Grundy FJ, Henkin TM. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. J Bacteriol 2004; 186:5392-9. [PMID: 15292140 PMCID: PMC490933 DOI: 10.1128/jb.186.16.5392-5399.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of uncharged tRNA to the nascent transcript promotes readthrough of a leader region transcription termination signal in genes regulated by the T box transcription antitermination mechanism. Each gene in the T box family responds independently to its cognate tRNA, with specificity determined by base pairing of the tRNA to the leader at the anticodon and acceptor ends of the tRNA. tRNA binding stabilizes an antiterminator element in the transcript that sequesters sequences that participate in formation of the terminator helix. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS leader was previously demonstrated in a purified in vitro assay system. This assay system was used to investigate the kinetics of transcription through the glyQS leader and the effect of tRNA and transcription elongation factors NusA and NusG on transcriptional pausing and antitermination. Several pause sites, including a major site in the loop of stem III of the leader, were identified, and the effect of modulation of pausing on antitermination efficiency was analyzed. We found that addition of tRNA(Gly) can promote antitermination as long as the tRNA is added before the majority of the transcription complexes reach the termination site, and variations in pausing affect the requirements for timing of tRNA addition.
Collapse
MESH Headings
- 5' Untranslated Regions
- Anticodon
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Base Pairing
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Elongation Factors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer, Gly/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Terminator Regions, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
42
|
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 2004; 32:3340-53. [PMID: 15215334 PMCID: PMC443535 DOI: 10.1093/nar/gkh659] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regulation of the methionine biosynthesis and transport genes in bacteria is rather diverse and involves two RNA-level regulatory systems and at least three DNA-level systems. In particular, the methionine metabolism in Gram-positive bacteria was known to be controlled by the S-box and T-box mechanisms, both acting on the level of premature termination of transcription. Using comparative analysis of genes, operons and regulatory elements, we described the methionine metabolic pathway and the methionine regulons in available genomes of Gram-positive bacteria. A large number of methionine-specific RNA elements were identified. S-boxes were shown to be widely distributed in Bacillales and Clostridia, whereas methionine-specific T-boxes occurred mostly in Lactobacillales. A candidate binding signal (MET-box) for a hypothetical methionine regulator, possibly MtaR, was identified in Streptococcaceae, the only family in the Bacillus/Clostridium group of Gram-positive bacteria having neither S-boxes, nor methionine-specific T-boxes. Positional analysis of methionine-specific regulatory sites complemented by genome context analysis lead to identification of new members of the methionine regulon, both enzymes and transporters, and reconstruction of the methionine metabolism in various bacterial genomes. In particular, we found candidate transporters for methionine (MetT) and methylthioribose (MtnABC), as well as new enzymes forming the S-adenosylmethionine recycling pathway. Methionine biosynthetic enzymes in various bacterial species are quite variable. In particular, Oceanobacillus iheyensis possibly uses a homolog of the betaine-homocysteine methyltransferase bhmT gene from vertebrates to substitute missing bacterial-type methionine synthases.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny pereulok 19, Moscow 127994, Russia.
| | | | | | | |
Collapse
|
43
|
Abstract
Recent studies have revealed several genetic systems in bacteria that use complex RNA structural elements to monitor regulatory signals and control expression of downstream genes. These include RNA thermosensors, in which an inhibitory structure melts at high temperature, and systems where binding of small RNAs or cellular metabolites modulates the structure of the RNA. The remarkable feature of these systems is the ability of the regulatory RNA elements to specifically sense the regulatory signal, without accessory components, and convey that information to the gene expression machinery via a structural change in the nascent RNA.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
44
|
Perego M, Hoch JA, Barrett JF. Functional genomics of gram-positive microorganisms. J Bacteriol 2004; 186:903-9. [PMID: 14761984 PMCID: PMC344236 DOI: 10.1128/jb.186.4.903-909.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marta Perego
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
45
|
Yousef MR, Grundy FJ, Henkin TM. tRNA requirements for glyQS antitermination: a new twist on tRNA. RNA (NEW YORK, N.Y.) 2003; 9:1148-1156. [PMID: 12923262 PMCID: PMC1370478 DOI: 10.1261/rna.5540203] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 05/30/2003] [Indexed: 05/24/2023]
Abstract
Transcription antitermination of the Bacillus subtilis glyQS gene, a member of the T box gene regulation family, can be induced during in vitro transcription in a minimal system using purified B. subtilis RNA polymerase by the addition of unmodified T7 RNA polymerase-transcribed tRNA(Gly). Antitermination was previously shown to depend on base-pairing between the glyQS leader and the tRNA at the anticodon and acceptor ends. In this study, variants of tRNA(Gly) were generated to identify additional tRNA elements required for antitermination activity, and to determine the effect of structural changes in the tRNA. We find that additions to the 3' end of the tRNA blocked antitermination, in agreement with the prediction that uncharged tRNA is the effector in vivo, whereas insertion of 1 nucleotide between the acceptor stem and the 3' UCCA residues had no effect. Disruption of the D-loop/T-loop tertiary interaction inhibited antitermination function, as was previously demonstrated for tRNA(Tyr)-directed antitermination of the B. subtilis tyrS gene in vivo. Insertion of a single base pair in the anticodon stem was tolerated, whereas further insertions abolished antitermination. However, we find that major alterations in the length of the acceptor stem are tolerated, and the insertions exhibited a pattern of periodicity suggesting that there is face-of-the-helix dependence in the positioning of the unpaired UCCA residues at the 3' end of the tRNA for interaction with the antiterminator bulge and antitermination.
Collapse
Affiliation(s)
- Mary R Yousef
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|