1
|
Kim YW, Kang J, Kim A. Hematopoietic/erythroid enhancers activate nearby target genes by extending histone H3K27ac and transcribing intergenic RNA. FASEB J 2023; 37:e22870. [PMID: 36929052 DOI: 10.1096/fj.202201891r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Enhancers activate gene transcription remotely, which requires tissue specific transcription factors binding to them. GATA1 and TAL1 are hematopoietic/erythroid-specific factors and often bind together to enhancers, activating target genes. Interestingly, we found that some hematopoietic/erythroid genes are transcribed in a GATA1-dependent but TAL1-independnet manner. They appear to have enhancers within a relatively short distance. In this study, we paired highly transcribed hematopoietic/erythroid genes with the nearest GATA1/TAL1-binding enhancers and analyzed these putative enhancer-gene pairs depending on distance between them. Enhancers located at various distances from genes in the pairs, which was not related to transcription level of the genes. However, genes with enhancers at short distances away tended to be transcriptionally unaffected by TAL1 depletion. Histone H3K27ac extended from the enhancers to target genes. The H3K27ac extension was maintained without TAL1, even though it disappeared owing to the loss of GATA1. Intergenic RNA was highly transcribed from the enhancers to nearby target genes, independent of TAL1. Taken together, TAL1-independent transcription of hematopoietic/erythroid genes appears to be promoted by enhancers present in a short distance. These enhancers are likely to activate nearby target genes by tracking the intervening regions.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
- Department of Biomedical Laboratory Science, College of Healthcare Medical Science and Engineering, Inje University, Gimhae, South Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
2
|
Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, Zhang M, Lensch S, Shields CE, Livingston M, Weiss R, Zhao H, Haynes KA, Morsut L, Chen YY, Khalil AS, Wong WW, Collins JJ, Rosser SJ, Polizzi K, Elowitz MB, Fussenegger M, Hilton IB, Leonard JN, Bintu L, Galloway KE, Deans TL. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst 2022; 13:950-973. [PMID: 36549273 PMCID: PMC9880859 DOI: 10.1016/j.cels.2022.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Collapse
Affiliation(s)
- Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey I Edelstein
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fokion Glykofrydis
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Kasey S Love
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Yvonne Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| | - Ahmad S Khalil
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Zhou R, Tian K, Huang J, Duan W, Fu H, Feng Y, Wang H, Jiang Y, Li Y, Wang R, Hu J, Ma H, Qi Z, Ji X. CTCF DNA binding domain undergoes dynamic and selective protein–protein interactions. iScience 2022; 25:105011. [PMID: 36117989 PMCID: PMC9474293 DOI: 10.1016/j.isci.2022.105011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
CTCF is a predominant insulator protein required for three-dimensional chromatin organization. However, the roles of its insulation of enhancers in a 3D nuclear organization have not been fully explained. Here, we found that the CTCF DNA-binding domain (DBD) forms dynamic self-interacting clusters. Strikingly, CTCF DBD clusters were found to incorporate other insulator proteins but are not coenriched with transcriptional activators in the nucleus. This property is not observed in other domains of CTCF or the DBDs of other transcription factors. Moreover, endogenous CTCF shows a phenotype consistent with the DBD by forming small protein clusters and interacting with CTCF motif arrays that have fewer transcriptional activators bound. Our results reveal an interesting phenomenon in which CTCF DBD interacts with insulator proteins and selectively localizes to nuclear positions with lower concentrations of transcriptional activators, providing insights into the insulation function of CTCF. The CTCF DNA-binding domain forms protein clusters in vivo and in vitro CTCF DBD clusters colocalize with insulator proteins but not with activators Arginine residues of CTCF DBD are frequently mutated in cancers Multiple transcription factor DBDs form protein clusters
Collapse
|
4
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Gurumurthy A, Yu DT, Stees JR, Chamales P, Gavrilova E, Wassel P, Li L, Stribling D, Chen J, Brackett M, Ishov AM, Xie M, Bungert J. Super-enhancer mediated regulation of adult β-globin gene expression: the role of eRNA and Integrator. Nucleic Acids Res 2021; 49:1383-1396. [PMID: 33476375 PMCID: PMC7897481 DOI: 10.1093/nar/gkab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
Super-enhancers (SEs) mediate high transcription levels of target genes. Previous studies have shown that SEs recruit transcription complexes and generate enhancer RNAs (eRNAs). We characterized transcription at the human and murine β-globin locus control region (LCR) SE. We found that the human LCR is capable of recruiting transcription complexes independently from linked globin genes in transgenic mice. Furthermore, LCR hypersensitive site 2 (HS2) initiates the formation of bidirectional transcripts in transgenic mice and in the endogenous β-globin gene locus in murine erythroleukemia (MEL) cells. HS2 3′eRNA is relatively unstable and remains in close proximity to the globin gene locus. Reducing the abundance of HS2 3′eRNA leads to a reduction in β-globin gene transcription and compromises RNA polymerase II (Pol II) recruitment at the promoter. The Integrator complex has been shown to terminate eRNA transcription. We demonstrate that Integrator interacts downstream of LCR HS2. Inducible ablation of Integrator function in MEL or differentiating primary human CD34+ cells causes a decrease in expression of the adult β-globin gene and accumulation of Pol II and eRNA at the LCR. The data suggest that transcription complexes are assembled at the LCR and transferred to the globin genes by mechanisms that involve Integrator mediated release of Pol II and eRNA from the LCR.
Collapse
Affiliation(s)
- Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - David T Yu
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Jared R Stees
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Pamela Chamales
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Ekaterina Gavrilova
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Paul Wassel
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Daniel Stribling
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Gainesville, FL 32610, USA
| | - Jinyang Chen
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Marissa Brackett
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
7
|
Vermunt MW, Zhang D, Blobel GA. The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol 2019; 218:12-26. [PMID: 30442643 PMCID: PMC6314554 DOI: 10.1083/jcb.201809040] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023] Open
Abstract
Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause-consequence relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense investigation. Here, we review the interdependency of transcription and genome organization with emphasis on enhancer-promoter contacts in gene regulation.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Beagrie RA, Pombo A. Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays 2016; 38:881-93. [PMID: 27452946 DOI: 10.1002/bies.201600032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enhancers can stimulate transcription by a number of different mechanisms which control different stages of the transcription cycle of their target genes, from recruitment of the transcription machinery to elongation by RNA polymerase. These mechanisms may not be mutually exclusive, as a single enhancer may act through different pathways by binding multiple transcription factors. Multiple enhancers may also work together to regulate transcription of a shared target gene. Most of the evidence supporting different enhancer mechanisms comes from the study of single genes, but new high-throughput experimental frameworks offer the opportunity to integrate and generalize disparate mechanisms identified at single genes. This effort is especially important if we are to fully understand how sequence variation within enhancers contributes to human disease.
Collapse
Affiliation(s)
- Robert A Beagrie
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|
9
|
Benabdallah NS, Bickmore WA. Regulatory Domains and Their Mechanisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:45-51. [PMID: 26590168 DOI: 10.1101/sqb.2015.80.027268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concept of gene regulation is being refined as our understanding of the role of enhancer elements grows. Although described more than 30 years ago, the mechanisms through which these cis-regulating elements operate remain under debate. With the recognition that most of the human genetic variation contributing to common disease risk lies outside of genes and probably in enhancers, unraveling these mechanisms becomes ever more important. Originally, a popular view was to consider regulatory elements as an entry site for the transcription machinery that could scan the intervening chromatin until the cognate core promoter was located. Now, the most prominent model for distal enhancer-promoter interaction involves direct enhancer/promoter contacts with a looping out of intervening chromatin. However, a rising awareness of the importance of chromatin architecture and organization forces us to consider enhancer-promoter communication in light of the polymer folding properties of chromatin. Here, we discuss how three-dimensional chromatin folding, topological domains, and the constrained motion, plasticity, and accessibility of chromatin could offer a structural basis for regulatory domains that greatly enhances the probability of enhancer-promoter and transcription factor-promoter interactions and gene activation.
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom Edinburgh Super Resolution Imaging Consortium, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| |
Collapse
|
10
|
Tikhonov M, Gasanov NB, Georgiev P, Maksimenko O. A Model System in S2 Cells to Test the Functional Activities of Drosophila Insulators. Acta Naturae 2015; 7:97-106. [PMID: 26798496 PMCID: PMC4717254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Insulators are a special class of regulatory elements that can regulate interactions between enhancers and promoters in the genome of high eukaryotes. To date, the mechanisms of insulator action remain unknown, which is primarily related to the lack of convenient model systems. We suggested studying a model system which is based on transient expression of a plasmid with an enhancer of the copia transposable element, in Drosophila embryonic cell lines. We demonstrated that during transient transfection of circle plasmids with a well-known Drosophila insulator from the gypsy retrotransposon, the insulator exhibits in an enhancer-blocking assay the same properties as in Drosophila stable transgenic lines. Therefore, the Drosophila cell line is suitable for studying the main activities of insulators, which provides additional opportunities for investigating the functional role of certain insulator proteins.
Collapse
Affiliation(s)
- M. Tikhonov
- Institute of Gene Biology Russian Academy of Sciences, Vavilova str., 34/5, 119334, Moscow, Russia
| | - N. B. Gasanov
- Institute of Gene Biology Russian Academy of Sciences, Vavilova str., 34/5, 119334, Moscow, Russia
| | - P. Georgiev
- Institute of Gene Biology Russian Academy of Sciences, Vavilova str., 34/5, 119334, Moscow, Russia
| | - O. Maksimenko
- Institute of Gene Biology Russian Academy of Sciences, Vavilova str., 34/5, 119334, Moscow, Russia
| |
Collapse
|
11
|
Influence of a CTCF-Dependent Insulator on Multiple Aspects of Enhancer-Mediated Chromatin Organization. Mol Cell Biol 2015; 35:3504-16. [PMID: 26240285 DOI: 10.1128/mcb.00514-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 01/07/2023] Open
Abstract
Developmental stage-specific enhancer-promoter-insulator interactions regulate the chromatin configuration necessary for transcription at various loci and additionally for VDJ recombination at antigen receptor loci that encode immunoglobulins and T-cell receptors. To investigate these regulatory interactions, we analyzed the epigenetic landscape of the murine T-cell receptor β (TCRβ) locus in the presence and absence of an ectopic CTCF-dependent enhancer-blocking insulator, H19-ICR, in genetically manipulated mice. Our analysis demonstrated the ability of the H19-ICR insulator to restrict several aspects of enhancer-based chromatin alterations that are observed during activation of the TCRβ locus for transcription and recombination. The H19-ICR insulator abrogated enhancer-promoter contact-dependent chromatin alterations and additionally prevented Eβ-mediated histone modifications that have been suggested to be independent of enhancer-promoter interaction. Observed enhancer-promoter-insulator interactions, in conjunction with the chromatin structure of the Eβ-regulated domain at the nucleosomal level, provide useful insights regarding the activity of the regulatory elements in addition to supporting the accessibility hypothesis of VDJ recombination. Analysis of H19-ICR in the heterologous context of the developmentally regulated TCRβ locus suggests that different mechanisms proposed for CTCF-dependent insulator action might be manifested simultaneously or selectively depending on the genomic context and the nature of enhancer activity being curtailed.
Collapse
|
12
|
Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J Virol 2014; 88:6847-61. [PMID: 24719411 DOI: 10.1128/jvi.00516-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) can undergo a productive infection in nonneuronal and neuronal cells such that the genes of the virus are transcribed in an ordered cascade. HSV-1 can also establish a more quiescent or latent infection in peripheral neurons, where gene expression is substantially reduced relative to that in productive infection. HSV mutants defective in multiple immediate early (IE) gene functions are highly defective for later gene expression and model some aspects of latency in vivo. We compared the expression of wild-type (wt) virus and IE gene mutants in nonneuronal cells (MRC5) and adult murine trigeminal ganglion (TG) neurons using the Illumina platform for cDNA sequencing (RNA-seq). RNA-seq analysis of wild-type virus revealed that expression of the genome mostly followed the previously established kinetics, validating the method, while highlighting variations in gene expression within individual kinetic classes. The accumulation of immediate early transcripts differed between MRC5 cells and neurons, with a greater abundance in neurons. Analysis of a mutant defective in all five IE genes (d109) showed dysregulated genome-wide low-level transcription that was more highly attenuated in MRC5 cells than in TG neurons. Furthermore, a subset of genes in d109 was more abundantly expressed over time in neurons. While the majority of the viral genome became relatively quiescent, the latency-associated transcript was specifically upregulated. Unexpectedly, other genes within repeat regions of the genome, as well as the unique genes just adjacent the repeat regions, also remained relatively active in neurons. The relative permissiveness of TG neurons to viral gene expression near the joint region is likely significant during the establishment and reactivation of latency. IMPORTANCE During productive infection, the genes of HSV-1 are transcribed in an ordered cascade. HSV can also establish a more quiescent or latent infection in peripheral neurons. HSV mutants defective in multiple immediate early (IE) genes establish a quiescent infection that models aspects of latency in vivo. We simultaneously quantified the expression of all the HSV genes in nonneuronal and neuronal cells by RNA-seq analysis. The results for productive infection shed further light on the nature of genes and promoters of different kinetic classes. In quiescent infection, there was greater transcription across the genome in neurons than in nonneuronal cells. In particular, the transcription of the latency-associated transcript (LAT), IE genes, and genes in the unique regions adjacent to the repeats persisted in neurons. The relative activity of this region of the genome in the absence of viral activators suggests a more dynamic state for quiescent genomes persisting in neurons.
Collapse
|
13
|
Zhang H, Tian XJ, Mukhopadhyay A, Kim KS, Xing J. Statistical mechanics model for the dynamics of collective epigenetic histone modification. PHYSICAL REVIEW LETTERS 2014; 112:068101. [PMID: 24580708 DOI: 10.1103/physrevlett.112.068101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 06/03/2023]
Abstract
Epigenetic histone modifications play an important role in the maintenance of different cell phenotypes. The exact molecular mechanism for inheritance of the modification patterns over cell generations remains elusive. We construct a Potts-type model based on experimentally observed nearest-neighbor enzyme lateral interactions and nucleosome covalent modification state biased enzyme recruitment. The model can lead to effective nonlocal interactions among nucleosomes suggested in previous theoretical studies, and epigenetic memory is robustly inheritable against stochastic cellular processes.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA
| | - Xiao-Jun Tian
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA
| | | | - K S Kim
- Lawrence Livermore National Laboratory and University of California, Livermore, California 94550, USA
| | - Jianhua Xing
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0406, USA and Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0406, USA and Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
14
|
Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 2013; 264:25-38. [PMID: 24342564 DOI: 10.1016/j.neuroscience.2013.12.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 01/15/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been increasingly appreciated as an integral component of gene regulatory networks. Genome-wide features of their origin and expression patterns ascribed a prominent role for lncRNAs to the regulation of protein-coding genes, and also suggest a potential link to many human diseases. Recent studies have begun to unravel the intricate regulatory mechanism of lncRNAs occurring at multiple levels. The brain is one of the richest sources of lncRNAs, many of which have already shown a close relationship with genes or genetic loci implicated in a wide range of neurological disorders. This review describes recently emerging mechanistic principles of lncRNA functions to provide neuroscientists with molecular insights that will help future research on lncRNAs in the brain.
Collapse
|
15
|
Valdes-Quezada C, Arriaga-Canon C, Fonseca-Guzmán Y, Guerrero G, Recillas-Targa F. CTCF demarcates chicken embryonic α-globin gene autonomous silencing and contributes to adult stage-specific gene expression. Epigenetics 2013; 8:827-38. [PMID: 23880533 DOI: 10.4161/epi.25472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic loci composed of more than one gene are frequently subjected to differential gene expression, with the chicken α-globin domain being a clear example. In the present study we aim to understand the globin switching mechanisms responsible for the epigenetic silencing of the embryonic π gene and the transcriptional activation of the adult α(D) and α(A) genes at the genomic domain level. In early stages, we describe a physical contact between the embryonic π gene and the distal 3' enhancer that is lost later during development. We show that such a level of regulation is achieved through the establishment of a DNA hypermethylation sub-domain that includes the embryonic gene and the adjacent genomic sequences. The multifunctional CCCTCC-binding factor (CTCF), which is located upstream of the α(D) gene promoter, delimits this sub-domain and creates a transition between the inactive sub-domain and the active sub-domain, which includes the adult α(D) gene. In avian-transformed erythroblast HD3 cells that are induced to differentiate, we found active DNA demethylation of the adult α(D) promoter, coincident with the incorporation of 5-hydroxymethylcytosine (5hmC) and concomitant with adult gene transcriptional activation. These results suggest that autonomous silencing of the embryonic π gene is needed to facilitate an optimal topological conformation of the domain. This model proposes that CTCF is contributing to a specific chromatin configuration that is necessary for differential α-globin gene expression during development.
Collapse
Affiliation(s)
- Christian Valdes-Quezada
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México D.F., México
| | | | | | | | | |
Collapse
|
16
|
Eun B, Sampley ML, Good AL, Gebert CM, Pfeifer K. Promoter cross-talk via a shared enhancer explains paternally biased expression of Nctc1 at the Igf2/H19/Nctc1 imprinted locus. Nucleic Acids Res 2012; 41:817-26. [PMID: 23221643 PMCID: PMC3553941 DOI: 10.1093/nar/gks1182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Developmentally regulated transcription often depends on physical interactions between distal enhancers and their cognate promoters. Recent genomic analyses suggest that promoter–promoter interactions might play a similarly critical role in organizing the genome and establishing cell-type-specific gene expression. The Igf2/H19 locus has been a valuable model for clarifying the role of long-range interactions between cis-regulatory elements. Imprinted expression of the linked, reciprocally imprinted genes is explained by parent-of-origin-specific chromosomal loop structures between the paternal Igf2 or maternal H19 promoters and their shared tissue-specific enhancer elements. Here, we further analyze these loop structures for their composition and their impact on expression of the linked long non-coding RNA, Nctc1. We show that Nctc1 is co-regulated with Igf2 and H19 and physically interacts with the shared muscle enhancer. In fact, all three co-regulated genes have the potential to interact not only with the shared enhancer but also with each other via their enhancer interactions. Furthermore, developmental and genetic analyses indicate functional significance for these promoter–promoter interactions. Altogether, we present a novel mechanism to explain developmental specific imprinting of Nctc1 and provide new information about enhancer mechanisms and about the role of chromatin domains in establishing gene expression patterns.
Collapse
Affiliation(s)
- Bokkee Eun
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
17
|
Ulyanov SV, Gavrilov AA. Chicken β-globin genes: A model system to study the transcriptional regulation at the level of genome domains. Mol Biol 2012. [DOI: 10.1134/s0026893312040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J Virol 2012; 86:12741-59. [PMID: 22973047 DOI: 10.1128/jvi.01655-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In herpes simplex virus 1 (HSV-1), binding clusters enriched in CTCF during latency have been previously identified. We hypothesized that CTCF binding to CTCF clusters in HSV-1 would be disrupted in a reactivation event. To investigate, CTCF occupation of three CTCF binding clusters in HSV-1 was analyzed following sodium butyrate (NaB)- and explant-induced reactivation in the mouse. Our data show that the CTCF domains positioned within the HSV-1 genome, specifically around the latency-associated transcript (LAT) and ICP0 and ICP4 regions of the genome, lose CTCF occupancy following the application of reactivation stimuli in wild-type virus. We also found that CTCF binding clusters upstream of the ICP0 and ICP4 promoters both function as classical insulators capable of acting as enhancer blockers of the LAT enhancer. Finally, our results suggest that CTCF occupation of domains in HSV-1 may be differentially regulated both during latency and at early times following reactivation by the presence of lytic transcripts and further implicate epigenetic regulation of HSV-1 as a critical component of the latency-reactivation transition.
Collapse
|
19
|
Kim A, Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells 2012; 34:1-5. [PMID: 22610406 PMCID: PMC3887778 DOI: 10.1007/s10059-012-0048-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 01/13/2023] Open
Abstract
Although linearly distant along mouse chromosome 7 and human chromosome 11, the mammalian β-globin gene is located in close proximity to the upstream locus control region enhancer when it is actively transcribed in the nuclear chromatin environment of erythroid cells. This organization is thought to generate a chromatin loop between the LCR, a powerful enhancer, and active globin genes by extruding intervening regions containing inactive genes. Loop formation in the β-globin locus requires erythroid specific transcriptional activators, co-factors and insulator-related factors. Chromatin structural features such as histone modifications and DNase I hypersensitive site formation as well as nuclear localization are all involved in loop formation in the locus through diverse mechanisms. Current models envision the formation of the loop as a necessary step in globin gene transcription activation, but this has not been definitively established and many questions remain about what is necessary to achieve globin gene transcription activation.
Collapse
Affiliation(s)
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892,
USA
| |
Collapse
|
20
|
Krivega I, Dean A. Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev 2012; 22:79-85. [PMID: 22169023 PMCID: PMC3342482 DOI: 10.1016/j.gde.2011.11.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022]
Abstract
In metazoans, enhancers of gene transcription must often exert their effects over tens of kilobases of DNA. Over the past decade it has become clear that to do this, enhancers come into close proximity with target promoters with the looping away of intervening sequences. In a few cases proteins that are involved in the establishment or maintenance of these loops have been revealed but how the proper gene target is selected remains mysterious. Chromatin insulators had been appreciated as elements that play a role in enhancer fidelity through their enhancer blocking or barrier activity. However, recent work suggests more direct participation of insulators in enhancer-gene interactions. The emerging view begins to incorporate transcription activation by distant enhancers with large scale nuclear architecture and subnuclear movement.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20982
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20982
| |
Collapse
|
21
|
An RNA-independent linkage of noncoding transcription to long-range enhancer function. Mol Cell Biol 2012; 32:2020-9. [PMID: 22431516 DOI: 10.1128/mcb.06650-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The detection of noncoding transcription at multiple enhancers within the mammalian genome raises critical questions regarding whether and how this activity contributes to enhancer function. Here, using in vivo analysis of a human growth hormone (hGH) transgene locus, we report that activation of a domain of noncoding transcription adjacent to the long-range hGH-N enhancer, HSI, is established by the enhancer independent of any interactions with its target promoter. We further demonstrate that the appearance of this enhancer-linked noncoding transcription is temporally and spatially concordant with induction of hGH-N in the embryonic pituitary. Finally, we show that the level of transcriptional enhancement of hGH-N by HSI is directly related to the intensity of HSI-dependent noncoding transcription and is fully independent of the structure of the locally transcribed RNA. These data extend our understanding of the relationship of long-range enhancer activity to enhancer-dependent noncoding transcription and establish a model that may be of general relevance to additional mammalian loci.
Collapse
|
22
|
Higher-order chromatin regulation and differential gene expression in the human tumor necrosis factor/lymphotoxin locus in hepatocellular carcinoma cells. Mol Cell Biol 2012; 32:1529-41. [PMID: 22354988 DOI: 10.1128/mcb.06478-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The three-dimensional context of endogenous chromosomal regions may contribute to the regulation of gene clusters by influencing interactions between transcriptional regulatory elements. In this study, we investigated the effects of tumor necrosis factor (TNF) signaling on spatiotemporal enhancer-promoter interactions in the human tumor necrosis factor (TNF)/lymphotoxin (LT) gene locus, mediated by CCCTC-binding factor (CTCF)-dependent chromatin insulators. The cytokine genes LTα, TNF, and LTβ are differentially regulated by NF-κB signaling in inflammatory and oncogenic responses. We identified at least four CTCF-enriched sites with enhancer-blocking activities and a TNF-responsive TE2 enhancer in the TNF/LT locus. One of the CTCF-enriched sites is located between the early-inducible LTα/TNF promoters and the late-inducible LTβ promoter. Depletion of CTCF reduced TNF expression and accelerated LTβ induction. After TNF stimulation, via intrachromosomal dynamics, these insulators mediated interactions between the enhancer and the LTα/TNF promoters, followed by interaction with the LTβ promoter. These results suggest that insulators mediate the spatiotemporal control of enhancer-promoter associations in the TNF/LT gene cluster.
Collapse
|
23
|
The insulator protein CTCF binding sites in the orf73/LANA promoter region of herpesvirus saimiri are involved in conferring episomal stability in latently infected human T cells. J Virol 2011; 86:1862-73. [PMID: 22130528 DOI: 10.1128/jvi.06295-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses establish latency in suitable cells of the host organism after a primary lytic infection. Subgroup C strains of herpesvirus saimiri (HVS), a primate gamma-2 herpesvirus, are able to transform human and other primate T lymphocytes to stable growth in vitro. The viral genomes persist as nonintegrated, circular, and histone-associated episomes in the nuclei of those latently infected T cells. Epigenetic modifications of episomes are essential to restrict the transcription during latency to selected viral genes, such as the viral oncogenes stpC/tip and the orf73/LANA. In this study, we describe a genome-wide chromatin immunoprecipitation-on-chip (ChIP-on-chip) analysis to profile the occupancy of CTCF on the latent HVS genome. We then focused on two distinct, conserved CTCF binding sites (CBS) within the orf73/LANA promoter region. Analysis of recombinant viruses harboring deletions or mutations within the CBS indicated that the lytic replication of such viruses is not substantially influenced by CTCF. However, T cells latently infected with CBS mutants were impaired in their proliferation abilities and showed a significantly reduced episomal maintenance. We detected a reduced transcription of the orf73/LANA gene in the T cells, corresponding to the reduced viral genomes; this might contribute to the loss of HVS episomes, as LANA is central in the maintenance of viral episomes in the dividing T cell populations. These data demonstrate that the episomal stability of HVS genomes in latently infected human T cells is dependent on CTCF.
Collapse
|
24
|
Sun JQ, Hatanaka A, Oki M. Boundaries of transcriptionally silent chromatin in Saccharomyces cerevisiae. Genes Genet Syst 2011; 86:73-81. [PMID: 21670546 DOI: 10.1266/ggs.86.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, heterochromatic gene silencing has been found within HMR and HML silent mating type loci, the telomeres, and the rRNA-encoding DNA. There may be boundary elements that regulate the spread of silencing to protect genes adjacent to silenced domains from this epigenetic repressive effect. Many assays show that specific DNA regulatory elements separate a euchromatic locus from a neighboring heterochromatic domain and thereby function as a boundary. Alternatively, DNA-independent mechanisms such as competition between acetylated and deacetylated histones are also reported to contribute to gene insulation. However, the mechanism by which boundaries are formed is not clear. Here, the characteristics and functions of boundaries at silenced domains in S. cerevisiae are discussed.
Collapse
Affiliation(s)
- Jing-Qian Sun
- Department of Applied Chemistry & Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan
| | | | | |
Collapse
|
25
|
Chromatin boundaries require functional collaboration between the hSET1 and NURF complexes. Blood 2011; 118:1386-94. [PMID: 21653943 DOI: 10.1182/blood-2010-11-319111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chromatin insulators protect erythroid genes from being silenced during erythropoiesis, and the disruption of barrier insulator function in erythroid membrane gene loci results in mild or severe anemia. We showed previously that the USF1/2-bound 5'HS4 insulator mediates chromatin barrier activity in the erythroid-specific chicken β-globin locus. It is currently not known how insulators establish such a barrier. To understand the function of USF1, we purified USF1-associated protein complexes and found that USF1 forms a multiprotein complex with hSET1 and NURF, thus exhibiting histone H3K4 methyltransferase- and ATP-dependent nucleosome remodeling activities, respectively. Both SET1 and NURF are recruited to the 5'HS4 insulator by USF1 to retain the active chromatin structure in erythrocytes. Knock-down of NURF resulted in a rapid loss of barrier activity accompanied by an alteration of nucleosome positioning, increased occupancy of the nucleosome-free linker region at the insulator site, and increased repressive H3K27me3 levels in the vicinity of the HS4 insulator. Furthermore, suppression of SET1 reduced barrier activity, decreased H3K4me2 and acH3K9/K14, and diminished the recruitment of BPTF at several erythroid-specific barrier insulator sites. Therefore, our data reveal a synergistic role of hSET1 and NURF in regulating the USF-bound barrier insulator to prevent erythroid genes from encroachment of heterochromatin.
Collapse
|
26
|
Bonello GB, Pham MH, Begum K, Sigala J, Sataranatarajan K, Mummidi S. An evolutionarily conserved TNF-alpha-responsive enhancer in the far upstream region of human CCL2 locus influences its gene expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:7025-38. [PMID: 21551367 DOI: 10.4049/jimmunol.0900643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Comparative cross-species genomic analysis has served as a powerful tool to discover novel noncoding regulatory regions that influence gene expression in several cytokine loci. In this study, we have identified several evolutionarily conserved regions (ECRs) that are shared between human, rhesus monkey, dog, and horse and that are upstream of the promoter regions that have been previously shown to play a role in regulating CCL2 gene expression. Of these, an ECR that was ~16.5 kb (-16.5 ECR) upstream of its coding sequence contained a highly conserved NF-κB site. The region encompassing the -16.5 ECR conferred TNF-α responsiveness to homologous and heterologous promoters. In vivo footprinting demonstrated that specific nucleotide residues in the -16.5 ECR were protected or became hypersensitive after TNF-α treatment. The footprinted regions were found to bind NF-κB subunits in vitro and in vivo. Mutation/deletion of the conserved NF-κB binding site in the -16.5 ECR led to loss of TNF-α responsiveness. After TNF-α stimulation, the -16.5 ECR showed increased sensitivity to nuclease digestion and loss of histone signatures that are characteristic of a repressive chromatin. Chromosome conformation capture assays indicated that -16.5 ECR physically interacts with the CCL2 proximal promoter after TNF-α stimulation. Taken together, these results suggest that the -16.5 ECR may play a critical role in the regulation of CCL2.
Collapse
Affiliation(s)
- Grégory B Bonello
- Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
27
|
Emery DW. The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 2011; 22:761-74. [PMID: 21247248 DOI: 10.1089/hum.2010.233] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The therapeutic application of recombinant retroviruses and other integrating gene transfer vectors has been limited by problems of vector expression and vector-mediated genotoxicity. These problems arise in large part from the interactions between vector sequences and the genomic environment surrounding sites of integration. Strides have been made in overcoming both of these problems through the modification of deleterious vector sequences, the inclusion of better enhancers and promoters, and the use of alternative virus systems. However, these modifications often add other restrictions on vector design, which in turn can further limit therapeutic applications. As an alternative, several groups have been investigating a class of DNA regulatory elements known as chromatin insulators. These elements provide a means of blocking the interaction between an integrating vector and the target cell genome in a manner that is independent of the vector transgene, regulatory elements, or virus of origin. This review outlines the background, rationale, and evidence for using chromatin insulators to improve the expression and safety of gene transfer vectors. Also reviewed are topological factors that constrain the use of insulators in integrating gene transfer vectors, alternative sources of insulators, and the role of chromatin insulators as one of several components for optimal vector design.
Collapse
Affiliation(s)
- David W Emery
- University of Washington Department of Medicine, Division of Medical Genetics, and Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Tokuda N, Sasai M, Chikenji G. Roles of DNA looping in enhancer-blocking activity. Biophys J 2011; 100:126-34. [PMID: 21190664 PMCID: PMC3010828 DOI: 10.1016/j.bpj.2010.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 02/05/2023] Open
Abstract
Enhancer-promoter interactions in eukaryotic genomes are often controlled by sequence elements that block the actions of enhancers. Although the experimental evidence suggests that those sequence elements contribute to forming loops of chromatin, the molecular mechanism of how such looping affects the enhancer-blocking activity is still largely unknown. In this article, the roles of DNA looping in enhancer blocking are investigated by numerically simulating the DNA conformation of a prototypical model system of gene regulation. The simulated results show that the enhancer function is indeed blocked when the enhancer is looped out so that it is separated from the promoter, which explains experimental observations of gene expression in the model system. The local structural distortion of DNA caused by looping is important for blocking, so the ability of looping to block enhancers can be lost when the loop length is much larger than the persistence length of the chain.
Collapse
Affiliation(s)
- Naoko Tokuda
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya, Japan
- Korea Institute for Advanced Study, Seoul, Korea
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - George Chikenji
- Department of Applied Physics, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Furlan-Magaril M, Rebollar E, Guerrero G, Fernández A, Moltó E, González-Buendía E, Cantero M, Montoliu L, Recillas-Targa F. An insulator embedded in the chicken α-globin locus regulates chromatin domain configuration and differential gene expression. Nucleic Acids Res 2010; 39:89-103. [PMID: 20813760 PMCID: PMC3017597 DOI: 10.1093/nar/gkq740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genome organization into transcriptionally active domains denotes one of the first levels of gene expression regulation. Although the chromatin domain concept is generally accepted, only little is known on how domain organization impacts the regulation of differential gene expression. Insulators might hold answers to address this issue as they delimit and organize chromatin domains. We have previously identified a CTCF-dependent insulator with enhancer-blocking activity embedded in the 5′ non-coding region of the chicken α-globin domain. Here, we demonstrate that this element, called the αEHS-1.4 insulator, protects a transgene against chromosomal position effects in stably transfected cell lines and transgenic mice. We found that this insulator can create a regulated chromatin environment that coincides with the onset of adult α-globin gene expression. Furthermore, such activity is in part dependent on the in vivo regulated occupancy of CTCF at the αEHS-1.4 element. Insulator function is also regulated by CTCF poly(ADP-ribosyl)ation. Our results suggest that the αEHS-1.4 insulator contributes in organizing the chromatin structure of the α-globin gene domain and prevents activation of adult α-globin gene expression at the erythroblast stage via CTCF.
Collapse
Affiliation(s)
- Mayra Furlan-Magaril
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, México D.F., México
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ohlsson R, Bartkuhn M, Renkawitz R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 2010; 119:351-60. [PMID: 20174815 PMCID: PMC2910314 DOI: 10.1007/s00412-010-0262-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/17/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.
Collapse
Affiliation(s)
- Rolf Ohlsson
- Institute for Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
31
|
Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010; 465:182-7. [PMID: 20393465 PMCID: PMC3020079 DOI: 10.1038/nature09033] [Citation(s) in RCA: 1838] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/25/2010] [Indexed: 01/12/2023]
Abstract
We used genome-wide sequencing methods to study stimulus-dependent enhancer function in mouse cortical neurons. We identified approximately 12,000 neuronal activity-regulated enhancers that are bound by the general transcriptional co-activator CBP in an activity-dependent manner. A function of CBP at enhancers may be to recruit RNA polymerase II (RNAPII), as we also observed activity-regulated RNAPII binding to thousands of enhancers. Notably, RNAPII at enhancers transcribes bi-directionally a novel class of enhancer RNAs (eRNAs) within enhancer domains defined by the presence of histone H3 monomethylated at lysine 4. The level of eRNA expression at neuronal enhancers positively correlates with the level of messenger RNA synthesis at nearby genes, suggesting that eRNA synthesis occurs specifically at enhancers that are actively engaged in promoting mRNA synthesis. These findings reveal that a widespread mechanism of enhancer activation involves RNAPII binding and eRNA synthesis.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Hemberg
- Department of Ophthalmology, Children's Hospital Boston, Center for Brain Science and Swartz Center for Theoretical Neuroscience, Harvard University, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jesse M. Gray
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Allen M. Costa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel M. Bear
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jing Wu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - David A. Harmin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mike Laptewicz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kellie Barbara-Haley
- Molecular Genetics Core facility, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | - Scott Kuersten
- Epicentre Biotechnologies, 726 Post Road, Madison, WI 53713, USA
| | | | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition (IMCC), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Paul F. Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Children's Hospital Boston, Center for Brain Science and Swartz Center for Theoretical Neuroscience, Harvard University, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Michael E. Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
32
|
Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites. PLoS One 2010; 5:e10119. [PMID: 20404925 PMCID: PMC2852416 DOI: 10.1371/journal.pone.0010119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/18/2010] [Indexed: 02/07/2023] Open
Abstract
The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.
Collapse
|
33
|
Gombert WM, Krumm A. Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression. PLoS One 2009; 4:e6109. [PMID: 19568426 PMCID: PMC2699473 DOI: 10.1371/journal.pone.0006109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 06/01/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insulators and domain boundaries both shield genes from adjacent enhancers and inhibit intrusion of heterochromatin into transgenes. Previous studies examined the functional mechanism of the MYC insulator element MINE and its CTCF binding sites in the context of transgenes that were randomly inserted into the genome by transfection. However, the contribution of CTCF binding sites to both gene regulation and maintenance of chromatin has not been tested at the endogenous MYC gene. METHODOLOGY/PRINCIPAL FINDINGS To determine the impact of CTCF binding on MYC expression, a series of mutant human chromosomal alleles was prepared in homologous recombination-efficient DT40 cells and individually transferred by microcell fusion into murine cells. Functional tests reported here reveal that deletion of CTCF binding elements within the MINE does not impact the capacity of this locus to correctly organize an 'accessible' open chromatin domain, suggesting that these sites are not essential for the formation of a competent, transcriptionally active locus. Moreover, deletion of the CTCF site at the MYC P2 promoter reduces transcription but does not affect promoter acetylation or serum-inducible transcription. Importantly, removal of either CTCF site leads to DNA methylation of flanking sequences, thereby contributing to progressive loss of transcriptional activity. CONCLUSIONS These findings collectively demonstrate that CTCF-binding at the human MYC locus does not repress transcriptional activity but is required for protection from DNA methylation.
Collapse
Affiliation(s)
- Wendy M. Gombert
- Black Lowe & Graham PLLC, Seattle, Washington, United States of America
| | - Anton Krumm
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Palstra RJTS. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:297-309. [PMID: 19535505 DOI: 10.1093/bfgp/elp016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcriptional output of genes in higher eukaryotes is frequently modulated by cis-regulatory DNA elements like enhancers. On the linear chromatin template these elements can be located hundreds of kilobases away from their target gene and for a long time it was a mystery how these elements communicate. For example, in the beta-globin locus the main regulatory element, the Locus Control Region (LCR), is located up to 40-60 kb away from the beta-globin genes. Recently it was demonstrated that the LCR resides in close proximity to the active beta-globin genes while the intervening inactive chromatin loops out. Thus the chromatin fibre of the beta-globin locus adopts an erythroid-specific spatial organization referred to as the Active Chromatin Hub (ACH). This observation for the first time demonstrated a role for chromatin folding in transcriptional regulation. Since this first observation in the beta-globin locus, similar chromatin interactions between regulatory elements in several other gene loci have been observed. Chromatin loops also appear to be formed between promoters and 3'UTRs of genes and even trans-interactions between loci on different chromosomes have been reported. Although the occurrence of long-range chromatin contacts between regulatory elements is now firmly established it is still not clear how these long-range contacts are set up and how the transcriptional output of genes is modified by the proximity of cis-regulatory DNA elements. In this review I will discuss the relevance of interactions between cis-regulatory DNA elements in relation to transcription while using the beta-globin locus as a guideline.
Collapse
|
35
|
Mishiro T, Ishihara K, Hino S, Tsutsumi S, Aburatani H, Shirahige K, Kinoshita Y, Nakao M. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J 2009; 28:1234-45. [PMID: 19322193 PMCID: PMC2683055 DOI: 10.1038/emboj.2009.81] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/04/2009] [Indexed: 12/31/2022] Open
Abstract
Long-range regulatory elements and higher-order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin-mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF-enriched sites and three cohesin protein RAD21-enriched sites (two overlap with the CTCF sites), resulting in the formation of two transcribed chromatin loops by interactions between insulators. The C3 enhancer and APOC3/A4/A5 promoters reside in the same loop, where the APOC3/A4 promoters are pointed towards the C3 enhancer, whereas the APOA1 promoter is present in the different loop. The depletion of either CTCF or RAD21 disrupts the chromatin loop structure, together with significant changes in the APO expression and the localization of transcription factor hepatocyte nuclear factor (HNF)-4alpha and transcriptionally active form of RNA polymerase II at the APO promoters. Thus, CTCF/cohesin-mediated insulators maintain the chromatin loop formation and the localization of transcriptional apparatus at the promoters, suggesting an essential role of chromatin insulation in controlling the expression of clustered genes.
Collapse
Affiliation(s)
- Tsuyoshi Mishiro
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Japan
| | - Ko Ishihara
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama City, Kanagawa, Japan
| | - Yoshikazu Kinoshita
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Japan
| | - Mitsuyoshi Nakao
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
36
|
Abstract
CTCF is a ubiquitous transcription factor that is involved in numerous, seemingly unrelated functions. These functions include, but are not limited to, positive or negative regulation of transcription, enhancer-blocking activities at developmentally regulated gene clusters and at imprinted loci, and X-chromosome inactivation. Here, we review recent data acquired with state-of-the-art technologies that illuminate possible mechanisms behind the diversity of CTCF functions. CTCF interacts with numerous protein partners, including cohesin, nucleophosmin, PARP1, Yy1 and RNA polymerase II. We propose that CTCF interacts with one or two different partners according to the biological context, applying the Roman principle of governance, 'divide and rule' (divide et impera).
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
37
|
Wendt KS, Peters JM. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res 2009; 17:201-14. [PMID: 19308701 DOI: 10.1007/s10577-008-9017-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/30/2022]
Abstract
Cohesin is a DNA-binding protein complex that is essential for sister chromatid cohesion and facilitates the repair of damaged DNA. In addition, cohesin has important roles in regulating gene expression, but the molecular mechanisms of this function are poorly understood. Recent experiments have revealed that cohesin binds to the same sites in mammalian genomes as the zinc finger transcription factor CTCF. At a few loci CTCF has been shown to function as an enhancer-blocking transcriptional insulator, and recent observations indicate that this function depends on cohesin. Here we review what is known about the roles of cohesin and CTCF in regulating gene expression in mammalian cells, and we discuss how cohesin might mediate the insulator function of CTCF.
Collapse
Affiliation(s)
- Kerstin S Wendt
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
38
|
Kadauke S, Blobel GA. Chromatin loops in gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:17-25. [PMID: 18675948 PMCID: PMC2638769 DOI: 10.1016/j.bbagrm.2008.07.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/02/2008] [Accepted: 07/06/2008] [Indexed: 12/26/2022]
Abstract
The control of gene expression involves regulatory elements that can be very far from the genes they control. Several recent technological advances have allowed the direct detection of chromatin loops that juxtapose distant genomic sites in the nucleus. Here we review recent studies from various model organisms that have provided new insights into the functions of chromatin loops and the mechanisms that form them. We discuss the widespread impact of chromatin loops on gene activation, repression, genomic imprinting and the function of enhancers and insulators.
Collapse
Affiliation(s)
- Stephan Kadauke
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
39
|
Kiefer CM, Hou C, Little J, Dean A. Epigenetics of beta-globin gene regulation. Mutat Res 2008; 647:68-76. [PMID: 18760288 PMCID: PMC2617773 DOI: 10.1016/j.mrfmmm.2008.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 01/22/2023]
Abstract
It is widely recognized that the next great challenge in the post-genomic period is to understand how the genome establishes the cell and tissue specific patterns of gene expression that underlie development. The beta-globin genes are among the most extensively studied tissue specific and developmentally regulated genes. The onset of erythropoiesis in precursor cells and the progressive expression of different members of the beta-globin family during development are accompanied by dramatic epigenetic changes in the locus. In this review, we will consider the relationship between histone and DNA modifications and the transcriptional activity of the beta-globin genes, the dynamic changes in epigenetic modifications observed during erythroid development, and the potential these changes hold as new targets for therapy in human disease.
Collapse
Affiliation(s)
- Christine M. Kiefer
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892
| | - Chunhui Hou
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892
| | - Jane Little
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892
| |
Collapse
|
40
|
Tchurikov NA, Kretova OV, Moiseeva ED, Sosin DV. Evidence for RNA synthesis in the intergenic region between enhancer and promoter and its inhibition by insulators in Drosophila melanogaster. Nucleic Acids Res 2008; 37:111-22. [PMID: 19022852 PMCID: PMC2615631 DOI: 10.1093/nar/gkn926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Uncovering the nature of communication between enhancers, promoters and insulators is important for understanding the fundamental mechanisms that ensure appropriate gene expression levels. Here we describe an approach employing transient expression of genetic luciferase reporter gene constructs with quantitative RT–PCR analysis of transcription between an enhancer and Hsp70 promoter. We tested genetic constructs containing gypsy and/or Fab7 insulators in different orientations, and an enhancer from copia LTR-retroelement [(enh)copia]. A single gypsy or Fab7 insulator inserted between the promoter and enhancer in any polarity reduced enhancer action. A pair of insulators flanking the gene in any orientation exhibited increased insulation activity. We detected promoter-independent synthesis of non-coding RNA in the intergenic region of the constructs, which was induced by the enhancer in both directions and repressed by a single insulator or a pair of insulators. These results highlight the involvement of RNA-tracking mechanisms in the communications between enhancers and promoters, which are inhibited by insulators.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Genome Organization, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
41
|
Abstract
Enhancer-blocking insulators are DNA elements that disrupt the communication between a regulatory sequence, such as an enhancer or a silencer, and a promoter. Insulators participate in both transcriptional regulation and global nuclear organization, two features of chromatin that are thought to be maintained from one generation to the next through epigenetic mechanisms. Furthermore, there are many regulatory mechanisms in place that enhance or hinder insulator activity. These modes of regulation could be used to establish cell-type-specific insulator activity that is epigenetically inherited along a cell and/or organismal lineage. This review will discuss the evidence for epigenetic inheritance and regulation of insulator function.
Collapse
Affiliation(s)
- Ashley M. Bushey
- Department of Biology, Emory University, Atlanta, GA 30322
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth R. Dorman
- Department of Biology, Emory University, Atlanta, GA 30322
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
42
|
Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, Fedoriw A, Lobanenkov V, Latham KE, Schultz RM, Bartolomei MS. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 2008; 135:2729-38. [PMID: 18614575 PMCID: PMC2596970 DOI: 10.1242/dev.024539] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CTCF is a multifunctional nuclear factor involved in epigenetic regulation. Despite recent advances that include the systematic discovery of CTCF-binding sites throughout the mammalian genome, the in vivo roles of CTCF in adult tissues and during embryonic development are largely unknown. Using transgenic RNAi, we depleted maternal stores of CTCF from growing mouse oocytes, and identified hundreds of misregulated genes. Moreover, our analysis suggests that CTCF predominantly activates or derepresses transcription in oocytes. CTCF depletion causes meiotic defects in the egg, and mitotic defects in the embryo that are accompanied by defects in zygotic gene expression, and culminate in apoptosis. Maternal pronuclear transfer and CTCF mRNA microinjection experiments indicate that CTCF is a mammalian maternal effect gene, and that persistent transcriptional defects rather than persistent chromosomal defects perturb early embryonic development. This is the first study detailing a global and essential role for CTCF in mouse oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Le-Ben Wan
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Enhancer blocking activity of the insulator at H19-ICR is independent of chromatin barrier establishment. Mol Cell Biol 2008; 28:3767-75. [PMID: 18378700 DOI: 10.1128/mcb.00091-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptional insulators are cis regulatory elements that organize chromatin into independently regulated domains. At the imprinted murine Igf2/H19 locus, the H19-ICR insulator prevents the activation of the Igf2 promoter on the maternal allele by enhancers that activate H19 on the same chromosome. Given the well-demonstrated role of H19-ICR as an enhancer blocker, we investigated its ability to define a chromatin barrier, as the two activities are coincident on several insulators and may act in concert to define a functional chromatin boundary between adjacent genes with distinct transcriptional profiles. Allele-specific association of posttranslationally modified histones, reflecting the presence of active or inactive chromatin, was analyzed in the region encompassing H19-ICR using chromatin immunoprecipitation. The existence of differential histone modifications upstream and downstream of H19-ICR specifically on the maternal chromosome was observed, which is suggestive of a chromatin barrier formation. However, H19-ICR deletion analysis indicated that distinct chromatin states exist despite the absence of an intervening "barrier." Also, the enhancers can activate the Igf2 promoter despite some parts of the intervening chromatin being in the silent state. Hence, H19-ICR insulator activity is not dependent on preventing the enhancer-mediated alteration of the histone modifications in the region between the Igf2 promoter and the cognate enhancers.
Collapse
|
44
|
Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 2008; 117:89-102. [PMID: 17965872 PMCID: PMC2258211 DOI: 10.1007/s00412-007-0129-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 01/13/2023]
Abstract
The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Yuri B. Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao-Yong Li
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tatyana G. Kahn
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Stewart MacArthur
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Justin C. Fay
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Michael B. Eisen
- Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Mark D. Biggin
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
45
|
Palstra R, de Laat W, Grosveld F. Chapter 4 β‐Globin Regulation and Long‐Range Interactions. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:107-42. [DOI: 10.1016/s0065-2660(07)00004-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
GATA-1 modulates the chromatin structure and activity of the chicken alpha-globin 3' enhancer. Mol Cell Biol 2007; 28:575-86. [PMID: 17984219 DOI: 10.1128/mcb.00943-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-distance regulatory elements and local chromatin structure are critical for proper regulation of gene expression. Here we characterize the chromatin conformation of the chicken alpha-globin silencer-enhancer elements located 3' of the domain. We found a characteristic and erythrocyte-specific structure between the previously defined silencer and the enhancer, defined by two nuclease hypersensitive sites, which appear when the enhancer is active during erythroid differentiation. Fine mapping of these sites demonstrates the absence of a positioned nucleosome and the association of GATA-1. Functional analyses of episomal vectors, as well as stably integrated constructs, revealed that GATA-1 plays a major role in defining both the chromatin structure and the enhancer activity. We detected a progressive enrichment of histone acetylation on critical enhancer nuclear factor binding sites, in correlation with the formation of an apparent nucleosome-free region. On the basis of these results, we propose that the local chromatin structure of the chicken alpha-globin enhancer plays a central role in its capacity to differentially regulate alpha-globin gene expression during erythroid differentiation and development.
Collapse
|
47
|
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Wallace JA, Felsenfeld G. We gather together: insulators and genome organization. Curr Opin Genet Dev 2007; 17:400-7. [PMID: 17913488 PMCID: PMC2215060 DOI: 10.1016/j.gde.2007.08.005] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/20/2007] [Accepted: 08/17/2007] [Indexed: 12/21/2022]
Abstract
When placed between an enhancer and promoter, certain DNA sequence elements inhibit enhancer-stimulated gene expression. The best characterized of these enhancer-blocking insulators, gypsy in Drosophila and the CTCF-binding element in vertebrates and flies, stabilize contacts between distant genomic regulatory sites leading to the formation of loop domains. Current results show that CTCF mediates long-range contacts in the mouse beta-globin locus and at the Igf2/H19-imprinted locus. Recently described active chromatin hubs and transcription factories also involve long-range interactions; it is likely that CTCF interferes with their formation when acting as an insulator. The properties of CTCF, and its newly described genomic distribution, suggest that it may play an important role in large-scale nuclear architecture, perhaps mediated by the co-factors with which it interacts in vivo.
Collapse
Affiliation(s)
- Julie A Wallace
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-0540, United States
| | | |
Collapse
|
49
|
Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol Cell Biol 2007; 27:7991-8002. [PMID: 17846119 PMCID: PMC2169148 DOI: 10.1128/mcb.01326-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulator element at the 5' end of the chicken beta-globin locus acts as a barrier, protecting transgenes against silencing effects of adjacent heterochromatin. We showed earlier that the transcription factor USF1 binds within the insulator and that this site is important for generating in adjacent nucleosomes histone modifications associated with active chromatin and, by inference, with barrier function. To understand the mechanism of USF1 action, we have characterized USF1-containing complexes. USF1 interacts directly with the histone H4R3-specific methyltransferase PRMT1. USF1, PRMT1, and the histone acetyltransferases (HATs) PCAF and SRC-1 form a complex with both H4R3 histone methyltransferase and HAT activities. Small interfering RNA downregulation of USF1 results in localized loss of H4R3 methylation, and other histone modifications associated with euchromatin, at the insulator. A dominant negative peptide that interferes with USF1 binding to DNA causes silencing of an insulated reporter construct, indicating abolition of barrier function. These results show that USF1 plays a direct role in maintaining the barrier, supporting a model in which the insulator works as a barrier by maintaining a local environment of active chromatin.
Collapse
Affiliation(s)
- Suming Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540, USA.
| | | | | | | | | |
Collapse
|
50
|
Kim A, Song SH, Brand M, Dean A. Nucleosome and transcription activator antagonism at human beta-globin locus control region DNase I hypersensitive sites. Nucleic Acids Res 2007; 35:5831-8. [PMID: 17720709 PMCID: PMC2034456 DOI: 10.1093/nar/gkm620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Locus control regions are regulatory elements that activate distant genes and typically consist of several DNase I hypersensitive sites coincident with clusters of transcription activator binding sites. To what extent nucleosomes and activators occupy these sites together or exclusively has not been extensively studied in vivo. We analyzed the chromatin structure of human β-globin locus control region hypersensitive sites in erythroid cells expressing embryonic and fetal globin genes. Nucleosomes were variably depleted at hypersensitive sites HS1-HS4 and at HS5 which flanks the 5′ of the locus. In lieu of nucleosomes, activators were differentially associated with these sites. Erythroid–specific GATA-1 resided at HS1, HS2 and HS4 but the NF-E2 hetero-dimer was limited to HS2 where nucleosomes were most severely depleted. Histones H3 and H4 were hyperacetylated and H3 was di-methylated at K4 across the LCR, however, the H3 K4 MLL methyltransferase component Ash2L and histone acetyltransferases CBP and p300 occupied essentially only HS2 and the NF-E2 motif in HS2 was required for Ash2L recruitment. Our results indicate that each hypersensitive site in the human β-globin LCR has distinct structural features and suggest that HS2 plays a pivotal role in LCR organization at embryonic and fetal stages of globin gene expression.
Collapse
Affiliation(s)
- AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea.
| | | | | | | |
Collapse
|