1
|
Orji OC, Stones J, Rajani S, Markus R, Öz MD, Knight HM. Global Co-regulatory Cross Talk Between m 6A and m 5C RNA Methylation Systems Coordinate Cellular Responses and Brain Disease Pathways. Mol Neurobiol 2025; 62:5006-5021. [PMID: 39499421 PMCID: PMC11880056 DOI: 10.1007/s12035-024-04555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
N6 adenosine and C5 cytosine modification of mRNAs, tRNAs and rRNAs are regulated by the behaviour of distinct sets of writer, reader and eraser effector proteins which are conventionally considered to function independently. Here, we provide evidence of global cross-regulatory and functional interaction between the m6A and m5C RNA methylation systems. We first show that m6A and m5C effector protein transcripts are subject to reciprocal base modification supporting the existence of co-regulatory post-transcriptional feedback loops. Using global mass spectrometry proteomic data generated after biological perturbation to identify proteins which change in abundance with effector proteins, we found novel co-regulatory cellular response relationships between m6A and m5C proteins such as between the m6A eraser, ALKBH5, and the m5C writer, NSUN4. Gene ontology analysis of co-regulated proteins indicated that m6A and m5C RNA cross-system control varies across cellular processes, e.g. proteasome and mitochondrial mechanisms, and post-translational modification processes such as SUMOylation and phosphorylation. We also uncovered novel relationships between effector protein networks including contributing to intellectual disability pathways. Finally, we provided in vitro confirmation of colocalisation between m6A-RNAs and the m5C reader protein, ALYREF, after synaptic NMDA activation. These findings have important implications for understanding control of RNA metabolism, cellular proteomic responses, and brain disease mechanisms.
Collapse
Affiliation(s)
- Oliver Chukwuma Orji
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Department of Medical Laboratory Sciences, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Joseph Stones
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Seema Rajani
- School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Robert Markus
- School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Merve Demirbugen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
2
|
Cordes J, Zhao S, Engel CM, Stingele J. Cellular responses to RNA damage. Cell 2025; 188:885-900. [PMID: 39983673 DOI: 10.1016/j.cell.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/23/2025]
Abstract
RNA plays a central role in protein biosynthesis and performs diverse regulatory and catalytic functions, making it essential for all processes of life. Like DNA, RNA is constantly subjected to damage from endogenous and environmental sources. However, while the DNA damage response has been extensively studied, it was long assumed that RNA lesions are relatively inconsequential due to the transient nature of most RNA molecules. Here, we review recent studies that challenge this view by revealing complex RNA damage responses that determine survival when cells are exposed to nucleic acid-damaging agents and promote the resolution of RNA lesions.
Collapse
Affiliation(s)
- Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; College of Basic Medical Sciences, Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Carla M Engel
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
3
|
Yang S, Xing J, Liu D, Song Y, Yu H, Xu S, Zuo Y. Review and new insights into the catalytic structural domains of the Fe(ll) and 2-Oxoglutarate families. Int J Biol Macromol 2024; 278:134798. [PMID: 39153678 DOI: 10.1016/j.ijbiomac.2024.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Histone lysine demethylase (KDM), AlkB homolog (ALKBH), and Ten-Eleven Translocation (TET) proteins are members of the 2-Oxoglutarate (2OG) and ferrous iron-dependent oxygenases, each of which harbors a catalytic domain centered on a double-stranded β-helix whose topology restricts the regions directly involved in substrate binding. However, they have different catalytic functions, and the deeply structural biological reasons are not yet clear. In this review, the catalytic domain features of the three protein families are summarized from both sequence and structural perspectives. The construction of the phylogenetic tree and comparison of the structure show ten relatively conserved β-sheets and three key regions with substantial structural differences. We summarize the relationship between three key regions of remarkable differences and the substrate compatibility of the three protein families. This review facilitates research into substrate-selective inhibition and bioengineering by providing new insights into the catalytic domains of KDM, ALKBH, and TET proteins.
Collapse
Affiliation(s)
- Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jixiang Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Haoyu Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuhua Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
4
|
Cottom-Salas W, Becerra A, Lazcano A. RNA or DNA? Revisiting the Chemical Nature of the Cenancestral Genome. J Mol Evol 2024; 92:647-658. [PMID: 39145798 PMCID: PMC11458739 DOI: 10.1007/s00239-024-10194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
One of the central issues in the understanding of early cellular evolution is the characterisation of the cenancestor. This includes the description of the chemical nature of its genome. The disagreements on this question comprise several proposals, including the possibility that AlkB-mediated methylation repair of alkylated RNA molecules may be interpreted as evidence of a cenancestral RNA genome. We present here an evolutionary analysis of the cupin-like protein superfamily based on tertiary structure-based phylogenies that includes the oxygen-dependent AlkB and its homologs. Our results suggest that the repair of methylated RNA molecules is the outcome of the enzyme substrate ambiguity, and doesn´t necessarily indicates that the last common ancestor was endowed with an RNA genome.
Collapse
Affiliation(s)
- Wolfgang Cottom-Salas
- Posgrado en Ciencias Biológicas, UNAM, Cd. Universitaria, 04510, Mexico City, CDMX, Mexico
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo.Postal 70-407, 04510, Mexico City, DF, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo.Postal 70-407, 04510, Mexico City, DF, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo.Postal 70-407, 04510, Mexico City, DF, Mexico.
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Mexico City, CP, Mexico.
| |
Collapse
|
5
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Gutierrez R, Chan AYS, Lai SWT, Itoh S, Lee DH, Sun K, Battad A, Chen S, O'Connor TR, Shuck SC. Lack of mismatch repair enhances resistance to methylating agents for cells deficient in oxidative demethylation. J Biol Chem 2024; 300:107492. [PMID: 38925328 PMCID: PMC11326903 DOI: 10.1016/j.jbc.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.
Collapse
Affiliation(s)
- Roberto Gutierrez
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Annie Yin S Chan
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shunsuke Itoh
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, South Korea
| | - Kelani Sun
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Alana Battad
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shiuan Chen
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| |
Collapse
|
7
|
Knight HM, Demirbugen Öz M, PerezGrovas-Saltijeral A. Dysregulation of RNA modification systems in clinical populations with neurocognitive disorders. Neural Regen Res 2024; 19:1256-1261. [PMID: 37905873 PMCID: PMC11467953 DOI: 10.4103/1673-5374.385858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms. Methylation of N6 adenosine (m6A) and C5 cytosine (m5C) bases occur on mRNAs, tRNA, mt-tRNA, and rRNA species as well as non-coding RNAs. With emerging knowledge of RNA binding proteins that act as writer, reader, and eraser effector proteins, comes a new understanding of physiological processes controlled by these systems. Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain, give rise to different forms of disease. In this review, we discuss accumulating evidence that changes in the m6A and m5C methylation systems contribute to neurocognitive disorders. Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m6A RNA reader protein. Subsequently, familial mutations within the m6A writer gene METTL5, m5C writer genes NSUN2, NSUN3, NSUN5, and NSUN6, as well as THOC2 and THOC6 that form a protein complex with the m5C reader protein ALYREF, were recognized to cause intellectual development disorders. Similarly, differences in expression of the m5C writer and reader effector proteins, NSUN6, NSUN7, and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease, individuals with a high neuropathological load or have suffered traumatic brain injury. Likewise, an abundance of m6A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases, Alzheimer's disease, and individuals with high cognitive reserve. m6A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue, whilst modified RNAs are misplaced within diseased cells, particularly where synapses are located. In parahippocampal brain tissue, m6A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits. These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders. Targeting these RNA modification systems brings new prospects for neural regenerative therapies.
Collapse
Affiliation(s)
- Helen M. Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Merve Demirbugen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | |
Collapse
|
8
|
Chinnam NB, Thapar R, Arvai AS, Sarker AH, Soll JM, Paul T, Syed A, Rosenberg DJ, Hammel M, Bacolla A, Katsonis P, Asthana A, Tsai MS, Ivanov I, Lichtarge O, Silverman RH, Mosammaparast N, Tsutakawa SE, Tainer JA. ASCC1 structures and bioinformatics reveal a novel helix-clasp-helix RNA-binding motif linked to a two-histidine phosphodiesterase. J Biol Chem 2024; 300:107368. [PMID: 38750793 PMCID: PMC11214414 DOI: 10.1016/j.jbc.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roopa Thapar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Altaf H Sarker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer M Soll
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tanmoy Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nima Mosammaparast
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
9
|
Ferenc K, Marcinkowski M, Olszewski J, Kowalczyk P, Pilžys T, Garbicz D, Dib N, Świderska B, Matyba P, Gajewski Z, Grzesiuk E, Zabielski R. The proteomic profile is altered but not repaired after bariatric surgery in type 2 diabetes pigs. Sci Rep 2024; 14:10235. [PMID: 38702370 PMCID: PMC11068747 DOI: 10.1038/s41598-024-60022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
To reveal the sources of obesity and type 2 diabetes (T2D) in humans, animal models, mainly rodents, have been used. Here, we propose a pig model of T2D. Weaned piglets were fed high fat/high sugar diet suppling 150% of metabolizable energy. Measurements of weight gain, blood morphology, glucose plasma levels, cholesterol, and triglycerides, as well as glucose tolerance (oral glucose tolerance test, OGTT) were employed to observe T2D development. The histology and mass spectrometry analyses were made post mortem. Within 6 months, the high fat-high sugar (HFHS) fed pigs showed gradual and significant increase in plasma triglycerides and glucose levels in comparison to the controls. Using OGTT test, we found stable glucose intolerance in 10 out of 14 HFHS pigs. Mass spectrometry analysis indicated significant changes in 330 proteins in the intestine, liver, and pancreas of the HFHS pigs. These pigs showed also an increase in DNA base modifications and elevated level of the ALKBH proteins in the tissues. Six diabetic HFHS pigs underwent Scopinaro bariatric surgery restoring glycaemia one month after surgery. In conclusion, a high energy diet applied to piglets resulted in the development of hyperlipidaemia, hyperglycaemia, and type 2 diabetes being reversed by a bariatric procedure, excluding the proteomic profile utill one month after the surgery.
Collapse
Affiliation(s)
- Karolina Ferenc
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Olszewski
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Paweł Kowalczyk
- Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Oncology, Maria Sklodowska-Curie National Research, W.K. Roentgena 5, 02-781, Warsaw, Poland
| | - Naser Dib
- European Health Centre Otwock (ECZ Otwock), The Fryderyk Chopin Hospital, Borowa 14/18, 05-400, Otwock, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Piotr Matyba
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Zdzisław Gajewski
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Romuald Zabielski
- Center for Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| |
Collapse
|
10
|
Wang J, Takyi NA, Hsiao YC, Tang Q, Chen YT, Liu CW, Ma J, Qi R, Bian K, Peng Z, Essigmann JM, Lu K, Wetmore SD, Li D. Stable Interstrand Cross-Links Generated from the Repair of 1, N6-Ethenoadenine in DNA by α-Ketoglutarate/Fe(II)-Dependent Dioxygenase ALKBH2. J Am Chem Soc 2024; 146:10381-10392. [PMID: 38573229 PMCID: PMC11060877 DOI: 10.1021/jacs.3c12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rui Qi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - John M Essigmann
- Departments of Biological Engineering, Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
11
|
Kanazhevskaya LY, Gorbunov AA, Lukina MV, Smyshliaev DA, Zhdanova PV, Lomzov AA, Koval VV. The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA. Int J Mol Sci 2024; 25:1145. [PMID: 38256217 PMCID: PMC10816986 DOI: 10.3390/ijms25021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Non-heme dioxygenases of the AlkB family hold a unique position among enzymes that repair alkyl lesions in nucleic acids. These enzymes activate the Fe(II) ion and molecular oxygen through the coupled decarboxylation of the 2-oxoglutarate co-substrate to subsequently oxidize the substrate. ALKBH3 is a human homolog of E. coli AlkB, which displays a specific activity toward N1-methyladenine and N3-methylcytosine bases in single-stranded DNA. Due to the lack of a DNA-bound structure of ALKBH3, the basis of its substrate specificity and structure-function relationships requires further exploration. Here we have combined biochemical and biophysical approaches with site-directed mutational analysis to elucidate the role of key amino acids in maintaining the secondary structure and catalytic activity of ALKBH3. Using stopped-flow fluorescence spectroscopy we have shown that conformational dynamics play a crucial role in the catalytic repair process catalyzed by ALKBH3. A transient kinetic mechanism, which comprises the steps of the specific substrate binding, eversion, and anchoring within the DNA-binding cleft, has been described quantitatively by rate and equilibrium constants. Through CD spectroscopy, we demonstrated that replacing side chains of Tyr143, Leu177, and His191 with alanine results in significant alterations in the secondary structure content of ALKBH3 and decreases the stability of mutant proteins. The bulky side chain of Tyr143 is critical for binding the methylated base and stabilizing its flipped-out conformation, while its hydroxyl group is likely involved in facilitating the product release. The removal of the Leu177 and His191 side chains substantially affects the secondary structure content and conformational flexibility, leading to the complete inactivation of the protein. The mutants lacking enzymatic activity exhibit a marked decrease in antiparallel β-strands, offset by an increase in the helical component.
Collapse
Affiliation(s)
- Lyubov Yu. Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexey A. Gorbunov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Maria V. Lukina
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Denis A. Smyshliaev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
13
|
Cui YH, Wilkinson E, Peterson J, He YY. ALKBH4 Stabilization Is Required for Arsenic-Induced 6mA DNA Methylation Inhibition, Keratinocyte Malignant Transformation, and Tumorigenicity. WATER 2022; 14:3595. [PMID: 37207134 PMCID: PMC10194016 DOI: 10.3390/w14223595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Inorganic arsenic is one of the well-known human skin carcinogens. However, the molecular mechanism by which arsenic promotes carcinogenesis remains unclear. Previous studies have established that epigenetic changes, including changes in DNA methylation, are among the critical mechanisms that drive carcinogenesis. N6-methyladenine (6mA) methylation on DNA is a widespread epigenetic modification that was initially found on bacterial and phage DNA. Only recently has 6mA been identified in mammalian genomes. However, the function of 6mA in gene expression and cancer development is not well understood. Here, we show that chronic low doses of arsenic induce malignant transformation and tumorigenesis in keratinocytes and lead to the upregulation of ALKBH4 and downregulation of 6mA on DNA. We found that reduced 6mA levels in response to low levels of arsenic were mediated by the upregulation of the 6mA DNA demethylase ALKBH4. Moreover, we found that arsenic increased ALKBH4 protein levels and that ALKBH4 deletion impaired arsenic-induced tumorigenicity in vitro and in mice. Mechanistically, we found that arsenic promoted ALKBH4 protein stability through reduced autophagy. Together, our findings reveal that the DNA 6mA demethylaseALKBH4 promotes arsenic tumorigenicity and establishes ALKBH4 as a promising target for arsenic-induced tumorigenesis.
Collapse
Affiliation(s)
- Yan-Hong Cui
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Emma Wilkinson
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jack Peterson
- The College, Biological Science Division, University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Dannenberg RL, Cardina JA, Pytko KG, Hedglin M. Tracking of progressing human DNA polymerase δ holoenzymes reveals distributions of DNA lesion bypass activities. Nucleic Acids Res 2022; 50:9893-9908. [PMID: 36107777 PMCID: PMC9508823 DOI: 10.1093/nar/gkac745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During DNA replication, DNA lesions in lagging strand templates are initially encountered by DNA polymerase δ (pol δ) holoenzymes comprised of pol δ and the PCNA processivity sliding clamp. These encounters are thought to stall replication of an afflicted template before the lesion, activating DNA damage tolerance (DDT) pathways that replicate the lesion and adjacent DNA sequence, allowing pol δ to resume. However, qualitative studies observed that human pol δ can replicate various DNA lesions, albeit with unknown proficiencies, which raises issues regarding the role of DDT in replicating DNA lesions. To address these issues, we re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with DNA lesions. The results indicate pol δ holoenzymes support dNTP incorporation opposite and beyond multiple lesions and the extent of these activities depends on the lesion and pol δ proofreading. Furthermore, after encountering a given DNA lesion, subsequent dissociation of pol δ is distributed around the lesion and a portion does not dissociate. The distributions of these events are dependent on the lesion and pol δ proofreading. Collectively, these results reveal complexity and heterogeneity in the replication of lagging strand DNA lesions, significantly advancing our understanding of human DDT.
Collapse
Affiliation(s)
- Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cardina
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Conformational Dynamics of Human ALKBH2 Dioxygenase in the Course of DNA Repair as Revealed by Stopped-Flow Fluorescence Spectroscopy. Molecules 2022; 27:molecules27154960. [PMID: 35956910 PMCID: PMC9370705 DOI: 10.3390/molecules27154960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of Escherichia coli AlkB dioxygenase. This enzyme protects genomic DNA against various alkyl lesions through a sophisticated catalytic mechanism supported by a cofactor (Fe(II)), a cosubstrate (2-oxoglutarate), and O2. We present here a comparative study of conformational dynamics in complexes of the ALKBH2 protein with double-stranded DNA substrates containing N1-methyladenine, N3-methylcytosine, or 1,N6-ethenoadenine. By means of fluorescent labels of different types, simultaneous detection of conformational transitions in the protein globule and DNA substrate molecule was performed. Fitting of the kinetic curves by a nonlinear-regression method yielded a molecular mechanism and rate constants of its individual steps. The results shed light on overall conformational dynamics of ALKBH2 and damaged DNA during the catalytic cycle.
Collapse
|
16
|
Tan T, Li Y, Tang B, Chen Y, Chen X, Xie Q, Hu Z, Chen G. Knockout of SlALKBH2 weakens the DNA damage repair ability of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111266. [PMID: 35487670 DOI: 10.1016/j.plantsci.2022.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
During the growth and evolution of plants, genomic DNA is subject to constant assault from endogenous and environmental DNA damage compounds, which will result in mutagenic or genotoxic covalent adducts. Whether for prokaryotes, eukaryotes or even viruses, maintaining genome integrity is critical for the continuation of life. Escherichia coli and mammals have evolved the AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases that repair DNA alkylation damage. We identified a functional homologue with EsAlkB and HsALKBH2 in tomatoes, and named it SlALKBH2. In our study, the SlALKBH2 knockout mutant showed hypersensitivity to the DNA mutagen MMS and displayed more severe growth abnormalities than wild-type plants under mutagen treatment, such as slow growth, leaf deformation and early senescence. Additionally, genes with high transcriptional activity, such as rDNA, have increased methylation under MMS treatment. In conclusion, this study shows that the tomato SlALKBH2 gene may play an important role in ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Tingting Tan
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yangyang Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yating Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xinru Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
17
|
Liu H, Zeng T, He C, Rawal VH, Zhou H, Dickinson BC. Development of Mild Chemical Catalysis Conditions for m 1A-to-m 6A Rearrangement on RNA. ACS Chem Biol 2022; 17:1334-1342. [PMID: 35593877 DOI: 10.1021/acschembio.2c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conversion of N1-methyladenosine (m1A) to N6-methyladenosine (m6A) on RNA is an important step for both allowing efficient reverse transcription read-though for sequencing analysis and mapping modifications in the transcriptome. Enzymatic transformation is often used, but the efficiency of the removal can depend on local sequence context. Chemical conversion through the application of the Dimroth rearrangement, in which m1A rearranges into m6A under heat and alkaline conditions, is an alternative, but the required alkaline conditions result in significant RNA degradation by hydrolysis of the phosphodiester backbone. Here, we report novel, mild pH conditions that catalyze m1A-to-m6A arrangement using 4-nitrothiophenol as a catalyst. We demonstrate the efficient rearrangement in mononucleosides, synthetic RNA oligonucleotides, and RNAs isolated from human cell lines, thereby validating a new approach for converting m1A-to-m6A in RNA samples for sequencing analyses.
Collapse
Affiliation(s)
- Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tony Zeng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Huiqing Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N 6 -methyladenosine modification in the interaction between host and microbes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. Dynamic and reversible m6 A modification regulates gene expression to control cellular processes and diverse biological functions. Growing evidence indicated that m6 A modification is involved in the homeostasis of host and microbes (mostly viruses and bacteria). Disturbance of m6 A modification affects the life cycles of viruses and bacteria, however, these microbes could in turn change host m6 A modification leading to human disease including autoimmune diseases and cancer. Thus, we raise the concept that m6 A could be a "messenger" molecule to participate in the interactions between host and microbes. In this review, we summarize the regulatory mechanisms of m6 A modification on viruses and commensal microbiota, highlight the roles of m6 A methylation in the interaction of host and microbes, and finally discuss drugs development targeting m6 A modification. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ruhao Zhuo
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Menghui Xu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Zhou
- Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
20
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
21
|
DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases. Int J Mol Sci 2021; 22:ijms221910540. [PMID: 34638881 PMCID: PMC8508711 DOI: 10.3390/ijms221910540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Site-specific DNA methylation plays an important role in epigenetic regulation of gene expression. Chemical methylation of DNA, including the formation of various methylated nitrogenous bases, leads to the formation of genotoxic modifications that impair DNA functions. Despite the fact that different pathways give rise to methyl groups in DNA, the main pathway for their removal is oxidative demethylation, which is catalyzed by nonheme Fe(II)/α-ketoglutarate–dependent DNA dioxygenases. DNA dioxygenases share a common catalytic mechanism of the oxidation of the alkyl groups on nitrogenous bases in nucleic acids. This review presents generalized data on the catalytic mechanism of action of DNA dioxygenases and on the participation of typical representatives of this superfamily, such as prokaryotic enzyme AlkB and eukaryotic enzymes ALKBH1–8 and TET1–3, in both processes of direct repair of alkylated DNA adducts and in the removal of an epigenetic mark (5-methylcytosine).
Collapse
|
22
|
Plessers S, Van Deuren V, Lavigne R, Robben J. High-Throughput Sequencing of Phage Display Libraries Reveals Parasitic Enrichment of Indel Mutants Caused by Amplification Bias. Int J Mol Sci 2021; 22:5513. [PMID: 34073702 PMCID: PMC8197208 DOI: 10.3390/ijms22115513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/23/2023] Open
Abstract
The combination of phage display technology with high-throughput sequencing enables in-depth analysis of library diversity and selection-driven dynamics. We applied short-read sequencing of the mutagenized region on focused display libraries of two homologous nucleic acid modification eraser proteins-AlkB and FTO-biopanned against methylated DNA. This revealed enriched genotypes with small indels and concomitant doubtful amino acid motifs within the FTO library. Nanopore sequencing of the entire display vector showed additional enrichment of large deletions overlooked by region-specific sequencing, and further impacted the interpretation of the obtained amino acid motifs. We could attribute enrichment of these corrupted clones to amplification bias due to arduous FTO display slowing down host cell growth as well as phage production. This amplification bias appeared to be stronger than affinity-based target selection. Recommendations are provided for proper sequence analysis of phage display data, which can improve motive discovery in libraries of proteins that are difficult to display.
Collapse
Affiliation(s)
- Sander Plessers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, B-3001 Heverlee, Belgium;
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| |
Collapse
|
23
|
Zhao S, Devega R, Francois A, Kidane D. Human ALKBH6 Is Required for Maintenance of Genomic Stability and Promoting Cell Survival During Exposure of Alkylating Agents in Pancreatic Cancer. Front Genet 2021; 12:635808. [PMID: 33897761 PMCID: PMC8058185 DOI: 10.3389/fgene.2021.635808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Alpha-ketoglutarate-dependent dioxygenase (ALKBH) is a DNA repair gene involved in the repair of alkylating DNA damage. There are nine types of ALKBH (ALKBH1-8 and FTO) identified in humans. In particular, certain types of ALKBH enzymes are dioxygenases that directly reverse DNA methylation damage via transfer of a methyl group from the DNA adduct onto α-ketoglutarate and release of metabolic products including succinate and formaldehyde. Here, we tested whether ALKBH6 plays a significant role in preventing alkylating DNA damage and decreasing genomic instability in pancreatic cancer cells. Using an E. coli strain deficient with ALKB, we found that ALKBH6 complements ALKB deficiency and increases resistance after alkylating agent treatment. In particular, the loss of ALKBH6 in human pancreatic cancer cells increases alkylating agent-induced DNA damage and significantly decreases cell survival. Furthermore, in silico analysis from The Cancer Genome Atlas (TCGA) database suggests that overexpression of ALKBH6 provides better survival outcomes in patients with pancreatic cancer. Overall, our data suggest that ALKBH6 is required to maintain the integrity of the genome and promote cell survival of pancreatic cancer cells.
Collapse
Affiliation(s)
- Shengyuan Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Rodan Devega
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Aaliyah Francois
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
24
|
Vural S, Palmisano A, Reinhold WC, Pommier Y, Teicher BA, Krushkal J. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin Epigenetics 2021; 13:49. [PMID: 33676569 PMCID: PMC7936435 DOI: 10.1186/s13148-021-01026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered DNA methylation patterns play important roles in cancer development and progression. We examined whether expression levels of genes directly or indirectly involved in DNA methylation and demethylation may be associated with response of cancer cell lines to chemotherapy treatment with a variety of antitumor agents. RESULTS We analyzed 72 genes encoding epigenetic factors directly or indirectly involved in DNA methylation and demethylation processes. We examined association of their pretreatment expression levels with methylation beta-values of individual DNA methylation probes, DNA methylation averaged within gene regions, and average epigenome-wide methylation levels. We analyzed data from 645 cancer cell lines and 23 cancer types from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We observed numerous correlations between expression of genes encoding epigenetic factors and response to chemotherapeutic agents. Expression of genes encoding a variety of epigenetic factors, including KDM2B, DNMT1, EHMT2, SETDB1, EZH2, APOBEC3G, and other genes, was correlated with response to multiple agents. DNA methylation of numerous target probes and gene regions was associated with expression of multiple genes encoding epigenetic factors, underscoring complex regulation of epigenome methylation by multiple intersecting molecular pathways. The genes whose expression was associated with methylation of multiple epigenome targets encode DNA methyltransferases, TET DNA methylcytosine dioxygenases, the methylated DNA-binding protein ZBTB38, KDM2B, SETDB1, and other molecular factors which are involved in diverse epigenetic processes affecting DNA methylation. While baseline DNA methylation of numerous epigenome targets was correlated with cell line response to antitumor agents, the complex relationships between the overlapping effects of each epigenetic factor on methylation of specific targets and the importance of such influences in tumor response to individual agents require further investigation. CONCLUSIONS Expression of multiple genes encoding epigenetic factors is associated with drug response and with DNA methylation of numerous epigenome targets that may affect response to therapeutic agents. Our findings suggest complex and interconnected pathways regulating DNA methylation in the epigenome, which may both directly and indirectly affect response to chemotherapy.
Collapse
Affiliation(s)
- Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
- General Dynamics Information Technology (GDIT), 3150 Fairview Park Drive, Falls Church, VA, 22042, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Beverly A Teicher
- Molecular Pharmacology Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
25
|
Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci 2021; 78:129-141. [PMID: 32642789 PMCID: PMC11072825 DOI: 10.1007/s00018-020-03594-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.
Collapse
Affiliation(s)
- Baofang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Dongyang Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruixia Tian
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
26
|
Oxidative demethylase ALKBH5 repairs DNA alkylation damage and protects against alkylation-induced toxicity. Biochem Biophys Res Commun 2020; 534:114-120. [PMID: 33321288 DOI: 10.1016/j.bbrc.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 11/22/2022]
Abstract
DNA integrity is challenged by both exogenous and endogenous alkylating agents. DNA repair proteins such as Escherichia coli AlkB family of enzymes can repair 1-methyladenine and 3-methylcytosine adducts by oxidative demethylation. Human AlkB homologue 5 (ALKBH5) is RNA N6-methyladenine demethylase and not known to be involved in DNA repair. Herein we show that ALKBH5 also has weak DNA repair activity and it can demethylate DNA 3-methylcytosine. The mutation of the amino acid residues involved in demethylation also abolishes the DNA repair activity of ALKBH5. Overexpression of ALKBH5 decreases the 3-methylcytosine level in genomic DNA and reduces the cytotoxic effects of the DNA damaging alkylating agent methyl methanesulfonate. Thus, demethylation by ALKBH5 might play a supporting role in maintaining genome integrity.
Collapse
|
27
|
Van Deuren V, Plessers S, Robben J. Structural determinants of nucleobase modification recognition in the AlkB family of dioxygenases. DNA Repair (Amst) 2020; 96:102995. [PMID: 33069898 DOI: 10.1016/j.dnarep.2020.102995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/29/2023]
Abstract
Iron-dependent dioxygenases of the AlkB protein family found in most organisms throughout the tree of life play a major role in oxidative dealkylation processes. Many of these enzymes have attracted the attention of researchers across different fields and have been subjected to thorough biochemical characterization because of their link to human health and disease. For example, several mammalian AlkB homologues are involved in the direct reversal of alkylation damage in DNA, while others have been shown to play a regulatory role in epigenetic or epitranscriptomic nucleic acid methylation or in post-translational modifications such as acetylation of actin filaments. These studies show that that divergence in amino acid sequence and structure leads to different characteristics and substrate specificities. In this review, we aim to summarize current insights in the structural features involved in the substrate selection of AlkB homologues, with focus on nucleic acid interactions.
Collapse
Affiliation(s)
- V Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium
| | - S Plessers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium
| | - J Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium.
| |
Collapse
|
28
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Single-stranded DNA damage: Protecting the single-stranded DNA from chemical attack. DNA Repair (Amst) 2020; 87:102804. [PMID: 31981739 DOI: 10.1016/j.dnarep.2020.102804] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/08/2023]
Abstract
Cellular processes, such as DNA replication, recombination and transcription, require DNA strands separation and single-stranded DNA is formation. The single-stranded DNA is promptly wrapped by human single-stranded DNA binding proteins, replication protein A (RPA) complex. RPA binding not only prevent nuclease degradation and annealing, but it also coordinates cell-cycle checkpoint activation and DNA repair. However, RPA binding offers little protection against the chemical modification of DNA bases. This review focuses on the type of DNA base damage that occurs in single-stranded DNA and how the damage is rectified in human cells. The discovery of DNA repair proteins, such as ALKBH3, AGT, UNG2, NEIL3, being able to repair the damaged base in the single-stranded DNA, renewed the interest to study single-stranded DNA repair. These mechanistically different proteins work independently from each other with the overarching goal of increasing fidelity of recombination and promoting error-free replication.
Collapse
|
30
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
31
|
Kanazhevskaya LY, Alekseeva IV, Fedorova OS. A Single-Turnover Kinetic Study of DNA Demethylation Catalyzed by Fe(II)/α-Ketoglutarate-Dependent Dioxygenase AlkB. Molecules 2019; 24:molecules24244576. [PMID: 31847292 PMCID: PMC6943663 DOI: 10.3390/molecules24244576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 01/31/2023] Open
Abstract
AlkB is a Fe(II)/α-ketoglutarate-dependent dioxygenase that repairs some alkylated bases of DNA and RNA in Escherichia coli. In the course of catalysis, oxidation of a co-substrate (α-ketoglutarate, αKG) leads to the formation of a highly reactive ‘oxyferryl’ enzyme-bound intermediate, Fe(IV) = O, ensuring hydroxylation of the alkyl nucleobase adducts. Previous studies have revealed that AlkB is a flexible protein and can adopt different conformations during interactions with cofactors and DNA. To assess the conformational dynamics of the enzyme in complex with single- or double-stranded DNA in real-time mode, we employed the stopped-flow fluorescence method. N1-Methyladenine (m1A) introduced into a sequence of 15-mer oligonucleotides was chosen as the specific damage. Single-turnover kinetics were monitored by means of intrinsic fluorescence of the protein’s Trp residues, fluorescent base analogue 2-aminopurine (2aPu), and a dye–quencher pair (FAM/BHQ1). For all the fluorescent labels, the fluorescent traces showed several phases of consistent conformational changes, which were assigned to specific steps of the enzymatic process. These data offer an overall picture of the structural dynamics of AlkB and DNA during their interaction.
Collapse
Affiliation(s)
| | | | - Olga S. Fedorova
- Correspondence: (L.Y.K.); (O.S.F.); Tel.: +7-(383)-3635175 (O.S.F.)
| |
Collapse
|
32
|
Abstract
Similar to many other biological molecules, RNA is vulnerable to chemical insults from endogenous and exogenous sources. Noxious agents such as reactive oxygen species or alkylating chemicals have the potential to profoundly affect the chemical properties and hence the function of RNA molecules in the cell. Given the central role of RNA in many fundamental biological processes, including translation and splicing, changes to its chemical composition can have a detrimental impact on cellular fitness, with some evidence suggesting that RNA damage has roles in diseases such as neurodegenerative disorders. We are only just beginning to learn about how cells cope with RNA damage, with recent studies revealing the existence of quality-control processes that are capable of recognizing and degrading or repairing damaged RNA. Here, we begin by reviewing the most abundant types of chemical damage to RNA, including oxidation and alkylation. Focusing on mRNA damage, we then discuss how alterations to this species of RNA affect its function and how cells respond to these challenges to maintain proteostasis. Finally, we briefly discuss how chemical damage to noncoding RNAs such as rRNA, tRNA, small nuclear RNA, and small nucleolar RNA is likely to affect their function.
Collapse
Affiliation(s)
- Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, To whom correspondence should be addressed:
Dept. of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, MO 63130. Tel.:
314-935-7662; Fax:
314-935-4432; E-mail:
| |
Collapse
|
33
|
An improved estimation of tRNA expression to better elucidate the coevolution between tRNA abundance and codon usage in bacteria. Sci Rep 2019; 9:3184. [PMID: 30816249 PMCID: PMC6395768 DOI: 10.1038/s41598-019-39369-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The degree to which codon usage can be explained by tRNA abundance in bacterial species is often inadequate, partly because differential tRNA abundance is often approximated by tRNA copy numbers. To better understand the coevolution between tRNA abundance and codon usage, we provide a better estimate of tRNA abundance by profiling tRNA mapped reads (tRNA tpm) using publicly available RNA Sequencing data. To emphasize the feasibility of our approach, we demonstrate that tRNA tpm is consistent with tRNA abundances derived from RNA fingerprinting experiments in Escherichia coli, Bacillus subtilis, and Salmonella enterica. Furthermore, we do not observe an appreciable reduction in tRNA sequencing efficiency due to post-transcriptional methylations in the seven bacteria studied. To determine optimal codons, we calculate codon usage in highly and lowly expressed genes determined by protein per transcript. We found that tRNA tpm is sensitive to identify more translationally optimal codons than gene copy number and early tRNA fingerprinting abundances. Additionally, tRNA tpm improves the predictive power of tRNA adaptation index over codon preference. Our results suggest that dependence of codon usage on tRNA availability is not always associated with species growth-rate. Conversely, tRNA availability is better optimized to codon usage in fast-growing than slow-growing species.
Collapse
|
34
|
DeNizio JE, Liu MY, Leddin EM, Cisneros GA, Kohli RM. Selectivity and Promiscuity in TET-Mediated Oxidation of 5-Methylcytosine in DNA and RNA. Biochemistry 2018; 58:411-421. [PMID: 30387995 DOI: 10.1021/acs.biochem.8b00912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enzymes of the ten-eleven translocation (TET) family add diversity to the repertoire of nucleobase modifications by catalyzing the oxidation of 5-methylcytosine (5mC). TET enzymes were initially found to oxidize 5-methyl-2'-deoxycytidine in genomic DNA, yielding products that contribute to epigenetic regulation in mammalian cells, but have since been found to also oxidize 5-methylcytidine in RNA. Considering the different configurations of single-stranded (ss) and double-stranded (ds) DNA and RNA that coexist in a cell, defining the scope of TET's preferred activity and the mechanisms of substrate selectivity is critical to better understand the enzymes' biological functions. To this end, we have systematically examined the activity of human TET2 on DNA, RNA, and hybrid substrates in vitro. We found that, while ssDNA and ssRNA are well tolerated, TET2 is most proficient at dsDNA oxidation and discriminates strongly against dsRNA. Chimeric and hybrid substrates containing mixed DNA and RNA character helped reveal two main features by which the enzyme discriminates between substrates. First, the identity of the target nucleotide alone is the strongest reactivity determinant, with a preference for 5-methyldeoxycytidine, while both DNA or RNA are relatively tolerated on the rest of the target strand. Second, while a complementary strand is not required for activity, DNA is the preferred partner, and complementary RNA diminishes reactivity. Our biochemical analysis, complemented by molecular dynamics simulations, provides support for an active site optimally configured for dsDNA reactivity but permissive for various nucleic acid configurations, suggesting a broad range of plausible roles for TET-mediated 5mC oxidation in cells.
Collapse
Affiliation(s)
| | | | - Emmett M Leddin
- Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | | |
Collapse
|
35
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
36
|
Shi R, Shen XX, Rokas A, Eichman BF. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases. Bioessays 2018; 40:e1800133. [PMID: 30264543 DOI: 10.1002/bies.201800133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Indexed: 11/08/2022]
Abstract
DNA glycosylases remove aberrant DNA nucleobases as the first enzymatic step of the base excision repair (BER) pathway. The alkyl-DNA glycosylases AlkC and AlkD adopt a unique structure based on α-helical HEAT repeats. Both enzymes identify and excise their substrates without a base-flipping mechanism used by other glycosylases and nucleic acid processing proteins to access nucleobases that are otherwise stacked inside the double-helix. Consequently, these glycosylases act on a variety of cationic nucleobase modifications, including bulky adducts, not previously associated with BER. The related non-enzymatic HEAT-like repeat (HLR) proteins, AlkD2, and AlkF, have unique nucleic acid binding properties that expand the functions of this relatively new protein superfamily beyond DNA repair. Here, we review the phylogeny, biochemistry, and structures of the HLR proteins, which have helped broaden our understanding of the mechanisms by which DNA glycosylases locate and excise chemically modified DNA nucleobases.
Collapse
Affiliation(s)
- Rongxin Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
37
|
Wilson DL, Beharry AA, Srivastava A, O'Connor TR, Kool ET. Fluorescence Probes for ALKBH2 Allow the Measurement of DNA Alkylation Repair and Drug Resistance Responses. Angew Chem Int Ed Engl 2018; 57:12896-12900. [PMID: 30098084 PMCID: PMC6478024 DOI: 10.1002/anie.201807593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 01/18/2023]
Abstract
The DNA repair enzyme ALKBH2 is implicated in both tumorigenesis as well as resistance to chemotherapy in certain cancers. It is currently under study as a potential diagnostic marker and has been proposed as a therapeutic target. To date, however, there exist no direct methods for measuring the repair activity of ALKBH2 in vitro or in biological samples. Herein, we report a highly specific, fluorogenic probe design based on an oligonucleotide scaffold that reports directly on ALKBH2 activity both in vitro and in cell lysates. Importantly, the probe enables the monitoring of cellular regulation of ALKBH2 activity in response to treatment with the chemotherapy drug temozolomide through a simple fluorescence assay, which has only previously been observed through indirect means such as qPCR and western blots. Furthermore, the probe provides a viable high-throughput assay for drug discovery.
Collapse
Affiliation(s)
- David L Wilson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Avinash Srivastava
- Department of Cancer Biology, Beckman Research Institute, Duarte, CA, 91010, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, Beckman Research Institute, Duarte, CA, 91010, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
38
|
Wilson DL, Beharry AA, Srivastava A, O'Connor TR, Kool ET. Fluorescence Probes for ALKBH2 Allow the Measurement of DNA Alkylation Repair and Drug Resistance Responses. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- David L. Wilson
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Andrew A. Beharry
- Department of Chemical and Physical Sciences; University of Toronto; Mississauga ON L5L 1C6 Canada
| | - Avinash Srivastava
- Department of Cancer Biology; Beckman Research Institute; Duarte CA 91010 USA
| | - Timothy R. O'Connor
- Department of Cancer Biology; Beckman Research Institute; Duarte CA 91010 USA
| | - Eric T. Kool
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
39
|
Mohan M, Pandya V, Anindya R. Escherichia coli AlkB and single-stranded DNA binding protein SSB interaction explored by Molecular Dynamics Simulation. J Mol Graph Model 2018; 84:29-35. [DOI: 10.1016/j.jmgm.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
|
40
|
Nigam R, Babu KR, Ghosh T, Kumari B, Akula D, Rath SN, Das P, Anindya R, Khan FA. Indenone derivatives as inhibitor of human DNA dealkylation repair enzyme AlkBH3. Bioorg Med Chem 2018; 26:4100-4112. [PMID: 30041948 DOI: 10.1016/j.bmc.2018.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
Abstract
The mammalian AlkB homologue-3 (AlkBH3) is a member of the dioxygenase family of enzymes that in humans is involved in DNA dealkylation repair. Because of its role in promoting tumor cell proliferation and metastasis of cancer, extensive efforts are being directed in developing selective inhibitors for AlkBH3. Here we report synthesis, screening and evaluation of panel of arylated indenone derivatives as new class of inhibitors of AlkBH3 DNA repair activity. An efficient synthesis of 2,3-diaryl indenones from 2,3-dibromo indenones was achieved via Suzuki-Miyaura cross-coupling. Using a robust quantitative assay, we have obtained an AlkBH3 inhibitor that display specific binding and competitive mode of inhibition against DNA substrate. Finally, we established that this compound could prevent the proliferation of lung cancer cell line and enhance sensitivity to DNA damaging alkylating agent.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Kaki Raveendra Babu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Topi Ghosh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, Patna 801106, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, Patna 801106, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| |
Collapse
|
41
|
Nigam R, Anindya R. Escherichia coli single-stranded DNA binding protein SSB promotes AlkB-mediated DNA dealkylation repair. Biochem Biophys Res Commun 2018; 496:274-279. [PMID: 29326044 DOI: 10.1016/j.bbrc.2018.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 11/17/2022]
Abstract
Repair of alkylation damage in DNA is essential for maintaining genome integrity. Escherichia coli (E.coli) protein AlkB removes various alkyl DNA adducts including N1-methyladenine (N1meA) and N3-methylcytosine (N3meC) by oxidative demethylation. Previous studies showed that AlkB preferentially removes N1meA and N3meC from single-stranded DNA (ssDNA). It can also remove N1meA and N3meC from double-stranded DNA by base-flipping. Notably, ssDNA produced during DNA replication and recombination, remains bound to E. coli single-stranded DNA binding protein SSB and it is not known whether AlkB can repair methyl adduct present in SSB-coated DNA. Here we have studied AlkB-mediated DNA repair using SSB-bound DNA as substrate. In vitro repair reaction revealed that AlkB could efficiently remove N3meC adducts inasmuch as DNA length is shorter than 20 nucleotides. However, when longer N3meC-containing oligonuleotides were used as the substrate, efficiency of AlkB catalyzed reaction was abated compared to SSB-bound DNA substrate of identical length. Truncated SSB containing only the DNA binding domain could also support the stimulation of AlkB activity, suggesting the importance of SSB-DNA interaction for AlkB function. Using 70-mer oligonucleotide containing single N3meC we demonstrate that SSB-AlkB interaction promotes faster repair of the methyl DNA adducts.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, Telangana, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, Telangana, India.
| |
Collapse
|
42
|
Shi R, Mullins EA, Shen XX, Lay KT, Yuen PK, David SS, Rokas A, Eichman BF. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC. EMBO J 2018; 37:63-74. [PMID: 29054852 PMCID: PMC5753038 DOI: 10.15252/embj.201797833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 01/07/2023] Open
Abstract
DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.
Collapse
Affiliation(s)
- Rongxin Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kori T Lay
- Department of Chemistry, University of California, Davis, CA, USA
| | - Philip K Yuen
- Department of Chemistry, University of California, Davis, CA, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
43
|
Alves J, Vidugiris G, Goueli SA, Zegzouti H. Bioluminescent High-Throughput Succinate Detection Method for Monitoring the Activity of JMJC Histone Demethylases and Fe(II)/2-Oxoglutarate-Dependent Dioxygenases. SLAS DISCOVERY 2017; 23:242-254. [PMID: 29239273 DOI: 10.1177/2472555217745657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modification of a diverse array of substrates by Fe(II)/2-oxoglutarate-dependent dioxygenases is central to the modulation of distinct biological processes such as epigenetics, hypoxic signaling, and DNA/RNA repair. Of these, JumonjiC domain-containing histone lysine demethylases (JMJCs) and prolyl hydroxylases are potential drug targets due to their relevance to human diseases. Thus, assays to interrogate this enzyme superfamily are needed to identify selective and potent inhibitors as leads for drug development and that could also be useful research tools. Since succinate is a common product to all Fe(II)/2-oxoglutarate-dependent dioxygenase reactions, a method that detects succinate would be suitable to all members of this enzyme superfamily. We therefore developed a bioluminescent and homogenous succinate detection assay and validated its use with diverse sets of enzyme classes. We evaluated the substrate specificities of these enzymes, their apparent kinetic constants, and inhibition profiles and mode of action of reported and novel inhibitors. Our results indicate that succinate detection is a useful readout for the monitoring of enzymatic activities with distinct substrate entities, as well as for the discovery of novel inhibitors. By investigating a large number of Fe(II)/2-oxoglutarate-dependent enzymes, this method could have a significant impact on the field of dioxygenase research.
Collapse
Affiliation(s)
- Juliano Alves
- 1 Promega Corporation, R&D Department, Madison, WI, USA
| | | | - Said A Goueli
- 1 Promega Corporation, R&D Department, Madison, WI, USA
- 2 Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
44
|
Tudek B, Zdżalik-Bielecka D, Tudek A, Kosicki K, Fabisiewicz A, Speina E. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes. Free Radic Biol Med 2017; 107:77-89. [PMID: 27908783 DOI: 10.1016/j.freeradbiomed.2016.11.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Exocyclic adducts to DNA bases are formed as a consequence of exposure to certain environmental carcinogens as well as inflammation and lipid peroxidation (LPO). Complex family of LPO products gives rise to a variety of DNA adducts, which can be grouped in two classes: (i) small etheno-type adducts of strong mutagenic potential, and (ii) bulky, propano-type adducts, which block replication and transcription, and are lethal lesions. Etheno-DNA adducts are removed from the DNA by base excision repair (BER), AlkB and nucleotide incision repair enzymes (NIR), while substituted propano-type lesions by nucleotide excision repair (NER) and homologous recombination (HR). Changes of the level and activity of several enzymes removing exocyclic adducts from the DNA was reported during carcinogenesis. Also several beyond repair functions of these enzymes, which participate in regulation of cell proliferation and growth, as well as RNA processing was recently described. In addition, adducts of LPO products to proteins was reported during aging and age-related diseases. The paper summarizes pathways for exocyclic adducts removal and describes how proteins involved in repair of these adducts can modify pathological states of the organism.
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Mollers Alle 3, 8000 Aarhus, Denmark
| | - Konrad Kosicki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Fabisiewicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, Warsaw 02-781, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
45
|
1,N 6-α-hydroxypropanoadenine, the acrolein adduct to adenine, is a substrate for AlkB dioxygenase. Biochem J 2017; 474:1837-1852. [PMID: 28408432 DOI: 10.1042/bcj20161008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
Abstract
1,N6-α-hydroxypropanoadenine (HPA) is an exocyclic DNA adduct of acrolein - an environmental pollutant and endocellular oxidative stress product. Escherichia coli AlkB dioxygenase belongs to the superfamily of α-ketoglutarate (αKG)- and iron-dependent dioxygenases which remove alkyl lesions from bases via an oxidative mechanism, thereby restoring native DNA structure. Here, we provide in vivo and in vitro evidence that HPA is mutagenic and is effectively repaired by AlkB dioxygenase. HPA generated in plasmid DNA caused A → C and A → T transversions and, less frequently, A → G transitions. The lesion was efficiently repaired by purified AlkB protein; the optimal pH, Fe(II), and αKG concentrations for this reaction were determined. In vitro kinetic data show that the protonated form of HPA is preferentially repaired by AlkB, albeit the reaction is stereoselective. Moreover, the number of reaction cycles carried out by an AlkB molecule remains limited. Molecular modeling of the T(HPA)T/AlkB complex demonstrated that the R stereoisomer in the equatorial conformation of the HPA hydroxyl group is strongly preferred, while the S stereoisomer seems to be susceptible to AlkB-directed oxidative hydroxylation only when HPA adopts the syn conformation around the glycosidic bond. In addition to the biochemical activity assays, substrate binding to the protein was monitored by differential scanning fluorimetry allowing identification of the active protein form, with cofactor and cosubstrate bound, and monitoring of substrate binding. In contrast FTO, a human AlkB homolog, failed to bind an ssDNA trimer carrying HPA.
Collapse
|
46
|
Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 2017; 7:42271. [PMID: 28205560 PMCID: PMC5304225 DOI: 10.1038/srep42271] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/08/2017] [Indexed: 12/29/2022] Open
Abstract
The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA by a methylating agent) to reverse the methylation damage and retain the integrity of the DNA/RNA. We previously reported the high expression of ALKBH3 in clinical tumor specimens and its involvement in tumor progression. In this study, we found that ALKBH3 effectively demethylated 1-meA and 3-meC within endogenously methylated RNA. Moreover, using highly purified recombinant ALKBH3, we identified N6-methyladenine (N6-meA) in mammalian transfer RNA (tRNA) as a novel ALKBH3 substrate. An in vitro translation assay showed that ALKBH3-demethylated tRNA significantly enhanced protein translation efficiency. In addition, ALKBH3 knockdown in human cancer cells impaired cellular proliferation and suppressed the nascent protein synthesis that is usually accompanied by accumulation of the methylated RNAs. Thus, our data highlight a novel role for ALKBH3 in tumor progression via RNA demethylation and subsequent protein synthesis promotion.
Collapse
Affiliation(s)
- Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ikumi Ooshio
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuyuki Fusamae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Megumi Kawaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Höbartner C, Bohnsack MT. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J 2016; 35:2104-2119. [PMID: 27497299 PMCID: PMC5048346 DOI: 10.15252/embj.201694885] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial gene expression uses a non‐universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt‐)tRNAMet mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt‐tRNAMet to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m5C34 of mt‐tRNAMet to generate an f5C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m5C34 mt‐tRNAMet in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt‐tRNAMet function. Together, our data reveal how modifications in mt‐tRNAMet are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNAMet to recognise the different codons encoding methionine.
Collapse
Affiliation(s)
- Sara Haag
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ahmed S Warda
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Charlotte Blessing
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Benedikt Hübner
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jan Seikowski
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Peter Rehling
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
48
|
Chen F, Tang Q, Bian K, Humulock ZT, Yang X, Jost M, Drennan CL, Essigmann JM, Li D. Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA. Chem Res Toxicol 2016; 29:687-93. [PMID: 26919079 DOI: 10.1021/acs.chemrestox.5b00522] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AlkB protein is a repair enzyme that uses an α-ketoglutarate/Fe(II)-dependent mechanism to repair alkyl DNA adducts. AlkB has been reported to repair highly susceptible substrates, such as 1-methyladenine and 3-methylcytosine, more efficiently in ss-DNA than in ds-DNA. Here, we tested the repair of weaker AlkB substrates 1-methylguanine and 3-methylthymine and found that AlkB prefers to repair them in ds-DNA. We also discovered that AlkB and its human homologues, ABH2 and ABH3, are able to repair the aforementioned adducts when the adduct is present in a mismatched base pair. These observations demonstrate the strong adaptability of AlkB toward repairing various adducts in different environments.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Zachary T Humulock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Xuedong Yang
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, P. R. China
| | | | | | | | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
49
|
Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015; 290:20734-20742. [PMID: 26152727 DOI: 10.1074/jbc.r115.656462] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vipender Singh
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - James C Delaney
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Deyu Li
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - John M Essigmann
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
50
|
Liefke R, Windhof-Jaidhauser IM, Gaedcke J, Salinas-Riester G, Wu F, Ghadimi M, Dango S. The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med 2015. [PMID: 26221185 PMCID: PMC4517488 DOI: 10.1186/s13073-015-0180-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes upregulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers, and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an upregulation of ALKBH3 non-bound inflammatory genes. Conclusions The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0180-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Liefke
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | | | - Jochen Gaedcke
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany
| | | | - Feizhen Wu
- Epigenetics Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Michael Ghadimi
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany
| | - Sebastian Dango
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany ; Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|