1
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
2
|
Kou Z, Luo X, Jiang Y, Chen B, Song Y, Wang Y, Xu J, Tomberlin JK, Huang Y. Establishment of highly efficient transgenic system for black soldier fly (Hermetia illucens). INSECT SCIENCE 2023; 30:888-900. [PMID: 36624657 DOI: 10.1111/1744-7917.13147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens, is a promising insect for mitigating solid waste problems as its larvae are able to bioconvert organic waste into valuable biomass. We recently reported a high-quality genome assembly of the BSF; analysis of this genome sequence will further the understanding of insect biology and identify genes that can be manipulated to improve efficiency of bioconversion. To enable genetic manipulation of the BSF, we have established the first transgenic methods for this economically important insect. We cloned and identified the ubiquitous actin5C promoter (Hiactin5C-p3k) and 3 endogenous U6 promoters (HiU6:1, HiU6:2, and HiU6:3). The Hiactin5C promoter was used to drive expression of a hyperactive variant of the piggyBac transposase, which exhibited up to 6-fold improvement in transformation rate when compared to the wild-type transposase. Furthermore, we evaluated the 3 HiU6 promoters using this transgenic system. HiU6:1 and HiU6:2 promoters provided the highest knockdown efficiency with RNAi and are thus promising candidates for future Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) development. Overall, our findings provide valuable genetic engineering toolkits for basic research and genetic manipulation of the BSF.
Collapse
Affiliation(s)
- Zongqing Kou
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuguo Jiang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bihui Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Highly efficient integration and expression of piggyBac-derived cassettes in the honeybee (Apis mellifera). Proc Natl Acad Sci U S A 2014; 111:9003-8. [PMID: 24821811 DOI: 10.1073/pnas.1402341111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Honeybees (Apis mellifera), which are important pollinators of plants, display remarkable individual behaviors that collectively contribute to the organization of a complex society. Advances in dissecting the complex processes of honeybee behavior have been limited in the recent past due to a lack of genetic manipulation tools. These tools are difficult to apply in honeybees because the unit of reproduction is the colony, and many interesting phenotypes are developmentally specified at later stages. Here, we report highly efficient integration and expression of piggyBac-derived cassettes in the honeybee. We demonstrate that 27 and 20% of queens stably transmitted two different expression cassettes to their offspring, which is a 6- to 30-fold increase in efficiency compared with those generally reported in other insect species. This high efficiency implies that an average beekeeping facility with a limited number of colonies can apply this tool. We demonstrated that the cassette stably and efficiently expressed marker genes in progeny under either an artificial or an endogenous promoter. This evidence of efficient expression encourages the use of this system to inhibit gene functions through RNAi in specific tissues and developmental stages by using various promoters. We also showed that the transgenic marker could be used to select transgenic offspring to be employed to facilitate the building of transgenic colonies via the haploid males. We present here the first to our knowledge genetic engineering tool that will efficiently allow for the systematic detection and better understanding of processes underlying the biology of honeybees.
Collapse
|
4
|
Pavlopoulos A, Oehler S, Kapetanaki MG, Savakis C. The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol 2007; 8 Suppl 1:S2. [PMID: 18047694 PMCID: PMC2106841 DOI: 10.1186/gb-2007-8-s1-s2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transposons are powerful tools for conducting genetic manipulation and functional studies in organisms that are of scientific, economic, or medical interest. Minos, a member of the Tc1/mariner family of DNA transposons, exhibits a low insertional bias and transposes with high frequency in vertebrates and invertebrates. Its use as a tool for transgenesis and genome analysis of rather different animal species is described.
Collapse
Affiliation(s)
- Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1385, Heraklion 71110, Crete, Greece
| | | | | | | |
Collapse
|
5
|
Mátés L, Izsvák Z, Ivics Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 2007; 8 Suppl 1:S1. [PMID: 18047686 PMCID: PMC2106849 DOI: 10.1186/gb-2007-8-s1-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.
Collapse
Affiliation(s)
- Lajos Mátés
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str, 13092 Berlin, Germany
| | | | | |
Collapse
|
6
|
Yant SR, Huang Y, Akache B, Kay MA. Site-directed transposon integration in human cells. Nucleic Acids Res 2007; 35:e50. [PMID: 17344320 PMCID: PMC1874657 DOI: 10.1093/nar/gkm089] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.
Collapse
Affiliation(s)
| | | | | | - Mark A. Kay
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5208, USA
| |
Collapse
|
7
|
Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T. Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genomics 2007; 277:213-20. [PMID: 17216225 DOI: 10.1007/s00438-006-0176-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/22/2006] [Indexed: 11/25/2022]
Abstract
We investigated the use of Minos as a vector for transgenesis in the silkworm, Bombyx mori. We first constructed a vector plasmid with the green fluorescent protein (GFP) gene fused with the silkworm cytoplasmic actin gene (A3) promoter, and a helper plasmid with the Minos transposase gene controlled by the same A3 promoter. Injection of the vector and helper plasmid DNA into silkworm eggs produced transgenic animals in the following generation. The efficiency of transgenic silkworm production using this method was much lower than that obtained using piggyBac-mediated germ line transformation. However, >40-fold increase in the efficiency of producing transgenic silkworms was obtained using an in vitro synthesized source of Minos transposase mRNA. We conclude that the Minos transposon is a useful vector for construction of transgenic silkworms, particularly when in vitro synthesized mRNA is used. This is the first report showing that Minos can be used as a vector for germ-line transformation in lepidopteran insects.
Collapse
Affiliation(s)
- K Uchino
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | | | | | | | | |
Collapse
|
8
|
Markaki M, Drabek D, Livadaras I, Craig RK, Grosveld F, Savakis C. Stable expression of human growth hormone over 50 generations in transgenic insect larvae. Transgenic Res 2006; 16:99-107. [PMID: 17103025 DOI: 10.1007/s11248-006-9032-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/07/2006] [Indexed: 11/27/2022]
Abstract
Developments in insect transgenesis using transposons combined with available mass rearing technology for insects such as the Medfly, Ceratitis capitata, provide opportunity for the production of protein for industrial, agricultural and healthcare purposes on a very large scale. In this study, we report the germ-line transformation and expression of a cDNA encoding human growth hormone (hGH) in transgenic Drosophila using the Minos transposon. Production and secretion of a bioactive hGH into the haemolymph of transgenic larvae was demonstrated by immunoblot analysis, ELISA and a proliferation bioassay. Stable expression of hGH was observed over 50 generations. The results indicate that mass reared transgenic diptera with a rapid period of larval growth could provide cost effective production systems for the manufacture of therapeutic and other high value proteins.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, PO Box 1385, Heraklion, 71110, Greece
| | | | | | | | | | | |
Collapse
|
9
|
Arends HM, Jehle JA. Sequence analysis and quantification of transposase cDNAs of transposon TCp3.2 in Cydia pomonella larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:135-45. [PMID: 17048244 DOI: 10.1002/arch.20149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Tc1-like transposable element TCp3.2 was previously found to be horizontally transferred from the genome of Cydia pomonella to the C. pomonella granulovirus (CpGV). In this study, the transcription of transposase genes of endogenous TCp3.2 copies in the insect host genome was investigated. Cloning and sequencing of cDNAs prepared from TCp3.2 transposase transcripts resulted in the identification of a 199-bp-long intron. Sequence heterogeneities among different cDNA clones suggested that multiple copies of the transposase are transcribed, but that a part of these copies encode a defective transposase. The actin gene of C. pomonella was cloned and sequenced, and used to standardise quantitative real time PCR on prepared cDNA of the TCp3.2 transposase. Comparison of cDNA levels of TCp3.2 transposase prepared from mock and CpGV-infected C. pomonella larvae did not provide evidence that CpGV infection influenced the transcription level of TCp3.2 transposase.
Collapse
Affiliation(s)
- Hugo M Arends
- Department of Phytopathology, Laboratory for Biotechnological Crop Protection, Agricultural Service Center Palatinate (DLR Rheinpfalz), Breitenweg 71, 67435 Neustadt an der Weinstrasse, Germany
| | | |
Collapse
|
10
|
Koukidou M, Klinakis A, Reboulakis C, Zagoraiou L, Tavernarakis N, Livadaras I, Economopoulos A, Savakis C. Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. INSECT MOLECULAR BIOLOGY 2006; 15:95-103. [PMID: 16469073 DOI: 10.1111/j.1365-2583.2006.00613.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The olive fruit fly (olive fly) Bactrocera oleae (Dacus), recently introduced in North America, is the most destructive pest of olives worldwide. The lack of an efficient gene transfer technology for olive fly has hampered molecular analysis, as well as development of genetic techniques for its control. We have developed a Minos-based transposon vector carrying a self-activating cassette which overexpresses the enhanced green fluorescent protein (EGFP). Efficient transposase-mediated integration of one to multiple copies of this vector was achieved in the germ line of B. oleae by coinjecting the vector along with in vitro synthesized Minos transposase mRNA into preblastoderm embryos. The self-activating gene construct combined with transposase mRNA present a system with potential for transgenesis of very diverse species.
Collapse
Affiliation(s)
- M Koukidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Metaxakis A, Oehler S, Klinakis A, Savakis C. Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 2005; 171:571-81. [PMID: 15972463 PMCID: PMC1456772 DOI: 10.1534/genetics.105.041848] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of the information about the function of D. melanogaster genes has come from P-element mutagenesis. The major drawback of the P element, however, is its strong bias for insertion into some genes (hotspots) and against insertion into others (coldspots). Within genes, 5'-UTRs are preferential targets. For the successful completion of the Drosophila Genome Disruption Project, the use of transposon vectors other than P will be necessary. We examined here the suitability of the Minos element from Drosophila hydei as a tool for Drosophila genomics. Previous work has shown that Minos, a member of the Tc1/mariner family of transposable elements, is active in diverse organisms and cultured cells; it produces stable integrants in the germ line of several insect species, in the mouse, and in human cells. We generated and analyzed 96 Minos integrations into the Drosophila genome and devised an efficient "jump-starting" scheme for production of single insertions. The ratio of insertions into genes vs. intergenic DNA is consistent with a random distribution. Within genes, there is a statistically significant preference for insertion into introns rather than into exons. About 30% of all insertions were in introns and approximately 55% of insertions were into or next to genes that have so far not been hit by the P element. The insertion sites exhibit, in contrast to other transposons, little sequence requirement beyond the TA dinucleotide insertion target. We further demonstrate that induced remobilization of Minos insertions can delete nearby sequences. Our results suggest that Minos is a useful tool complementing the P element for insertional mutagenesis and genomic analysis in Drosophila.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
12
|
de Almeida LM, Carareto CMA. Multiple events of horizontal transfer of the Minos transposable element between Drosophila species. Mol Phylogenet Evol 2005; 35:583-94. [PMID: 15878127 DOI: 10.1016/j.ympev.2004.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/17/2004] [Accepted: 11/19/2004] [Indexed: 11/15/2022]
Abstract
In this study the Minos element was analyzed in 26 species of the repleta group and seven species of the saltans group of the genus Drosophila. The PCR and Southern blot analysis showed a wide occurrence of the Minos transposable element among species of the repleta and the saltans groups and also a low number of insertions in both genomes. Three different analyses, nucleotide divergence, historical associations, and comparisons between substitution rates (d(N) and d(S)) of Minos and Adh host gene sequences, suggest the occurrence of horizontal transfer between repleta and saltans species. These data reinforce and extend the Arca and Savakis [Genetica 108 (2000) 263] results and suggest five events of horizontal transfer to explain the present Minos distribution: between D. saltans and the ancestor of the mulleri and the mojavensis clusters; between D. hydei and the ancestor of the mulleri and the mojavensis clusters; between D. mojavensis and D. aldrichi; between D. buzzatii and D. serido; and between D. spenceri and D. emarginata. An alternative explanation would be that repeated events of horizontal transfer involving D. hydei, which is a cosmopolitan species that diverged from the others repleta species as long as 14Mya, could have spread Minos within the repleta group and to D. saltans. The data presented in this article support a model in which distribution of Minos transposon among Drosophila species is determined by horizontal transmission balanced by vertical inactivation and extinction.
Collapse
Affiliation(s)
- Luciane M de Almeida
- Departamento de Biologia, UNESP - Universidade Estadual Paulista, 15054-000 São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
13
|
Pavlopoulos A, Averof M. Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci U S A 2005; 102:7888-93. [PMID: 15911760 PMCID: PMC1142369 DOI: 10.1073/pnas.0501101102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amphipod crustacean Parhyale hawaiensis has been put forward as an attractive organism for evolutionary developmental comparisons, and considerable effort is being invested in isolating developmental genes and studying their expression patterns in this species. The scope of these studies could be significantly expanded by establishing means for genetic manipulation that would enable direct studies of gene functions to be carried out in this species. Here, we report the use of the Minos transposable element for the genetic transformation of P. hawaiensis. Transformed amphipods can be obtained from approximately 30% of surviving individuals injected with both a Minos element carrying the 3xP3-DsRed fluorescent marker and with mRNA encoding the Minos transposase. Integral copies of the transposon are inserted into the host genome and are stably inherited through successive generations. We have used reporter constructs to identify a muscle-specific regulatory element from Parhyale, demonstrating that this transformation vector can be used to test the activity of cis-regulatory elements in this species. The relatively high efficiency of this transgenic methodology opens new opportunities for the direct study of cis-regulatory elements and gene functions in Parhyale, allowing functional studies to be carried out beyond previously established model systems in insects.
Collapse
|
14
|
Pavlopoulos A, Berghammer AJ, Averof M, Klingler M. Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 2005; 167:737-46. [PMID: 15238525 PMCID: PMC1470898 DOI: 10.1534/genetics.103.023085] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic transformation in insects holds great promise as a tool for genetic manipulation in species of particular scientific, economic, or medical interest. A number of transposable elements have been tested recently as potential vectors for transformation in a range of insects. Minos is one of the most promising elements because it appears to be active in diverse species and has the capacity to carry large inserts. We report here the use of the Minos element as a transformation vector in the red flour beetle Tribolium castaneum (Coleoptera), an important species for comparative developmental and pest management studies. Transgenic G(1) beetles were recovered from 32.4% of fertile G(0)'s injected with a plasmid carrying a 3xP3-EGFP-marked transposon and in vitro synthesized mRNA encoding the Minos transposase. This transformation efficiency is 2.8-fold higher than that observed when using a plasmid helper. Molecular and genetic analyses show that several independent insertions can be recovered from a single injected parent, but that the majority of transformed individuals carry single Minos insertions. These results establish Minos as one of the most efficient vectors for genetic transformation in insects. In combination with piggyBac-based transgenesis, our work allows the introduction of sophisticated multicomponent genetic tools in Tribolium.
Collapse
Affiliation(s)
- Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), 711 10 Iraklio Crete, Greece.
| | | | | | | |
Collapse
|
15
|
Abstract
The color patterns on the wings of lepidopterans are among the most striking patterns in nature and have inspired diverse biological hypotheses such as the ecological role of aposomatic coloration, the evolution of mimicry, the role of human activities in industrial melanism, and the developmental basis of phenotypic plasticity. Yet, the developmental mechanisms underlying color pattern development are not well understood for three reasons. First, few mutations that alter color patterns have been characterized at the molecular level, so there is little mechanistic understanding of how mutant phenotypes are produced. Second, although gene expression patterns resembling adult color patterns are suggestive, there are few data available showing that gene products have a functional role in color pattern formation. Finally, because with few exceptions (notably Bombyx), genetic maps for most species of Lepidoptera are rudimentary or nonexistent, it is very difficult to characterize spontaneous mutants or to determine whether mutations with similar phenotypes are because of lesions in the same gene or different genes. Discussed here are two strategies for overcoming these difficulties: germ-line transformation of lepidopteran species using transposon vectors and amplified frequency length polymorphism-based genetic mapping using variation between divergent strains within a species or between closely related and interfertile species. These advances, taken together, will create new opportunities for the characterization of existing genetic variants, the creation of new sequence-tagged mutants, and the testing of proposed functional genetic relationships between gene products, and will greatly facilitate our understanding of the evolution and development of lepidopteran color patterns.
Collapse
Affiliation(s)
- Jeffrey M Marcus
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| |
Collapse
|
16
|
Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S. piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 2004; 46:343-9. [PMID: 15367202 DOI: 10.1111/j.1440-169x.2004.00751.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transgenic insects have been artificially produced to study functions of interesting developmental genes, using insect transposons such as piggyBac. In the case of the cricket, however, transgenic animals have not yet been successfully artificially produced. In the present study, we examined whether the piggyBac transposon functions as a tool for gene delivery in embryos of Gryllus bimaculatus. We used either a piggyBac helper plasmid or a helper RNA synthesized in vitro as a transposase source. An excision assay revealed that the helper RNA was more effective in early Gryllus eggs to transpose a marker gene of eGFP than the helper plasmid containing the piggyBac transposase gene driven by the G. bimaculatus actin3/4 promoter. Further, only when the helper RNA was used, somatic transformation of the embryo with the eGFP gene was observed. These results suggest that the piggyBac system with the helper RNA may be effective for making transgenic crickets.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Gray CE, Coates CJ. High-level gene expression in Aedes albopictus cells using a baculovirus Hr3 enhancer and IE1 transactivator. BMC Mol Biol 2004; 5:8. [PMID: 15251037 PMCID: PMC487899 DOI: 10.1186/1471-2199-5-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 07/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti is the key vector of both the Yellow Fever and Dengue Fever viruses throughout many parts of the world. Low and variable transgene expression levels due to position effect and position effect variegation are problematic to efforts to create transgenic laboratory strains refractory to these viruses. Transformation efficiencies are also less than optimal, likely due to failure to detect expression from all integrated transgenes and potentially due to limited expression of the transposase required for transgene integration. RESULTS Expression plasmids utilizing three heterologous promoters and three heterologous enhancers, in all possible combinations, were tested. The Hr3/IE1 enhancer-transactivator in combination with each of the constitutive heterologous promoters tested increased reporter gene expression significantly in transiently transfected Aedes albopictus C7-10 cells. CONCLUSIONS The addition of the Hr3 enhancer to expression cassettes and concomitant expression of the IE1 transactivator gene product is a potential method for increasing the level of transgene expression in insect systems. This mechanism could also potentially be used to increase the level of transiently-expressed transposase in order to increase the number of integration events in transposon-mediated transformation experiments.
Collapse
Affiliation(s)
- Christine E Gray
- Department of Entomology, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
- Genetics Interdisciplinary Program, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
| | - Craig J Coates
- Department of Entomology, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
- Genetics Interdisciplinary Program, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
| |
Collapse
|
18
|
Rowan KH, Orsetti J, Atkinson PW, O'Brochta DA. Tn5 as an insect gene vector. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:695-705. [PMID: 15242711 DOI: 10.1016/j.ibmb.2004.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to explore alternatives to insect-derived transposable elements as insect gene vectors with the intention of improving existing insect transgenesis methods. The mobility properties of the bacterial transposon, Tn5, were tested in mosquitoes using a transient transposable element mobility assay and by attempting to create transgenic insects. Tn5 synaptic complexes were assembled in vitro in the absence of Mg(2+) and co-injected with a target plasmid into developing yellow fever mosquito, Aedes aegypti, embryos. Target plasmids recovered from embryos a day later were screened for the presence of Tn5. Recombinants (transposition events) were found at a frequency of 1.2 x 10(-3). Some transposition events did not appear to be associated with canonical 9 bp direct duplications at the site of insertion and also were associated with either deletions or rearrangements. A Tn5 element containing the brain-specific transgene, 3 x P3DsRed, was assembled into synaptic complexes in vitro and injected into pre-blastoderm embryos of Ae. aegypti. Of the approximately 900 embryos surviving injection and developing into adults, two produced transgenic progeny. Both transgenic events involved the co-integrations of approximately five elements resulting in nested and tandem arrayed Tn5::3 x P3DsRed elements. This study extends the known host range of Tn5 to insects and makes available to insect biologists and others another eukaryotic genome-manipulation tool. The hyperactivity of synaptic complexes may be responsible for the unusual clustering of elements and managing this aspect of the element's behavior will be important in future applications of this technology to insects.
Collapse
Affiliation(s)
- Kathryn H Rowan
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Plant Sciences Building/Room 5115, College Park, MD 20742-4450, USA
| | | | | | | |
Collapse
|
19
|
O'Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW. Gene vector and transposable element behavior in mosquitoes. J Exp Biol 2003; 206:3823-34. [PMID: 14506218 DOI: 10.1242/jeb.00638] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe development of efficient germ-line transformation technologies for mosquitoes has increased the ability of entomologists to find, isolate and analyze genes. The utility of the currently available systems will be determined by a number of factors including the behavior of the gene vectors during the initial integration event and their behavior after chromosomal integration. Post-integration behavior will determine whether the transposable elements being employed currently as primary gene vectors will be useful as gene-tagging and enhancer-trapping agents. The post-integration behavior of existing insect vectors has not been extensively examined. Mos1 is useful as a primary germ-line transformation vector in insects but is inefficiently remobilized in Drosophila melanogaster and Aedes aegypti. Hermes transforms D. melanogaster efficiently and can be remobilized in this species. This element is also useful for creating transgenic A. aegypti, but its mode of integration in mosquitoes results in the insertion of flanking plasmid DNA. Hermes can be remobilized in the soma of A. aegypti and transposes using a common cut-and-paste mechanism; however, the element does not remobilize in the germ line. piggyBac can be used to create transgenic mosquitoes and occasionally integrates using a mechanism other than a simple cut-and-paste mechanism. Preliminary data suggest that remobilization is infrequent. Minos also functions in mosquitoes and, like the other gene vectors,appears to remobilize inefficiently following integration. These results have implications for future gene vector development efforts and applications.
Collapse
Affiliation(s)
- David A O'Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742-4450, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T. Targeted Gene Expression Using the GAL4/UAS System in the Silkworm Bombyx mori. Genetics 2003; 165:1329-40. [PMID: 14668386 PMCID: PMC1462818 DOI: 10.1093/genetics/165.3.1329] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The silkworm Bombyx mori is one of the most well-studied insects in terms of both genetics and physiology and is recognized as the model lepidopteran insect. To develop an efficient system for analyzing gene function in the silkworm, we investigated the feasibility of using the GAL4/UAS system in conjunction with piggyBac vector-mediated germ-line transformation for targeted gene expression. To drive the GAL4 gene, we used two endogenous promoters that originated from the B. mori actin A3 (BmA3) and fibroin light-chain (FiL) genes and the artificial promoter 3xP3. GFP was used as the reporter. In initial tests of the function of the GAL4/UAS system, we generated transgenic animals that carried the UAS-GFP construct plus either BmA3-GAL4 or 3xP3-GAL4. GFP fluorescence was observed in the tissues of GFP-positive animals, in which both promoters drove GAL4 gene expression. Animals that possessed only the GAL4 gene or UAS-GFP construct did not show GFP fluorescence. In addition, as a further test of the ability of the GAL4/UAS system to drive tissue-specific expression we constructed FiL-GAL4 lines with 3xP3-CFP as the transformation marker. FiL-GAL4 × UAS-GFP crosses showed GFP expression in the posterior silk gland, in which the endogenous FiL gene is normally expressed. These results show that the GAL4/UAS system is applicable to B. mori and emphasize the potential of this system for controlled analyses of B. mori gene function.
Collapse
Affiliation(s)
- Morikazu Imamura
- Insect Gene Engineering Laboratory, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | |
Collapse
|