1
|
Routsias JG, Marinou D, Mavrouli M, Tsakris A, Pitiriga VC. Major Vault Protein/Lung Resistance-Related Protein: A Novel Biomarker for Inflammation and Acute Infections. Microorganisms 2024; 12:1762. [PMID: 39338437 PMCID: PMC11434279 DOI: 10.3390/microorganisms12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Vault particles are large cytoplasmic ribonucleoprotein particles that participate in inflammation. The aim of this study was to assess the diagnostic and prognostic value of major vault protein (MVP) in patients with inflammation, in order to determine whether MVP could be used as a biomarker for infection or inflammation. We also aimed to compare the diagnostic impact of MVP compared to other conventional measurements, such as CRP or white blood cell (WBC) counts. METHODS CRP and MVP levels were measured in 111 sera samples from 85 patients with inflammation admitted to a tertiary-care hospital and 26 healthy individuals during an 18-month period (2019-2020), using nephelometry and a custom MVP sandwich ELISA assay, respectively. In addition, WBC counts were measured using a commercial assay. RESULTS MVP levels were found to be elevated in patients with inflammation compared to healthy individuals (p < 0.0001). Moreover, MVP levels were higher in patients with inflammation due to an infectious etiology compared to those with non-infectious etiology (p = 0.0006). MVP levels significantly decreased during the first four days of infection in response to antibiotic treatment, while CRP levels showed a less-sensitive decline. An ROC curve analysis demonstrated that MVP and CRP have similarly high diagnostic accuracy, with AUCs of 0.955 and 0.995, respectively, followed by WBCs with an AUC of 0.805. CONCLUSIONS The ROC curves demonstrated that MVP has the potential to serve as a diagnostic biomarker for inflammation and infection. Additionally, MVP levels may reflect the efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- John G. Routsias
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
2
|
González-Álamos M, Guerra P, Verdaguer N. Structure, Dynamics and Functional Implications of the Eukaryotic Vault Complex. Subcell Biochem 2024; 104:531-548. [PMID: 38963499 DOI: 10.1007/978-3-031-58843-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Vault ribonucleoprotein particles are naturally designed nanocages, widely found in the eukaryotic kingdom. Vaults consist of 78 copies of the major vault protein (MVP) that are organized in 2 symmetrical cup-shaped halves, of an approximate size of 70x40x40 nm, leaving a huge internal cavity which accommodates the vault poly(ADP-ribose) polymerase (vPARP), the telomerase-associated protein-1 (TEP1) and some small untranslated RNAs. Diverse hypotheses have been developed on possible functions of vaults, based on their unique capsular structure, their rapid movements and the distinct subcellular localization of the particles, implicating transport of cargo, but they are all pending confirmation. Vault particles also possess many attributes that can be exploited in nanobiotechnology, particularly in the creation of vehicles for the delivery of multiple molecular cargoes. Here we review what is known about the structure and dynamics of the vault complex and discuss a possible mechanism for the vault opening process. The recent findings in the characterization of the vaults in cells and in its natural microenvironment will be also discussed.
Collapse
Affiliation(s)
- María González-Álamos
- Structural and Molecular Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Pablo Guerra
- Cryo-Electron Microscopy Platform - IBMB CSIC, Joint Electron Microscopy Center at ALBA (JEMCA), Barcelona, Spain
| | - Núria Verdaguer
- Structural and Molecular Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
3
|
Yao S, Yuan Y, Zhang J, Yu Y, Luo GH. Gene polymorphisms associated with sudden decreases in heart rate during extensive peritoneal lavage with distilled water after gastrectomy. World J Gastrointest Surg 2023; 15:2154-2170. [PMID: 37969699 PMCID: PMC10642470 DOI: 10.4240/wjgs.v15.i10.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Our previous study found that the telomerase-associated protein 1 (TEP1, rs938886 and rs1713449) and homo sapiens RecQ like helicase 5 (RECQL5, rs820196) single nucleotide polymorphisms (SNPs) were associated with changes in heart rate (HR) ≥ 30% during peritoneal lavage with distilled water after gastrectomy. This study established a single tube method for detecting these three SNPs using two-dimensional (2D) polymerase chain reaction (PCR), and investigated whether SNP-SNP and SNP-environment interactions increase the risk of high HR variability (HRV). AIM To investigate whether genotypes, genetic patterns, SNP-SNP and SNP-environment interactions were associated with HRV. METHODS 2D PCR was used to establish a single-tube method to detect TEP1 rs938886 and rs1713449 and RECQL5 rs820196, and the results were compared with those of sanger sequencing. After adjusting for confounders such as age, sex, smoking, hypertension, and thyroid dysfunction, a nonconditional logistic regression model was used to assess the associations between the genotypes and the genetic patterns (codominant, dominant, overdominant, recessive, and additive) of the three SNPs and a risk ≥ 15% or ≥ 30% of a sudden drop in HR during postoperative peritoneal lavage in patients with gastric cancer. Gene-gene and gene-environment interactions were analyzed using generalized multifactor dimensionality reduction. RESULTS The coincidence rate between the 2D PCR and sequencing was 100%. When the HRV cutoff value was 15%, the patients with the RECQL5 (rs820196) TC genotype had a higher risk of high HRV than those who had the TT genotype (odds ratio = 1.97; 95%CI: 1.05-3.70; P = 0.045). Under the codominant and overdominant models, the TC genotype of RECQL5 (rs820196) was associated with a higher risk of HR decrease relative to the TT and TT + CC genotypes (P = 0.031 and 0.016, respectively). When the HRV cutoff value was 30%, patients carrying the GC-TC genotypes of rs938886 and rs820196 showed a higher HRV risk when compared with the GG-TT genotype carriers (P = 0.01). In the three-factor model of rs938886, rs820196, and rs1713449, patients carrying the GC-TC-CT genotype had a higher risk of HRV compared with the wild-type GG-TT-CC carriers (P = 0.01). For rs820196, nonsmokers with the TC genotype had a higher HRV risk compared with nonsmokers carrying the TT genotype (P = 0.04). When the HRV cutoff value was 15%, patients carrying the TT-TT and the TC-CT genotypes of rs820196 and rs1713449 showed a higher HRV risk when compared with TT-CC genotype carriers (P = 0.04 and 0.01, respectively). Patients carrying the GC-CT-TC genotypes of rs938886, rs1713449, and rs820196 showed a higher HRV risk compared with GG-CC-TT genotype carriers (P = 0.02). When the HRV cutoff value was 15%, the best-fitting models for the interactions between the SNPs and the environment were the rs820196-smoking (P = 0.022) and rs820196-hypertension (P = 0.043) models. Consistent with the results of the previous grouping, for rs820196, the TC genotype nonsmokers had a higher HRV risk compared with nonsmokers carrying the TT genotype (P = 0.01). CONCLUSION The polymorphism of the RECQL5 and TEP1 genes were associated with HRV during peritoneal lavage with distilled water after gastrectomy.
Collapse
Affiliation(s)
- Shuang Yao
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Yan Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Jun Zhang
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Yang Yu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Guang-Hua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
4
|
Büscher M, Horos R, Huppertz I, Haubrich K, Dobrev N, Baudin F, Hennig J, Hentze MW. Vault RNA1-1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. RNA (NEW YORK, N.Y.) 2022; 28:742-755. [PMID: 35210358 PMCID: PMC9014876 DOI: 10.1261/rna.079129.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 05/29/2023]
Abstract
Cellular processes can be regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational mechanisms. We have recently shown that the small, noncoding vault RNA1-1 negatively riboregulates p62 oligomerization in selective autophagy through direct interaction with the autophagic receptor. This function is highly specific for this Pol III transcript, but the determinants of this specificity and a mechanistic explanation of how vault RNA1-1 inhibits p62 oligomerization are lacking. Here, we combine biochemical and functional experiments to answer these questions. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and we identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within vault RNA1-1 that is required for the specific interaction with p62. Overall, our data provide molecular insight into how a small RNA riboregulates protein-protein interactions critical to the activation of specific autophagy.
Collapse
Affiliation(s)
- Magdalena Büscher
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Rastislav Horos
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ina Huppertz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kevin Haubrich
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nikolay Dobrev
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Florence Baudin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Janosch Hennig
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | |
Collapse
|
5
|
Duan X, Wang H, Yang Y, Wang P, Zhang H, Liu B, Wei W, Yao W, Zhou X, Zhao J, Wang W. Genetic variants in telomerase-associated protein 1 are associated with telomere damage in PAH-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112558. [PMID: 34333383 DOI: 10.1016/j.ecoenv.2021.112558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Telomeres are functional complexes at the ends of linear chromosomes, and telomerase aids in their maintenance and replication. Additionally, accumulating evidence suggests that telomerase-associated protein 1 (TEP1) is a component of the telomerase ribonucleoprotein complex and is responsible for catalyzing the addition of new synthetic telomere sequences to chromosome ends. In our previous study, we found that genetic variants of the TERT gene participated in the regulation of telomere length. Exposure to particulate matter, environmental pollutants, oxidative stress, and pesticides is associated with shortening of telomere length. However, it is unknown whether genetic variants in the TEP1 gene may affect telomere length (TL) in polycyclic aromatic hydrocarbon (PAH)-exposed workers. Therefore, we measured the peripheral leukocyte TL and genotyped the polymorphism loci in the TEP1 gene among 544 PAH-exposed workers and 238 healthy controls. Covariance analysis showed that the individuals carrying TEP1 rs1760903 CC and TEP1 rs1760904 TT had longer TL in the control group (P < 0.05). In the generalized linear model, we found that rs1760903 CC was a protective factor against TL shortening, and PAH exposure could promote telomere shortening (P < 0.05). Thus, this study reinforces the roles of environmental factors and genetic variations in telomere damage, and provides a theoretical foundation for the early detection of susceptible populations and the establishment of occupational standards.
Collapse
Affiliation(s)
- Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongmei Wang
- Department of nursing, Zhengzhou Health Vocational College, Zhengzhou 450100, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
7
|
Abstract
RNA-binding proteins typically change the fate of RNA, such as stability, translation or processing. Conversely, we recently uncovered that the small non-coding vault RNA 1-1 (vtRNA1-1) directly binds to the autophagic receptor p62/SQSTM1 and changes the protein's function. We refer to this process as 'riboregulation'. Here, we discuss this newly uncovered vault RNA function against the background of three decades of vault RNA research. We highlight the vtRNA1-1-p62 interaction as an example of riboregulation of a key cellular process.
Collapse
Affiliation(s)
- Magdalena Büscher
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Rastislav Horos
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
8
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
9
|
Yang Q, Luo X, Bai R, Zhao F, Dai S, Li F, Zhu J, Liu J, Niu W, Sun Y. Shorter leukocyte telomere length is associated with risk of nonobstructive azoospermia. Fertil Steril 2019; 110:648-654.e1. [PMID: 30196961 DOI: 10.1016/j.fertnstert.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To determine the association between leukocyte telomere length and the risk of nonobstructive azoospermia (NOA). DESIGN The mean leukocyte telomere length (LTL) among men with NOA, obstructive azoospermia (OA), and normospermic subjects was determined by quantitative polymerase chain reaction (PCR). We used logistic regression to investigate the association between LTL and the risk of NOA after adjustment for age and body mass index (BMI). Partial correlation analysis was also used to evaluate the relationship of clinical parameters with the mean LTL among men with OA and NOA. SETTING Reproductive medicine center. PATIENTS(S) A total of 866 men, including 270 normospermic controls, 247 OA and 349 NOA patients. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Leukocyte telomere length. RESULT(S) The mean relative LTL of men with NOA was significantly shorter than that of those with OA and in normospermic controls (odds ratio [OR] 0.81, 95% confidence interval [CI] 0.64-0.98 vs. OR 0.92, 95% CI 0.70-1.24 vs. OR 0.99, 95% CI 0.83-1.22), respectively). Subjects with shorter telomeres (lowest tertile) had a significantly higher risk of NOA than those with longer telomeres (highest tertile). Interestingly, we also found that a low relative LTL was associated with poor efficiency of spermatogenesis using the Johnsen score after testis biopsy and histopathology in azoospermic patients, after adjusting for patient age and BMI. CONCLUSION(S) This is the first report that short LTL is associated with NOA, shedding light on an important biological pathway involved in the etiology of this form of male factor infertility.
Collapse
Affiliation(s)
- Qingling Yang
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Xiaoyan Luo
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Rui Bai
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Feifei Zhao
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Shanjun Dai
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Fangyuan Li
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Jing Zhu
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Jinhao Liu
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Wenbin Niu
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China
| | - Yingpu Sun
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, and Henan Province Key Laboratory for Reproduction and Genetics, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
10
|
Chen J, OuYang H, An X, Liu S. Vault RNAs partially induces drug resistance of human tumor cells MCF-7 by binding to the RNA/DNA-binding protein PSF and inducing oncogene GAGE6. PLoS One 2018; 13:e0191325. [PMID: 29346433 PMCID: PMC5773200 DOI: 10.1371/journal.pone.0191325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vault is the largest nonicosahedral cytosolic nucleoprotein particle, which is widely involved in induction of chemoresistance and lead to failure in long-term chemotherapy. Vault contains three different major vault proteins (MVPs) and four vault RNAs paralogues (vtRNAs, vtRNA1-1, vtRNA1-2, vtRNA1-3 and vtRNA2-1). Disruption of the MVPs do not induce hypersensitivity while expression of vtRNAs contributes to cells' drug resistance, indicates that vtRNAs, but not MVPs play an important role in causing drug resistance. Polypyrimidine tract binding protein associated splicing factor (PSF) contributes to cell sensitivity to chemotherapy by its transcriptional activity, promotes us to figure out its potential association with vtRNAs. METHODS We investigate the interaction between PSF and vtRNAs by electrophoretic mobility shift assays (EMSA) and RNA-immunoprecipitation (IP), and showed the binding between PSF and vtRNAs. Chromatin Immunoprecipitation (ChIP) was performed to detect the effects of vtRNAs on the interaction of PSF with GAGE6 promoter. The role of vtRNAs on chemoresistance in MCF-7 was detected by CCK-8 and EdU staining. The independent role of vtRNAs with MVP is detected by MVP or vtRNAs knockdown. RESULTS The complex with vtRNA1-1 releases PSF, allowing transcription of GAGE6 to proceed. Then we showed that induction of GAGE6 caused drug resistance by promoting cell proliferation and colony formation in soft agar. Ectopic expression of shRNA targets to vtRNA1-1 further confirmed the role of vtRNA1-1 in regulating PSF transcriptional activity independent with the expression of MVP. By vtRNA1-1 or MVP knockdown, it is revealed that vtRNA1-1 caused chemoresistance independent of MVP. Furthermore, knockdown of GAGE6 does not cause drug resistance, indicates the GAGE6 is directly involved in cell proliferation, but not the drug resistance. CONCLUSION These results suggest that vtRNAs regulates cell proliferation, drug resistance, and possibly other physiological processes of humans, by complex formation with PSF.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of E.N.T., West China Hospital, Sichuan University, Chengdu, China
| | - Hui OuYang
- Department of E.N.T., the First People’s Hospital of Neijiang, Neijiang, China
| | - Xuemei An
- Department of neurology, Chengdu University of TCM, Chengdu, China
| | - Shixi Liu
- Department of E.N.T., West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Yin H, Nie L, Zhao F, Zhou H, Li H, Dong X, Zhang H, Wang Y, Shi Q, Li J. De novo assembly and characterization of the Chinese three-keeled pond turtle (Mauremys reevesii) transcriptome: presence of longevity-related genes. PeerJ 2016; 4:e2062. [PMID: 27257545 PMCID: PMC4888314 DOI: 10.7717/peerj.2062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/01/2016] [Indexed: 12/20/2022] Open
Abstract
Mauremys reevesii (Geoemydidae) is one of the most common and widespread semi-aquatic turtles in East Asia. The unusually long lifespan of some individuals makes this turtle species a potentially useful model organism for studying the molecular basis of longevity. In this study, pooled total RNA extracted from liver, spleen and skeletal-muscle of three adult individuals were sequenced using Illumina Hiseq 2500 platform. A set of telomere-related genes were found in the transcriptome, including tert, tep1, and six shelterin complex proteins coding genes (trf1, trf2, tpp1, pot1, tin2 and rap1). These genes products protect chromosome ends from deterioration and therefore significantly contribute to turtle longevity. The transcriptome data generated in this study provides a comprehensive reference for future molecular studies in the turtle.
Collapse
Affiliation(s)
- Huazong Yin
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Liuwang Nie
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Feifei Zhao
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Huaxing Zhou
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Haifeng Li
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Xianmei Dong
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Huanhuan Zhang
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Yuqin Wang
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Qiong Shi
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| | - Jun Li
- College of Life Science, Anhui Normal University, Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, Anhui, China
| |
Collapse
|
12
|
Yan L, Wu S, Zhang S, Ji G, Gu A. Genetic variants in telomerase reverse transcriptase (TERT) and telomerase-associated protein 1 (TEP1) and the risk of male infertility. Gene 2014; 534:139-43. [DOI: 10.1016/j.gene.2013.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/09/2013] [Accepted: 11/01/2013] [Indexed: 11/27/2022]
|
13
|
Daly TK, Sutherland-Smith AJ, Penny D. In silico resurrection of the major vault protein suggests it is ancestral in modern eukaryotes. Genome Biol Evol 2013; 5:1567-83. [PMID: 23887922 PMCID: PMC3762200 DOI: 10.1093/gbe/evt113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vaults are very large oligomeric ribonucleoproteins conserved among a variety of species. The rat vault 3D structure shows an ovoid oligomeric particle, consisting of 78 major vault protein monomers, each of approximately 861 amino acids. Vaults are probably the largest ribonucleoprotein structures in eukaryote cells, being approximately 70 nm in length with a diameter of 40 nm—the size of three ribosomes and with a lumen capacity of 50 million Å3. We use both protein sequences and inferred ancestral sequences for in silico virtual resurrection of tertiary and quaternary structures to search for vaults in a wide variety of eukaryotes. We find that the vault’s phylogenetic distribution is widespread in eukaryotes, but is apparently absent in some notable model organisms. Our conclusion from the distribution of vaults is that they were present in the last eukaryote common ancestor but they have apparently been lost from a number of groups including fungi, insects, and probably plants. Our approach of inferring ancestral 3D and quaternary structures is expected to be useful generally.
Collapse
Affiliation(s)
- Toni K Daly
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
14
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
15
|
Yang J, Nagasawa DT, Spasic M, Amolis M, Choy W, Garcia HM, Prins RM, Liau LM, Yang I. Endogenous Vaults and Bioengineered Vault Nanoparticles for Treatment of Glioblastomas. Neurosurg Clin N Am 2012; 23:451-8. [DOI: 10.1016/j.nec.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
TANAKA H, TSUKIHARA T. Structural studies of large nucleoprotein particles, vaults. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:416-33. [PMID: 23060231 PMCID: PMC3491081 DOI: 10.2183/pjab.88.416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vault is the largest nonicosahedral cytosolic nucleoprotein particle ever described. The widespread presence and evolutionary conservation of vaults suggest important biologic roles, although their functions have not been fully elucidated. X-ray structure of vault from rat liver was determined at 3.5 Å resolution. It exhibits an ovoid shape with a size of 40 × 40 × 67 nm(3). The cage structure of vault consists of a dimer of half-vaults, with each half-vault comprising 39 identical major vault protein (MVP) chains. Each MVP monomer folds into 12 domains: nine structural repeat domains, a shoulder domain, a cap-helix domain and a cap-ring domain. Interactions between the 42-turn-long cap-helix domains are key to stabilizing the particle. The other components of vaults, telomerase-associated proteins, poly(ADP-ribose) polymerases and small RNAs, are in location in the vault particle by electron microscopy.
Collapse
Affiliation(s)
- Hideaki TANAKA
- Institute for Protein Research, Osaka University, Osaka, Japan
- PRESTO, JST, Saitama, Japan
| | - Tomitake TSUKIHARA
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Life Science, University of Hyogo, Hyogo, Japan
- Correspondence should be addressed: T. Tsukihara, Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297, Japan (e-mail: )
| |
Collapse
|
17
|
Gardano L, Holland L, Oulton R, Le Bihan T, Harrington L. Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin. Nucleic Acids Res 2011; 40:e36. [PMID: 22187156 PMCID: PMC3300002 DOI: 10.1093/nar/gkr1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions.
Collapse
Affiliation(s)
- Laura Gardano
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
18
|
Gopinath SCB, Wadhwa R, Kumar PKR. Expression of noncoding vault RNA in human malignant cells and its importance in mitoxantrone resistance. Mol Cancer Res 2010; 8:1536-46. [PMID: 20881010 DOI: 10.1158/1541-7786.mcr-10-0242] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several noncoding RNAs do vital cellular functions, including gene regulation and cell differentiation. Previously, we reported that vault RNA (vRNA) has the ability to recognize chemotherapeutic compounds, such as mitoxantrone, based on biophysical and biochemical analyses. In the present study, we show that human glioblastoma-, leukemia-, and osteocarcinoma-derived cell lines overexpress vRNA and exhibit higher resistance toward mitoxantrone. Interestingly, when vRNA expression was suppressed by RNA interference in these cells, the resistance progressively decreased. In agreement with these findings, overexpression of vRNA-1 caused resistance to mitoxantrone. These results suggest a role of vRNA in mitoxantrone resistance in malignant cells and justify further studies on the importance and application of noncoding RNAs in cancer chemotherapeutics.
Collapse
Affiliation(s)
- Subash C B Gopinath
- RNA Processing Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba City 305-8566, Ibaraki, Japan
| | | | | |
Collapse
|
19
|
Savage SA, Chanock SJ, Lissowska J, Brinton LA, Richesson D, Peplonska B, Bardin-Mikolajczak A, Zatonski W, Szeszenia-Dabrowska N, Garcia-Closas M. Genetic variation in five genes important in telomere biology and risk for breast cancer. Br J Cancer 2007; 97:832-6. [PMID: 17848914 PMCID: PMC2360388 DOI: 10.1038/sj.bjc.6603934] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Telomeres, consisting of TTAGGG nucleotide repeats and a protein complex at chromosome ends, are critical for maintaining chromosomal stability. Genomic instability, following telomere crisis, may contribute to breast cancer pathogenesis. Many genes critical in telomere biology have limited nucleotide diversity, thus, single nucleotide polymorphisms (SNPs) in this pathway could contribute to breast cancer risk. In a population-based study of 1995 breast cancer cases and 2296 controls from Poland, 24 SNPs representing common variation in POT1, TEP1, TERF1, TERF2 and TERT were genotyped. We did not identify any significant associations between individual SNPs or haplotypes and breast cancer risk; however, data suggested that three correlated SNPs in TERT (−1381C>T, −244C>T, and Ex2-659G>A) may be associated with reduced risk of breast cancer among individuals with a family history of breast cancer (odds ratios 0.73, 0.66, and 0.57, 95% confidence intervals 0.53–1.00, 0.46–0.95 and 0.39–0.84, respectively). In conclusion, our data do not support substantial overall associations between SNPs in telomere pathway genes and breast cancer risk. Intriguing associations with variants in TERT among women with a family history of breast cancer warrant follow-up in independent studies.
Collapse
Affiliation(s)
- S A Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang P, Dilley C, Mattson MP. DNA damage responses in neural cells: Focus on the telomere. Neuroscience 2007; 145:1439-48. [PMID: 17207936 PMCID: PMC1924472 DOI: 10.1016/j.neuroscience.2006.11.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 01/24/2023]
Abstract
Postmitotic neurons must survive for the entire life of the organism and be able to respond adaptively to adverse conditions of oxidative and genotoxic stress. Unrepaired DNA damage can trigger apoptosis of neurons which is typically mediated by the ataxia telangiectasia mutated (ATM)-p53 pathway. As in all mammalian cells, telomeres in neurons consist of TTAGGG DNA repeats and several associated proteins that form a nucleoprotein complex that prevents chromosome ends from being recognized as double strand breaks. Proteins that stabilize telomeres include TRF1 and TRF2, and proteins known to play important roles in DNA damage responses and DNA repair including ATM, Werner and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). We have been performing studies of developing and adult neurons aimed at understanding the effects of global and telomere-directed DNA damage responses in neuronal plasticity and survival in the contexts of aging and neurodegenerative disorders. Deficits in specific DNA repair proteins, including DNA-PKcs and uracil DNA glycosylase (UDG), render neurons vulnerable to adverse conditions of relevance to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and stroke. Similarly, early postmitotic neurons with reduced telomerase activity exhibit accentuated responses to DNA damage and are prone to apoptosis demonstrating a pivotal role for telomere maintenance in both mitotic cells and postmitotic neurons. Our recent findings suggest key roles for TRF2 in regulating the differentiation and survival of neurons. TRF2 affects cell survival and differentiation by modulating DNA damage pathways, and gene expression. A better understanding of the molecular mechanisms by which neurons respond to global and telomere-specific DNA damage may reveal novel strategies for prevention and treatment of neurodegenerative disorders. Indeed, work in this and other laboratories has shown that dietary folic acid can protect neurons against Alzheimer's disease by keeping homocysteine levels low and thereby minimizing the misincorporation of uracil into DNA in neurons.
Collapse
Affiliation(s)
- P Zhang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
21
|
Poderycki MJ, Kickhoefer VA, Kaddis CS, Raval-Fernandes S, Johansson E, Zink JI, Loo JA, Rome LH. The vault exterior shell is a dynamic structure that allows incorporation of vault-associated proteins into its interior. Biochemistry 2006; 45:12184-93. [PMID: 17002318 PMCID: PMC2538551 DOI: 10.1021/bi0610552] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vaults are 13 million Da ribonucleoprotein particles with a highly conserved structure. Expression and assembly by multimerization of an estimated 96 copies of a single protein, termed the major vault protein (MVP), is sufficient to form the minimal structure and entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, VPARP and TEP1, and a small untranslated vault RNA are also associated with vaults. We used the Sf9 insect cell expression system to form MVP-only recombinant vaults and performed a series of protein-mixing experiments to test whether this particle shell is able to exclude exogenous proteins from interacting with the vault interior. Surprisingly, we found that VPARP and TEP1 are able to incorporate into vaults even after the formation of the MVP vault particle shell is complete. Electrospray molecular mobility analysis and spectroscopic studies of vault-interacting proteins were used to confirm this result. Our results demonstrate that the protein shell of the recombinant vault particle is a dynamic structure and suggest a possible mechanism for in vivo assembly of vault-interacting proteins into preformed vaults. Finally, this study suggests that the vault interior may functionally interact with the cellular milieu.
Collapse
Affiliation(s)
- Michael J. Poderycki
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| | - Valerie A. Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| | | | - Sujna Raval-Fernandes
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| | - Erik Johansson
- California NanoSystems Institute, UCLA, Los Angeles, CA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA
| | - Jeffrey I. Zink
- California NanoSystems Institute, UCLA, Los Angeles, CA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA
| | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
- *To whom all correspondence should be addressed: Leonard H. Rome, Department of Biological Chemistry, University of California, Los Angeles, 33-131 CHS mail code #173717, 10833 Le Conte Avenue, Los Angeles, California 90095-1737, Tel. 310 825-0709; Fax. 310 206-5272;
| |
Collapse
|
22
|
Nie M, Htun H. Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5'-UTR. Nucleic Acids Res 2006; 34:5528-40. [PMID: 17023487 PMCID: PMC1635260 DOI: 10.1093/nar/gkl584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine whether sequence-specific RNA–protein interaction at the 5′-untranslated region (5′-UTR) can potently repress translation in mammalian cells, a bicistronic translational repression assay was developed to permit direct assessment of RNA–protein interaction and translational repression in transiently transfected living mammalian cells. Changes in cap-dependent yellow fluorescent protein (YFP) and internal ribosome entry sequence (IRES)-dependent cyan fluorescent protein (CFP) translation were monitored by fluorescence microscopy. Selective repression of YFP or coordinate repression of both YFP and CFP translation occurred, indicating two distinct modes by which RNA-binding proteins repress translation through the 5′-UTR. Interestingly, a single-stranded RNA-binding protein from Bacillus subtilis, tryptophan RNA-binding attenuation protein (TRAP), showed potent translational repression, dependent on the level of TRAP expression and position of its cognate binding site within the bicistronic reporter transcript. As the first of its class to be examined in mammalian cells, its potency in repression of translation through the 5′-UTR may be a general feature for this class of single-stranded RNA-binding proteins. Finally, a one-hybrid screen based on translational repression through the 5′-UTR identified linkers supporting full-translational repression as well as a range of partial repression by TRAP within the context of a fusion protein.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
| | - Han Htun
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- To whom correspondence should be addressed. Tel: +1 310 206 3015; Fax: +1 310 206 3670;
| |
Collapse
|
23
|
Raval-Fernandes S, Kickhoefer VA, Kitchen C, Rome LH. Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res 2005; 65:8846-52. [PMID: 16204055 DOI: 10.1158/0008-5472.can-05-0770] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vault poly(ADP-ribose) polymerase (VPARP) and telomerase-associated protein 1 (TEP1) are components of the vault ribonucleoprotein complex. Vaults have been implicated in multidrug resistance of human tumors and are thought to be involved in macromolecular assembly and/or transport. Previous studies showed that VPARP-deficient mice were viable, fertile, and did not display any vault-related or telomerase-related phenotype, whereas disruption of telomerase-associated protein 1 in mice led to reduced stability of the vault RNA and affected its stable association with vaults, although there were no telomerase-related changes. In this study, we evaluated the susceptibility of Vparp-/- and Tep1-/- mice to dimethylhydrazine-induced colon tumorigenesis and urethane-induced lung tumorigenesis. Mice received i.p. injections of either 1 g/kg body weight of urethane twice a week for 2 weeks or 20 mg/kg body weight of dimethylhydrazine once a week for 10 weeks and were analyzed after 10 and 60 weeks, respectively. The colon tumor incidence and multiplicity were significantly higher and colon tumor latency was significantly shorter in Vparp-/- mice compared with wild-type mice. Increased colon tumor incidence, multiplicity, and reduced tumor latency were also seen in Tep1-/- mice, however, these results were statistically not significant. Lung tumor multiplicities were increased in both Vparp-/- and Tep1-/- mice but were not significant. The increase in carcinogen-induced tumors in VPARP-deficient mice is the only phenotype observed to date, and suggests a possible role for VPARP, directly or indirectly, in chemically induced neoplasia.
Collapse
Affiliation(s)
- Sujna Raval-Fernandes
- Department of Biological Chemistry and the Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|