1
|
Yamanashi Y, Takamaru S, Okabe A, Kaito S, Azumaya Y, Kamimura YR, Yamatsugu K, Kujirai T, Kurumizaka H, Iwama A, Kaneda A, Kawashima SA, Kanai M. Chemical catalyst manipulating cancer epigenome and transcription. Nat Commun 2025; 16:887. [PMID: 39856033 PMCID: PMC11760346 DOI: 10.1038/s41467-025-56204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM in living cells without genetic engineering. Here, we report the development of a cell-permeable histone acetylation catalyst, BAHA-LANA-PEG-CPP44, which selectively enters leukemia cells, binds to chromatin, and acetylates H2BK120 of endogenous histones in a short reaction time. Time-course analyses of this in-cell catalytic reaction revealed that H2BK120 acetylation attenuates the chromatin binding of negative elongation factor E (NELFE), an onco-transcription factor. This H2BK120 acetylation-mediated removal of NELFE from chromatin reshapes transcription, slows leukemia cell viability, and reduces their tumorigenic potential in mice. Therefore, this histone acetylation catalyst provides a unique tool for elucidating the time-resolved consequences of histone PTMs and may offer a modality for cancer chemotherapy.
Collapse
Affiliation(s)
- Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinpei Takamaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Satoshi Kaito
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuto Azumaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo R Kamimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Kyung J, Jeon M, Lee I. Recent advances in the chromatin-based mechanism of FLOWERING LOCUS C repression through autonomous pathway genes. FRONTIERS IN PLANT SCIENCE 2022; 13:964931. [PMID: 36035698 PMCID: PMC9411803 DOI: 10.3389/fpls.2022.964931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Proper timing of flowering, a phase transition from vegetative to reproductive development, is crucial for plant fitness. The floral repressor FLOWERING LOCUS C (FLC) is the major determinant of flowering in Arabidopsis thaliana. In rapid-cycling A. thaliana accessions, which bloom rapidly, FLC is constitutively repressed by autonomous pathway (AP) genes, regardless of photoperiod. Diverse AP genes have been identified over the past two decades, and most of them repress FLC through histone modifications. However, the detailed mechanism underlying such modifications remains unclear. Several recent studies have revealed novel mechanisms to control FLC repression in concert with histone modifications. This review summarizes the latest advances in understanding the novel mechanisms by which AP proteins regulate FLC repression, including changes in chromatin architecture, RNA polymerase pausing, and liquid-liquid phase separation- and ncRNA-mediated gene silencing. Furthermore, we discuss how each mechanism is coupled with histone modifications in FLC chromatin.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Ngian Z, Lin W, Ong C. NELF-A controls Drosophila healthspan by regulating heat-shock protein-mediated cellular protection and heterochromatin maintenance. Aging Cell 2021; 20:e13348. [PMID: 33788376 PMCID: PMC8135010 DOI: 10.1111/acel.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
NELF‐mediated pausing of RNA polymerase II (RNAPII) constitutes a crucial step in transcription regulation. However, it remains unclear how control release of RNAPII pausing can affect the epigenome and regulate important aspects of animal physiology like aging. We found that NELF‐A dosage regulates Drosophila healthspan: Halving NELF‐A level in the heterozygous mutants or via neuronal‐specific RNAi depletion improves their locomotor activity, stress resistance, and lifespan significantly. Conversely, NELF‐A overexpression shortens fly lifespan drastically. Mechanistically, lowering NELF‐A level facilitates the release of paused RNAPII for productive transcription of the heat‐shock protein (Hsp) genes. The elevated HSPs expression in turn attenuates the accumulation of insoluble protein aggregates, reactive oxidative species, DNA damage and systemic inflammation in the brains of aging NELF‐A depleted flies as compared to their control siblings. This pro‐longevity effect is unique to NELF‐A due to its higher expression level and more efficient pausing of RNAPII than other NELF subunits. Importantly, enhanced resistance to oxidative stress in NELF‐A heterozygous mutants is highly conserved such that knocking down its level in human SH‐SY5Y cells attenuates hydrogen peroxide‐induced DNA damage and apoptosis. Depleting NELF‐A reconfigures the epigenome through the maintenance of H3K9me2‐enriched heterochromatin during aging, leading to the repression of specific retrotransposons like Gypsy‐1 in the brains of NELF‐A mutants. Taken together, we showed that the dosage of neuronal NELF‐A affects multiple aspects of aging in Drosophila by regulating transcription of Hsp genes in the brains, suggesting that targeting transcription elongation might be a viable therapeutic strategy against age‐onset diseases like neurodegeneration.
Collapse
Affiliation(s)
- Zhen‐Kai Ngian
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Wei‐Qi Lin
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
| | - Chin‐Tong Ong
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
| |
Collapse
|
5
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
6
|
Aoi Y, Smith ER, Shah AP, Rendleman EJ, Marshall SA, Woodfin AR, Chen FX, Shiekhattar R, Shilatifard A. NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. Mol Cell 2020; 78:261-274.e5. [PMID: 32155413 PMCID: PMC7402197 DOI: 10.1016/j.molcel.2020.02.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/17/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fei X Chen
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Alikunju S, Severinova E, Yang Z, Ivessa A, Sayed D. Acute NelfA knockdown restricts compensatory gene expression and precipitates ventricular dysfunction during cardiac hypertrophy. J Mol Cell Cardiol 2020; 142:93-104. [PMID: 32278832 DOI: 10.1016/j.yjmcc.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Coordinated functional balance of negative and positive transcription complexes maintain and accommodate gene expression in hearts during quiescent and hypertrophic conditions, respectively. Negative elongation factor (Nelf) complex has been implicated in RNA polymerase II (pol II) pausing, a widespread regulatory transcriptional phenomenon observed across the cardiac genome. Here, we examine the role of NelfA aka, Wolf-Hirschhorn syndrome candidate 2 (Whsc2), a critical component of the negative elongation complex in hearts undergoing pressure-overload induced hypertrophy. Alignment of high-resolution genome-wide occupancy data of NelfA, Pol II, TFIIB and H3k9ac from control and hypertrophied hearts reveal that NelfA associates with active gene promoters. High NelfA occupancy is seen at promoters of essential and cardiac-enriched genes, expressed under both quiescent and hypertrophic conditions. Conversely, de novo NelfA recruitment is observed at inducible gene promoters with pressure overload, accompanied by significant increase in expression of these genes with hypertrophy. Interestingly, change in promoter NelfA levels correlates with the transcript output in hypertrophied hearts compared to Sham, suggesting NelfA might be playing a critical role in the regulation of gene transcription during cardiac hypertrophy. In vivo knockdown of NelfA (siNelfA) in hearts subjected to pressure-overload results in early ventricular dilatation and dysfunction, associated with decrease in expression of inducible and cardiac-enriched genes in siNelfA hypertrophied compared to control hypertrophied hearts. In accordance, in vitro knockdown of NelfA in cardiomyocytes showed no change in promoter pol II, however significant decrease in in-gene and downstream pol II occupancy was observed. These data suggest an inhibited pol II progression in transcribing and inducible genes, which reflects as a decrease in transcript abundance of these genes. These results indicate that promoter NelfA occupancy is essential for pol II -dependent transcription. Therefore, we conclude that NelfA is required for active transcription and gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Saleena Alikunju
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Elena Severinova
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Zhi Yang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Danish Sayed
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America.
| |
Collapse
|
8
|
Han L, Zan Y, Huang C, Zhang S. NELFE promoted pancreatic cancer metastasis and the epithelial‑to‑mesenchymal transition by decreasing the stabilization of NDRG2 mRNA. Int J Oncol 2019; 55:1313-1323. [PMID: 31638184 PMCID: PMC6831195 DOI: 10.3892/ijo.2019.4890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Negative elongation factor E (NELFE) has been demonstrated to promote cancer progression as an RNA‑binding protein (RBP). However, the expression patterns, biological role and molecular mechanism of NELFE in pancreatic cancer (PC) remain largely unknown. The expression levels of NELFE in 120 pairs of PC tissues and adjacent non‑tumor clinical samples collected from patients with PC were examined via reverse transcription‑quantitative (RT‑q) PCR and immunohistochemistry. The mRNA expression levels of NELFE, N‑Myc downstream‑regulated gene 2 (NDRG2), c‑Myc, survivin and cyclin D1 were detected via RT‑qPCR. The protein expression levels of NELFE, NDRG2, total β‑catenin, nuclear β‑catenin, cytosolic β‑catenin, E‑cadherin, N‑cadherin and Vimentin were measured by western blotting. NELFE and NDRG2 were then knocked‑down by short hairpin (sh)RNA. PC cell proliferation was detected by MTT and colony formation assays. Invasion and migration were detected by transwell assays. The interaction between NELFE and NDRG2 was detected by luciferase reporter assays, mRNA decay assays and RNA immunoprecipitation. NELFE expression was increased in PC tissues compared with the paired non‑cancerous tissues. NELFE expression was upregulated in PC cells when compared with normal pancreatic cells (HPDE6‑C7). The present study revealed that knockdown of NELFE inhibited the proliferation, invasion and migration of PC cells. In addition, transfection of the sh‑NELFE vector inhibited the epithelial‑to‑mesenchymal transition in PC cells by suppressing the expression and nuclear accumulation of β‑catenin. Further mechanistic studies revealed that NELFE activates the Wnt/β‑catenin signaling pathway by decreasing the stabilization of NDRG2 mRNA in PC. To the best of our knowledge, these results revealed the promotional function of NELFE on PC tumorigenesis and metastasis for the first time, helping to provide a promising strategy for the treatment of patients with PC.
Collapse
Affiliation(s)
- Lili Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
9
|
Mitra P, Deshmukh AS, Gurupwar R, Kashyap P. Characterization of Toxoplasma gondii Spt5 like transcription elongation factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:184-197. [DOI: 10.1016/j.bbagrm.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
|
10
|
Webber JL, Zhang J, Massey A, Sanchez-Luege N, Rebay I. Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 2018; 145:dev.165985. [PMID: 29848501 DOI: 10.1242/dev.165985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/29/2023]
Abstract
The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.
Collapse
Affiliation(s)
- Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alex Massey
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
The Drosophila CLAMP protein associates with diverse proteins on chromatin. PLoS One 2017; 12:e0189772. [PMID: 29281702 PMCID: PMC5744976 DOI: 10.1371/journal.pone.0189772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
Gaining new insights into gene regulation involves an in-depth understanding of protein-protein interactions on chromatin. A powerful model for studying mechanisms of gene regulation is dosage compensation, a process that targets the X-chromosome to equalize gene expression between XY males and XX females. We previously identified a zinc finger protein in Drosophila melanogaster that plays a sex-specific role in targeting the Male-specific lethal (MSL) dosage compensation complex to the male X-chromosome, called the Chromatin-Linked Adapter for MSL Proteins (CLAMP). More recently, we established that CLAMP has non-sex-specific roles as an essential protein that regulates chromatin accessibility at promoters genome-wide. To identify associations between CLAMP and other factors in both male and female cells, we used two complementary mass spectrometry approaches. We demonstrate that CLAMP associates with the transcriptional regulator complex Negative Elongation Factor (NELF) in both sexes and determine that CLAMP reduces NELF recruitment to several target genes. In sum, we have identified many new CLAMP-associated factors and provide a resource for further study of this little understood essential protein.
Collapse
|
12
|
Qiu Y, Gilmour DS. Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing. J Biol Chem 2017; 292:5555-5570. [PMID: 28213523 DOI: 10.1074/jbc.m116.760751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
DRB sensitivity-inducing factor (DSIF or Spt4/5) is a conserved transcription elongation factor that both inhibits and stimulates transcription elongation in metazoans. In Drosophila and vertebrates, DSIF together with negative elongation factor (NELF) associates with RNA polymerase II during early elongation and causes RNA polymerase II to pause in the promoter-proximal region of genes. The mechanism of how DSIF establishes pausing is not known. We constructed Spt5 mutant forms of DSIF and tested their capacity to restore promoter-proximal pausing to DSIF-depleted Drosophila nuclear extracts. The C-terminal repeat region of Spt5, which has been implicated in both inhibition and stimulation of elongation, is dispensable for promoter-proximal pausing. A region encompassing KOW4 and KOW5 of Spt5 is essential for pausing, and mutations in KOW5 specifically shift the location of the pause. RNA cross-linking analysis reveals that KOW5 directly contacts the nascent transcript, and deletion of KOW5 disrupts this interaction. Our results suggest that KOW5 is involved in promoter-proximal pausing through contact with the nascent RNA.
Collapse
Affiliation(s)
- Yijun Qiu
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - David S Gilmour
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
13
|
Vos SM, Pöllmann D, Caizzi L, Hofmann KB, Rombaut P, Zimniak T, Herzog F, Cramer P. Architecture and RNA binding of the human negative elongation factor. eLife 2016; 5. [PMID: 27282391 PMCID: PMC4940160 DOI: 10.7554/elife.14981] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022] Open
Abstract
Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI:http://dx.doi.org/10.7554/eLife.14981.001
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - David Pöllmann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Livia Caizzi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina B Hofmann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Pascaline Rombaut
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomasz Zimniak
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
14
|
Li Y, Dong W, Shi Y, Deng F, Chen X, Wan C, Zhou M, Zhao L, Fu ZF, Peng G. Rabies virus phosphoprotein interacts with ribosomal protein L9 and affects rabies virus replication. Virology 2015; 488:216-24. [PMID: 26655239 DOI: 10.1016/j.virol.2015.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/09/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
Rabies virus is a highly neurotropic virus that can cause fatal infection of the central nervous system in warm-blooded animals. The RABV phosphoprotein (P), an essential cofactor of the virus RNA-dependent RNA polymerase, is required for virus replication. In this study, the ribosomal protein L9, which has functions in protein translation, is identified as P-interacting cellular factor using phage display analysis. Direct binding between the L9 and P was confirmed by protein pull-down and co-immunoprecipitation analyses. It was further demonstrated that L9 translocates from the nucleus to the cytoplasm, where it colocalizes with P in cells infected with RABV or transfected with P gene. RABV replication was reduced with L9 overexpression and enhanced with L9 knockdown. Thus, we propose that during RABV infection, P binds to L9 that translocates from the nucleus to the cytoplasm, inhibiting the initial stage of RABV transcription.
Collapse
Affiliation(s)
- Youwen Li
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science, Tarim University, Alar, Xinjiang, China
| | - Wanyu Dong
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuejun Shi
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feng Deng
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xi Chen
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunyun Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ming Zhou
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen F Fu
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Guiqing Peng
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Pan H, Zhao X, Zhang X, Abouelsoud M, Sun J, April C, Amleh A, Fan JB, Hu Y, Li R. Translational Initiation at a Non-AUG Start Codon for Human and Mouse Negative Elongation Factor-B. PLoS One 2015; 10:e0127422. [PMID: 26010750 PMCID: PMC4444357 DOI: 10.1371/journal.pone.0127422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/15/2015] [Indexed: 12/24/2022] Open
Abstract
Negative elongation factor (NELF), a four-subunit protein complex in metazoan, plays an important role in regulating promoter-proximal pausing of RNA polymerase II (RNAPII). Genetic studies demonstrate that the B subunit of mouse NELF (NELF-B) is critical for embryonic development and homeostasis in adult tissue. We report here that both human and mouse NELF-B proteins are translated from a non-AUG codon upstream of the annotated AUG. This non-AUG codon sequence is conserved in mammalian NELF-B but not NELF-B orthologs of lower metazoan. The full-length and a truncated NELF-B that starts at the first AUG codon both interact with the other three NELF subunits. Furthermore, these two forms of NELF-B have a similar impact on the transcriptomics and proliferation of mouse embryonic fibroblasts. These results strongly suggest that additional amino acid sequence upstream of the annotated AUG is dispensable for the essential NELF function in supporting cell growth in vitro. The majority of mouse adult tissues surveyed express the full-length NELF-B protein, and some contain a truncated NELF-B protein with the same apparent size as the AUG-initiated version. This result raises the distinct possibility that translational initiation of mouse NELF-B is regulated in a tissue-dependent manner.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Mohamed Abouelsoud
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jianlong Sun
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Craig April
- Illumina, Inc., San Diego, CA, 92121, United States of America
| | - Asma Amleh
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, CA, 92121, United States of America
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| |
Collapse
|
16
|
Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat Methods 2014; 11:683-8. [PMID: 24809628 PMCID: PMC4073888 DOI: 10.1038/nmeth.2970] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022]
Abstract
RNA-protein interactions have critical roles in gene regulation. However, high-throughput methods to quantitatively analyze these interactions are lacking. We adapted an Illumina GAIIx sequencer to make several million such measurements with a High-Throughput Sequencing – RNA Affinity Profiling (HiTS-RAP) assay. Millions of cDNAs are sequenced, bound by the E. coli replication terminator protein Tus, and transcribed in situ, whereupon Tus halts transcription leaving RNA stably attached to its template DNA. The binding of fluorescently-labeled protein is then quantified in the sequencer. We used HiTS-RAP to measure the affinity of mutagenized libraries of GFP-binding and NELF-E binding aptamers to their respective targets and thereby identified regions in both aptamers that are critical for their RNA-protein interaction. We show that mutations additively affect binding affinity of the NELF-E binding aptamer, whose interaction depends mainly on a single-stranded RNA motif, but not that of the GFP aptamer, whose interaction depends primarily on secondary structure.
Collapse
|
17
|
Zhao W, Liu Y, Timani KA, He JJ. Tip110 protein binds to unphosphorylated RNA polymerase II and promotes its phosphorylation and HIV-1 long terminal repeat transcription. J Biol Chem 2013; 289:190-202. [PMID: 24217245 DOI: 10.1074/jbc.m113.529784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription plays an important role in both HIV-1 gene expression and replication and mandates complicated but coordinated interactions between the host and virus. Our previous studies have shown that an HIV-1 Tat-interacting protein of 110 kDa, Tip110, binds to and enhances Tat function in Tat-mediated HIV-1 gene transcription and replication (Liu, Y., Li, J., Kim, B. O., Pace, B. S., and He, J. J. (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J. Biol. Chem. 277, 23854-23863). However, the underlying molecular mechanisms by which this takes place were not understood. In this study, we demonstrated that Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific manner. In addition, we detected Tip110 at the HIV-1 long terminal repeat (LTR) promoter and found that Tip110 expression was associated with increased phosphorylation of serine 2 of the heptapeptide repeats within the RNAPII C-terminal domain and increased recruitment of positive transcription elongation factor b to the LTR promoter. Consistent with these findings, we showed that Tip110 interaction with Tat directly enhanced transcription elongation of the LTR promoter. Taken together, these findings have provided additional and mechanistic evidence to support Tip110 function in HIV-1 transcription.
Collapse
Affiliation(s)
- Weina Zhao
- From the Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | | | | | | |
Collapse
|
18
|
Li J, Liu Y, Rhee HS, Ghosh SKB, Bai L, Pugh BF, Gilmour DS. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol Cell 2013; 50:711-22. [PMID: 23746353 DOI: 10.1016/j.molcel.2013.05.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
Abstract
Pausing of RNA polymerase II (Pol II) 20-60 bp downstream of transcription start sites is a major checkpoint during transcription in animal cells. Mechanisms that control pausing are largely unknown. We developed permanganate-ChIP-seq to evaluate the state of Pol II at promoters throughout the Drosophila genome, and a biochemical system that reconstitutes promoter-proximal pausing to define pausing mechanisms. Stable open complexes of Pol II are largely absent from the transcription start sites of most mRNA genes but are present at snRNA genes and the highly transcribed heat shock genes following their induction. The location of the pause is influenced by the timing between when NELF loads onto Pol II and how fast Pol II escapes the promoter region. Our biochemical analysis reveals that the sequence-specific transcription factor, GAF, orchestrates efficient pausing by recruiting NELF to promoters before transcription initiation and by assisting in loading NELF onto Pol II after initiation.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Saunders A, Core LJ, Sutcliffe C, Lis JT, Ashe HL. Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 2013; 27:1146-58. [PMID: 23699410 DOI: 10.1101/gad.215459.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cascades of zygotic gene expression pattern the anterior-posterior (AP) and dorsal-ventral (DV) axes of the early Drosophila embryo. Here, we used the global run-on sequencing assay (GRO-seq) to map the genome-wide RNA polymerase distribution during early Drosophila embryogenesis, thus providing insights into how genes are regulated. We identify widespread promoter-proximal pausing yet show that the presence of paused polymerase does not necessarily equate to direct regulation through pause release to productive elongation. Our data reveal that a subset of early Zelda-activated genes is regulated at the level of polymerase recruitment, whereas other Zelda target and axis patterning genes are predominantly regulated through pause release. In contrast to other signaling pathways, we found that bone morphogenetic protein (BMP) target genes are collectively more highly paused than BMP pathway components and show that BMP target gene expression requires the pause-inducing negative elongation factor (NELF) complex. Our data also suggest that polymerase pausing allows plasticity in gene activation throughout embryogenesis, as transiently repressed and transcriptionally silenced genes maintain and lose promoter polymerases, respectively. Finally, we provide evidence that the major effect of pausing is on the levels, rather than timing, of transcription. These data are discussed in terms of the efficiency of transcriptional activation required across cell populations during developmental time constraints.
Collapse
Affiliation(s)
- Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Zraly CB, Dingwall AK. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit. Nucleic Acids Res 2012; 40:5975-87. [PMID: 22467207 PMCID: PMC3401471 DOI: 10.1093/nar/gks288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nucleosome remodeling catalyzed by the ATP-dependent SWI/SNF complex is essential for regulated gene expression. Transcriptome profiling studies in flies and mammals identified cell cycle and hormone responsive genes as important targets of remodeling complex activities. Loss of chromatin remodeling function has been linked to developmental abnormalities and aggressive cancers. The Drosophila Brahma (Brm) SWI/SNF complex assists in reprogramming and coordinating gene expression in response to ecdysone hormone signaling at critical points during development. We used RNAi knockdown in cultured cells and transgenic flies, and conditional mutant alleles to identify unique and important functions of two conserved Brm complex core subunits, SNR1/SNF5 and BRM/SNF2-SWI2, on target gene regulation. Unexpectedly, we found that incorporation of a loss of function SNR1 subunit led to alterations in RNA polymerase elongation, pre-mRNA splicing regulation and chromatin accessibility of ecdysone hormone regulated genes, revealing that SNR1 functions to restrict BRM-dependent nucleosome remodeling activities downstream of the promoter region. Our results reveal critically important roles of the SNR1/SNF5 subunit and the Brm chromatin remodeling complex in transcription regulation during elongation by RNA Polymerase II and completion of pre-mRNA transcripts that are dependent on hormone signaling in late development.
Collapse
Affiliation(s)
- Claudia B Zraly
- Cardinal Bernardin Cancer Center, Oncology Institute, Stritch School of Medicine, Loyola University of Chicago, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
21
|
Zhimulev IF, Belyaeva ES, Vatolina TY, Demakov SA. Banding patterns in Drosophila melanogaster polytene chromosomes correlate with DNA-binding protein occupancy. Bioessays 2012; 34:498-508. [PMID: 22419120 DOI: 10.1002/bies.201100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome-wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their association with "active" chromatin proteins, nucleosome remodeling, and origin recognition complexes, and so they have three functions: acting as binding sites for RNA pol II, initiation of replication and nucleosome remodeling of short fragments of DNA. The borders and organization of the same band and interband regions are largely identical, irrespective of the cell type studied. This demonstrates that the banding pattern is a universal principle of the organization of interphase polytene and non-polytene chromosomes.
Collapse
Affiliation(s)
- Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
22
|
Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011; 7:e1002334. [PMID: 22046134 PMCID: PMC3203192 DOI: 10.1371/journal.ppat.1002334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions.
Collapse
Affiliation(s)
- Richard D. Palermo
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Helen M. Webb
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
23
|
Sun J, Pan H, Lei C, Yuan B, Nair SJ, April C, Parameswaran B, Klotzle B, Fan JB, Ruan J, Li R. Genetic and genomic analyses of RNA polymerase II-pausing factor in regulation of mammalian transcription and cell growth. J Biol Chem 2011; 286:36248-57. [PMID: 21865163 DOI: 10.1074/jbc.m111.269167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Many mammalian genes are occupied by paused RNA polymerase II (pol II) in the promoter-proximal region on both sides of the transcription start site. However, the impact of pol II pausing on gene expression and cell biology is not fully understood. In this study, we used a Cre-Lox system to conditionally knock out the b subunit of mouse negative elongation factor (Nelf-b), a key pol II-pausing factor, in mouse embryonic fibroblasts. We found that Nelf-b was associated with the promoter-proximal region of the majority of expressed genes, yet genetic ablation of Nelf-b only affected the steady-state mRNA levels of a small percentage of the Nelf-b-associated genes. Interestingly, Nelf-b deletion also increased levels of transcription start site upstream transcripts at multiple negative elongation factor-associated genes. The direct target genes of Nelf-b were highly enriched with those involved in the control of cell growth and cell death. Correspondingly, Nelf-b knock-out mouse embryonic fibroblasts exhibited slower progression from quiescence to proliferation, as well as in a cycling cell population. Furthermore, Nelf-b deletion also resulted in increased apoptosis. Thus, the genetic and genomic studies provide new physiological and molecular insight into Nelf-mediated pol II pausing.
Collapse
Affiliation(s)
- Jianlong Sun
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Wang X, Hang S, Prazak L, Gergen JP. NELF potentiates gene transcription in the Drosophila embryo. PLoS One 2010; 5:e11498. [PMID: 20634899 PMCID: PMC2901382 DOI: 10.1371/journal.pone.0011498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023] Open
Abstract
A hallmark of genes that are subject to developmental regulation of transcriptional elongation is association of the negative elongation factor NELF with the paused RNA polymerase complex. Here we use a combination of biochemical and genetic experiments to investigate the in vivo function of NELF in the Drosophila embryo. NELF associates with different gene promoter regions in correlation with the association of RNA polymerase II (Pol II) and the initial activation of gene expression during the early stages of embryogenesis. Genetic experiments reveal that maternally provided NELF is required for the activation, rather than the repression of reporter genes that emulate the expression of key developmental control genes. Furthermore, the relative requirement for NELF is dictated by attributes of the flanking cis-regulatory information. We propose that NELF-associated paused Pol II complexes provide a platform for high fidelity integration of the combinatorial spatial and temporal information that is central to the regulation of gene expression during animal development.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Saiyu Hang
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lisa Prazak
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Cho S, Schroeder S, Ott M. CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle 2010; 9:1697-705. [PMID: 20436276 PMCID: PMC2956491 DOI: 10.4161/cc.9.9.11346] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cyclin T/CDK9 complex, also called positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of the large fragment of the RNA polymerase II. This action is a hallmark of the transition from transcription initiation to elongation. P-TEFb is itself modified by phosphorylation and ubiquitination. Recently, the core components of P-TEFb, cyclin T1 and CDK9, were identified as novel substrates of histone acetyltransferases. Here, we review how posttranslational modifications regulate the activity of the P-TEFb complex and discuss how acetylation of the complex optimizes transcription elongation in the context of other posttranslational modifications.
Collapse
Affiliation(s)
| | | | - Melanie Ott
- Gladstone Institute of Virology and Immunology; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
27
|
Abstract
The rapid activation of gene expression in response to stimuli occurs largely through the regulation of RNA polymerase II-dependent transcription. In this Review, we discuss events that occur during the transcription cycle in eukaryotes that are important for the rapid and specific activation of gene expression in response to external stimuli. In addition to regulated recruitment of the transcription machinery to the promoter, it has now been shown that control steps can include chromatin remodelling and the release of paused polymerase. Recent work suggests that some components of signal transduction cascades also play an integral part in activating transcription at target genes.
Collapse
|
28
|
Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc Natl Acad Sci U S A 2009; 106:18207-12. [PMID: 19820169 DOI: 10.1073/pnas.0910177106] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kinetics and magnitude of cytokine gene expression are tightly regulated to elicit a balanced response to pathogens and result from integrated changes in transcription and mRNA stability. Yet, how a single microbial stimulus induces peak transcription of some genes (TNFalpha) within minutes whereas others (IP-10) require hours remains unclear. Here, we dissect activation of several lipopolysaccharide (LPS)-inducible genes in macrophages, an essential cell type mediating inflammatory response in mammals. We show that a key difference between the genes is the step of the transcription cycle at which they are regulated. Specifically, at TNFalpha, RNA Polymerase II initiates transcription in resting macrophages, but stalls near the promoter until LPS triggers rapid and transient release of the negative elongation factor (NELF) complex and productive elongation. In contrast, no NELF or polymerase is detectible near the IP-10 promoter before induction, and LPS-dependent polymerase recruitment is rate limiting for transcription. We further demonstrate that this strategy is shared by other immune mediators and is independent of the inducer and signaling pathway responsible for gene activation. Finally, as a striking example of evolutionary conservation, the Drosophila homolog of the TNFalpha gene, eiger, displayed all of the hallmarks of NELF-dependent polymerase stalling. We propose that polymerase stalling ensures the coordinated, timely activation the inflammatory gene expression program from Drosophila to mammals.
Collapse
|
29
|
Abstract
In the eukaryotic genome, the thousands of genes that encode messenger RNA are transcribed by a molecular machine called RNA polymerase II. Analysing the distribution and status of RNA polymerase II across a genome has provided crucial insights into the long-standing mysteries of transcription and its regulation. These studies identify points in the transcription cycle where RNA polymerase II accumulates after encountering a rate-limiting step. When coupled with genome-wide mapping of transcription factors, these approaches identify key regulatory steps and factors and, importantly, provide an understanding of the mechanistic generalities, as well as the rich diversities, of gene regulation.
Collapse
|
30
|
The transcription elongation factors NELF, DSIF and P-TEFb control constitutive transcription in a gene-specific manner. FEBS Lett 2009; 583:2893-8. [PMID: 19654008 DOI: 10.1016/j.febslet.2009.07.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/21/2009] [Accepted: 07/29/2009] [Indexed: 11/21/2022]
Abstract
We examined whether transcription elongation factors control constitutive transcription of the histone H1(0) and GAPDH genes. Chromatin immunoprecipitation demonstrated positive transcription elongation factor b (P-TEFb) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) present together with RNA polymerase II (pol II) throughout the histone H1(0) gene, whereas negative elongation factor (NELF) was confined to the 5' region. Contrarily, DSIF, NELF and pol II were confined to the 5' region on the GAPDH. Inhibition of those factors affected the constitutive transcription of the histone H1(0) gene but not the GAPDH gene. Thus, NELF, DSIF and P-TEFb control constitutive transcription in a gene-specific manner.
Collapse
|
31
|
Chopra VS, Cande J, Hong JW, Levine M. Stalled Hox promoters as chromosomal boundaries. Genes Dev 2009; 23:1505-9. [PMID: 19515973 DOI: 10.1101/gad.1807309] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many developmental control genes contain stalled RNA Polymerase II (Pol II) in the early Drosophila embryo, including four of the eight Hox genes. Here, we present evidence that the stalled Hox promoters possess an intrinsic insulator activity. The enhancer-blocking activities of these promoters are dependent on general transcription factors that inhibit Pol II elongation, including components of the DSIF and NELF complexes. The activities of conventional insulators are also impaired in embryos containing reduced levels of DSIF and NELF. Thus, promoter-proximal stalling factors might help promote insulator-promoter interactions. We propose that stalled promoters help organize gene complexes within chromosomal loop domains.
Collapse
Affiliation(s)
- Vivek S Chopra
- Department of Molecular and Cellular Biology, Division of Genetics, Genomics, and Development, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
32
|
Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner. Exp Cell Res 2008; 315:274-84. [PMID: 19014935 DOI: 10.1016/j.yexcr.2008.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/13/2008] [Accepted: 10/28/2008] [Indexed: 11/22/2022]
Abstract
The transcription rate of immediate early genes (IEGs) is controlled directly by transcription elongation factors at the transcription elongation step. Negative elongation factor (NELF) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) stall RNA polymerase II (pol II) soon after transcription initiation. Upon induction of IEG transcription, DSIF is converted into an accelerator for pol II elongation. To address whether and how NELF as well as DSIF controls overall IEG transcription, its expression was reduced using stable RNA interference in GH4C1 cells. NELF knock-down reduced thyrotropin-releasing hormone (TRH)-induced transcription of the IEGs c-fos, MKP-1, and junB. In contrast, epidermal growth factor (EGF)-induced transcription of these IEGs was unaltered or even slightly increased by NELF knock-down. Thus, stable knock-down of NELF affects IEG transcription stimulation-specifically. Conversely, DSIF knock-down reduced both TRH- and EGF-induced transcription of the three IEGs. Interestingly, TRH-induced activation of the MAP kinase pathway, a pathway essential for transcription of the three IEGs, was down-regulated by NELF knock-down. Thus, stable knock-down of NELF, by modulating intracellular signaling pathways, caused stimulation-specific loss of IEG transcription. These observations indicate that NELF controls overall IEG transcription via multiple mechanisms both directly and indirectly.
Collapse
|
33
|
Brandt T, Corces VG. The Lawc protein is required for proper transcription by RNA polymerase II in Drosophila. Mol Genet Genomics 2008; 280:385-96. [PMID: 18716797 PMCID: PMC3037547 DOI: 10.1007/s00438-008-0372-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/07/2008] [Indexed: 01/28/2023]
Abstract
Genetic analysis of the Drosophila leg-arista-wing complex (lawc) gene suggests a role for the Lawc protein in chromatin-related processes based on its classification as a trxG gene but the molecular mechanisms of its function remain elusive. We have found that Lawc is a small, cysteine-rich protein that is present in most of the interbands of polytene chromosomes. In agreement with this observation, Lawc co-localizes with RNA polymerase IIo (Pol IIo) and it is recruited to transcribed loci after elongation by Pol IIo has begun. Lawc interacts with the nuclear proteasome regulator dREGgamma in a yeast two-hybrid assay and both proteins co-localize on polytene chromosomes. In addition, a mutation in lawc interacts genetically with a mutation in a component of the proteasome. lawc mutants show decreased expression of some genes, while the levels of Pol IIoSer2 increase. We conclude that Lawc is required for proper transcription by RNA polymerase II in a process that involves the nuclear proteasome.
Collapse
Affiliation(s)
- Tracy Brandt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
34
|
Gilmour DS. Promoter proximal pausing on genes in metazoans. Chromosoma 2008; 118:1-10. [PMID: 18830703 DOI: 10.1007/s00412-008-0182-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/14/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
The past two decades of research into transcriptional control of protein-encoding genes in eukaryotes have focused on regulatory mechanisms that act by controlling the recruitment of Pol II to a gene's promoter. Recent genome-wide analyses of the distribution of Pol II indicates that Pol II is concentrated in the promoter regions of thousands of genes in human and Drosophila cells. In many cases, Pol II may have initiated transcription but paused in the promoter proximal region. Hence, release of Pol II from the promoter region into the body of a gene is now recognized as a common rate-limiting step in the control of gene expression. Notably, most genes with paused Pol II are expressed indicating that the pause can be transient. What causes Pol II to concentrate in the promoter region and how it is released to transcribe a gene are the focus of this review.
Collapse
Affiliation(s)
- David S Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
Gilchrist DA, Nechaev S, Lee C, Ghosh SKB, Collins JB, Li L, Gilmour DS, Adelman K. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev 2008; 22:1921-33. [PMID: 18628398 PMCID: PMC2492738 DOI: 10.1101/gad.1643208] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 05/21/2008] [Indexed: 11/24/2022]
Abstract
The Negative Elongation Factor (NELF) is a transcription regulatory complex that induces stalling of RNA polymerase II (Pol II) during early transcription elongation and represses expression of several genes studied to date, including Drosophila Hsp70, mammalian proto-oncogene junB, and HIV RNA. To determine the full spectrum of NELF target genes in Drosophila, we performed a microarray analysis of S2 cells depleted of NELF and discovered that NELF RNAi affects many rapidly inducible genes involved in cellular responses to stimuli. Surprisingly, only one-third of NELF target genes were, like Hsp70, up-regulated by NELF-depletion, whereas the majority of target genes showed decreased expression levels upon NELF RNAi. Our data reveal that the presence of stalled Pol II at this latter group of genes enhances gene expression by maintaining a permissive chromatin architecture around the promoter-proximal region, and that loss of Pol II stalling at these promoters is accompanied by a significant increase in nucleosome occupancy and a decrease in histone H3 Lys 4 trimethylation. These findings identify a novel, positive role for stalled Pol II in regulating gene expression and suggest that there is a dynamic interplay between stalled Pol II and chromatin structure.
Collapse
Affiliation(s)
- Daniel A. Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Sergei Nechaev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Chanhyo Lee
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Saikat Kumar B. Ghosh
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jennifer B. Collins
- Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Leping Li
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - David S. Gilmour
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Karen Adelman
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
36
|
Klatt A, Zhang Z, Kalantari P, Hankey PA, Gilmour DS, Henderson AJ. The receptor tyrosine kinase RON represses HIV-1 transcription by targeting RNA polymerase II processivity. THE JOURNAL OF IMMUNOLOGY 2008; 180:1670-7. [PMID: 18209063 DOI: 10.4049/jimmunol.180.3.1670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efficient HIV-1 transcription requires the induction of cellular transcription factors, such as NF-kappaB, and the viral factor Tat, which through the recruitment of P-TEFb enhances processive transcription. However, whether cellular signals repress HIV-1 transcription to establish proviral latency has not been well studied. Previously, it has been shown that the receptor tyrosine kinase RON inhibits HIV transcription. To gain insights into the biochemical mechanisms by which RON inhibits transcription we examined the binding of transcription factors to the HIV provirus long terminal repeat using chromatin immunoprecipitation. RON expression decreased basal levels of NF-kappaB and RNA polymerase II (Pol II) binding to the HIV provirus long terminal repeat but did not prevent the induction of these complexes following treatment with cytokines. However, RON did decrease efficient transcription elongation because reduced RNA Pol II was associated with HIV-1 genomic sequences downstream of the transcriptional start site. There was a correlation between RON expression and increased binding of factors that negatively regulate transcription elongation, NELF, Spt5, and Pcf11. Furthermore, the ability of RON to inhibit HIV-1 transcription was sensitive to a histone deacetylase inhibitor and was associated with nucleosome remodeling. These results indicate that RON represses HIV transcription at multiple transcriptional check points including initiation, elongation and chromatin organization and are the first studies to show that cellular signaling pathways target Pol II pausing to repress gene expression.
Collapse
Affiliation(s)
- Alicia Klatt
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
37
|
NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 2008; 28:3290-300. [PMID: 18332113 DOI: 10.1128/mcb.02224-07] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent analyses of RNA polymerase II (Pol II) revealed that Pol II is concentrated at the promoters of many active and inactive genes. NELF causes Pol II to pause in the promoter-proximal region of the hsp70 gene in Drosophila melanogaster. In this study, genome-wide location analysis (chromatin immunoprecipitation-microarray chip [ChIP-chip] analysis) revealed that NELF is concentrated at the 5' ends of 2,111 genes in Drosophila cells. Permanganate genomic footprinting was used to determine if paused Pol II colocalized with NELF. Forty-six of 56 genes with NELF were found to have paused Pol II. Pol II pauses 30 to 50 nucleotides downstream from transcription start sites. Analysis of DNA sequences in the vicinity of paused Pol II identified a conserved DNA sequence that probably associates with TFIID but detected no evidence of RNA secondary structures or other conserved sequences that might directly control elongation. ChIP-chip experiments indicate that GAGA factor associates with 39% of the genes that have NELF. Surprisingly, NELF associates with almost one-half of the most highly expressed genes, indicating that NELF is not necessarily a repressor of gene expression. NELF-associated pausing of Pol II might be an obligatory but sometimes transient checkpoint during the transcription cycle.
Collapse
|
38
|
Carter MG, Stagg CA, Falco G, Yoshikawa T, Bassey UC, Aiba K, Sharova LV, Shaik N, Ko MS. An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. Gene Expr Patterns 2008; 8:181-98. [PMID: 18178135 PMCID: PMC2238805 DOI: 10.1016/j.gep.2007.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/23/2007] [Accepted: 10/29/2007] [Indexed: 11/21/2022]
Abstract
We previously reported that Zscan4 showed heterogeneous expression patterns in mouse embryonic stem (ES) cells. To identify genes that show similar expression patterns, we carried out high-throughput in situ hybridization assays on ES cell cultures for 244 genes. Most of the genes are involved in transcriptional regulation, and were selected using microarray-based comparisons of gene expression profiles in ES and embryonal carcinoma (EC) cells versus differentiated cell types. Pou5f1 (Oct4, Oct3/4) and Krt8 (EndoA) were used as controls. Hybridization signals were detected on ES cell colonies for 147 genes (60%). The majority (136 genes) of them showed relatively homogeneous expression in ES cell colonies. However, we found that two genes unequivocally showed Zscan4-like spotted expression pattern (spot-in-colony pattern; Whsc2 and Rhox9). We also found that nine genes showed relatively heterogeneous expression pattern (mosaic-in-colony pattern: Zfp42/Rex1, Rest, Atf4, Pa2g4, E2f2, Nanog, Dppa3/Pgc7/Stella, Esrrb, and Fscn1). Among these genes, Zfp42/Rex1 showed unequivocally heterogeneous expression in individual ES cells prepared by the CytoSpin. These results show the presence of different types or states of cells within ES cell cultures otherwise thought to be undifferentiated and homogeneous, suggesting a previously unappreciated complexity in ES cell cultures.
Collapse
Affiliation(s)
- Mark G. Carter
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Carole A. Stagg
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Geppino Falco
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Toshiyuki Yoshikawa
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Uwem C. Bassey
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Kazuhiro Aiba
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Lioudmila V. Sharova
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Nabeebi Shaik
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Minoru S.H. Ko
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| |
Collapse
|
39
|
Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells. Mol Cell Biol 2007; 28:1630-43. [PMID: 18086894 DOI: 10.1128/mcb.01767-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positive elongation factor P-TEFb appears to function as a crucial C-terminal-domain (CTD) kinase for RNA polymerase II (Pol II) transcribing immediate early genes (IEGs) in neuroendocrine GH4C1 cells. Chromatin immunoprecipitation indicated that in resting cells Pol II occupied the promoter-proximal regions of the c-fos and junB genes, together with the negative elongation factors DSIF and NELF. Thyrotropin-releasing hormone (TRH)-induced recruitment of positive transcription elongation factor b (P-TEFb) abolished the pausing of Pol II and enhanced phosphorylation of CTD serine 2, resulting in transcription elongation. In addition, P-TEFb was essential for splicing and 3'-end processing of IEG transcripts. Importantly, the MEK1-extracellular signal-regulated kinase (ERK) signaling pathway activated by TRH up-regulated nuclear CDK9 and CDK9/cyclinT1 dimers (i.e., P-TEFb), facilitating the recruitment of P-TEFb to c-fos and other IEGs. Thus, in addition to established gene transcription control via promoter response elements, the MEK1-ERK signaling pathway controls transcription elongation by Pol II via the up-regulation of nuclear CDK9 integrated into P-TEFb.
Collapse
|
40
|
Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 2007; 28:692-9. [PMID: 18042462 DOI: 10.1016/j.molcel.2007.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/18/2007] [Accepted: 10/03/2007] [Indexed: 11/18/2022]
Abstract
Metazoan replication-dependent histone mRNAs are not polyadenylated and instead end in a conserved stem loop that is the cis element responsible for coordinate posttranscriptional regulation of these mRNAs. Using biochemical approaches, only a limited number of factors required for cleavage of histone pre-mRNA have been identified. We therefore performed a genome-wide RNA interference screen in Drosophila cells using a GFP reporter that is expressed only when histone pre-mRNA processing is disrupted. Four of the 24 genes identified encode proteins also necessary for cleavage/polyadenylation, indicating mechanistic conservation in formation of different mRNA 3' ends. We also unexpectedly identified the histone variants H2Av and H3.3A/B. In H2Av mutant cells, U7 snRNP remains active but fails to accumulate at the histone locus, suggesting there is a regulatory pathway that coordinates the production of variant and canonical histones that acts via localization of essential histone pre-mRNA processing factors.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wang X, Lee C, Gilmour DS, Gergen JP. Transcription elongation controls cell fate specification in the Drosophila embryo. Genes Dev 2007; 21:1031-6. [PMID: 17473169 PMCID: PMC1855229 DOI: 10.1101/gad.1521207] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The simple combinatorial rules for regulation of the sloppy-paired-1 (slp1) gene by the pair-rule transcription factors during early Drosophila embryogenesis offer a unique opportunity to investigate the molecular mechanisms of developmentally regulated transcription repression. We find that the initial repression of slp1 in response to Runt and Fushi-tarazu (Ftz) does not involve chromatin remodeling, or histone modification. Chromatin immunoprecipitation and in vivo footprinting experiments indicate RNA polymerase II (Pol II) initiates transcription in slp1-repressed cells and pauses downstream from the promoter in a complex that includes the negative elongation factor NELF. The finding that NELF also associates with the promoter regions of wingless (wg) and engrailed (en), two other pivotal targets of the pair-rule transcription factors, strongly suggests that developmentally regulated transcriptional elongation is central to the process of cell fate specification during this critical stage of embryonic development.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Chanhyo Lee
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S. Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA
- Corresponding author.E-MAIL ; FAX (631) 632-8575
| |
Collapse
|
42
|
Yang Y, Liu W, Zou W, Wang H, Zong H, Jiang J, Wang Y, Gu J. Ubiquitin-dependent proteolysis of trihydrophobin 1 (TH1) by the human papilloma virus E6-associated protein (E6-AP). J Cell Biochem 2007; 101:167-80. [PMID: 17131388 DOI: 10.1002/jcb.21164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human Papilloma virus E6-associated protein (E6-AP), which is known as an E3 ubiquitin ligase, mediates ubiquitination and subsequent degradation of a series of cellular proteins. In this paper, we identify here trihydrophobin 1 (TH1), an integral subunit of the human negative transcription elongation factor (NELF) complex, as a novel E6-AP interaction protein and a target of E6-AP-mediated degradation. Overexpression of E6-AP results in degradation of TH1 in a dose-dependent manner, whereas knock-down of endogenous E6-AP elevates the TH1 protein level. TH1 protein turnover is substantially faster, compared to controls, in cells that overexpressed E6-AP. Wild-type E6-AP promotes the ubiquitination of TH1, while a catalytically inactive point mutant of E6-AP abolishes its ubiquitination. Furthermore, in vitro ubiquitination assay also demonstrates that TH1 can be ubiquitinated by E6-AP. The degradation is blocked by treatment with proteasome inhibitor MG132. Herein, we provide strong evidence that TH1 is a specific substrate that is targeted for degradation through E6-AP-catalyzed polyubiquitination.
Collapse
Affiliation(s)
- Yanzhong Yang
- Key Laboratory of Medical Molecular Virology Ministry of Education and Health, Gene Research Center, Shanghai Medical College and Institutes of Biomedical Science of Fudan University, Shanghai 200032, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Z, Klatt A, Gilmour DS, Henderson AJ. Negative elongation factor NELF represses human immunodeficiency virus transcription by pausing the RNA polymerase II complex. J Biol Chem 2007; 282:16981-8. [PMID: 17442680 DOI: 10.1074/jbc.m610688200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) transcription requires virally encoded Tat and the P-TEFb protein complex, which together associate with the Tat-activating region, a structured region in the nascent transcript. P-TEFb phosphorylates Proteins in the transcription elongation complex, including RNA polymerase II (pol II), to stimulate elongation and to overcome premature termination. However, the status of the elongation complex on the HIV long terminal repeat (LTR) in a repressed state is not known. Chromatin immunoprecipitation demonstrated that NELF, a negative transcription elongation factor, was associated with the LTR. Depleting NELF increased processive HIV transcription and replication. Mapping pol II on the LTR showed that pol II was paused and that NELF depletion released pol II. Decreasing NELF also correlated with displacement of a positioned nucleosome and increased acetylation of histone H4, suggesting coupling of transcription elongation and chromatin remodeling. Previous work has indicated that the Tat-activating region plays a critical role in regulating transcription from the LTR. Our results reveal an earlier stage, mediated by NELF, when repression occurs at the HIV LTR.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center of Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
44
|
Aiyar SE, Blair AL, Hopkinson DA, Bekiranov S, Li R. Regulation of clustered gene expression by cofactor of BRCA1 (COBRA1) in breast cancer cells. Oncogene 2006; 26:2543-53. [PMID: 17043641 DOI: 10.1038/sj.onc.1210047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eucaryotic genes that are coordinately expressed tend to be clustered. Furthermore, gene clusters across chromosomal regions are often upregulated in various tumors. However, relatively little is known about how gene clusters are coordinately expressed in physiological or pathological conditions. Cofactor of BRCA1 (COBRA1), a subunit of the human negative elongation factor, has been shown to repress estrogen-stimulated transcription of trefoil factor 1 (TFF1 or pS2) by stalling RNA polymerase II. Here, we carried out a genome-wide study to identify additional physiological target genes of COBRA1 in breast cancer cells. The study identified a total of 134 genes that were either activated or repressed upon small hairpin RNA-mediated reduction of COBRA1. Interestingly, many COBRA1-regulated genes reside as clusters on the chromosomes and have been previously implicated in cancer development. Detailed examination of two such clusters on chromosome 21 (21q22) and chromosome X (Xp11) reveals that COBRA1 is physically associated with a subset of its regulated genes in each cluster. In addition, COBRA1 was shown to regulate both estrogen-dependent and -independent transcription of the gene cluster at 21q22, which encompasses the previously identified COBRA1-regulated TFF1 (pS2) locus. Thus, COBRA1 plays a critical role in the regulation of clustered gene expression at preferred chromosomal domains in breast cancer cells.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, X/genetics
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Humans
- Immunoblotting
- Multigene Family
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Receptors, Estrogen
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors
- Transcription, Genetic
- Trefoil Factor-1
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- S E Aiyar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
45
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
46
|
Aida M, Chen Y, Nakajima K, Yamaguchi Y, Wada T, Handa H. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol Cell Biol 2006; 26:6094-104. [PMID: 16880520 PMCID: PMC1592793 DOI: 10.1128/mcb.02366-05] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that DSIF- and NELF-mediated transcriptional pausing has a dual function in regulating immediate-early expression of the human junB gene. Before induction by interleukin-6, RNAPII, DSIF, and NELF accumulate in the promoter-proximal region of junB, mainly at around position +50 from the transcription initiation site. After induction, the association of these proteins with the promoter-proximal region continues whereas RNAPII and DSIF are also found in the downstream regions. Depletion of a subunit of NELF by RNA interference enhances the junB mRNA level both before and after induction, indicating that DSIF- and NELF-mediated pausing contributes to the negative regulation of junB expression, not only by inducing RNAPII pausing before induction but also by attenuating transcription after induction. These regulatory mechanisms appear to be conserved in other immediate-early genes as well.
Collapse
Affiliation(s)
- Masatoshi Aida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Zhang Z, Gilmour DS. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 2006; 21:65-74. [PMID: 16387654 DOI: 10.1016/j.molcel.2005.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/17/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
The mechanism by which Pol II terminates transcription in metazoans is not understood. We show that Pcf11 is directly involved in termination in Drosophila. dPcf11 is concentrated at the 3' end of the hsp70 gene in cells, and depletion of dPcf11 with RNAi causes Pol II to readthrough the normal region of termination. dPcf11 also localizes to most transcribed loci on polytene chromosomes. Biochemical analysis reveals that dPcf11 dismantles elongation complexes by a CTD-dependent but nucleotide-independent mechanism and that dPcf11 forms a bridge between the CTD and RNA. This bridge appears to be crucial because an anti-CTD antibody, which also dismantles the elongation complex, is found to bridge the CTD to RNA. dPcf11 was observed to inhibit transcription at low, but not high, nucleotide levels, suggesting that dPcf11 dismantles paused elongation complexes. These results provide a biochemical basis for the dependency of termination on pausing and the CTD in metazoans.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
48
|
McChesney PA, Aiyar SE, Lee OJ, Zaika A, Moskaluk C, Li R, El-Rifai W. Cofactor of BRCA1: A Novel Transcription Factor Regulator in Upper Gastrointestinal Adenocarcinomas. Cancer Res 2006; 66:1346-53. [PMID: 16452188 DOI: 10.1158/0008-5472.can-05-3593] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cofactor of BRCA1 (COBRA1) is a newly characterized member of the negative elongation factor (NELF) complex. In this work, we show that COBRA1 is overexpressed in the majority of primary upper gastrointestinal adenocarcinomas (UGC), and its overexpression correlates with down-regulation of TFF1. We have detected overexpression of COBRA1 mRNA using quantitative real-time reverse transcription-PCR in 28 (79%) primary UGCs. Immunohistochemical analysis of UGC tissue arrays that contained 70 tumor samples showed moderate-strong staining for COBRA1 in 60 (84%) tumors. Interestingly, the tumor samples showed absent-weak staining for TFF1 in 45 (65%) of the tumors. Simultaneous loss of TFF1 expression and overexpression of COBRA1 was observed in 42 of 70 (60%) tumors. Using small interfering RNA technology with gastric cancer cells, we have shown that COBRA1 inhibition leads to increased TFF1 promoter activity and gene expression. Promoter analysis of TFF1 indicated that regulation of TFF1 by COBRA1 is estrogen independent in contrast to breast cancer. Moreover, COBRA1 regulation of TFF1 in gastric cancer cells was independent of NELF-E. Using several truncated mutants and site mutants of the TFF1 promoter, we have shown that COBRA1 can negatively regulate the activator protein-1 (AP-1) complex at the TFF1 promoter and thus down-regulate TFF1 expression in gastric cancer cell lines. Electrophoretic mobility shift assay showed that COBRA1 attenuates AP-1 binding to DNA. Our results suggest COBRA1 as a novel oncogene in UGCs that regulate AP-1 binding and the expression of TFF1 in upper gastric epithelia.
Collapse
Affiliation(s)
- Patricia A McChesney
- Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang YV, Tang H, Gilmour DS. Identification in vivo of different rate-limiting steps associated with transcriptional activators in the presence and absence of a GAGA element. Mol Cell Biol 2005; 25:3543-52. [PMID: 15831460 PMCID: PMC1084279 DOI: 10.1128/mcb.25.9.3543-3552.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 01/19/2005] [Indexed: 11/20/2022] Open
Abstract
We analyzed the impact of a GAGA element on a transgenic promoter in Drosophila melanogaster that was activated by proteins composed of the Tet(on) DNA binding domain and either the heat shock factor (HSF) activation domain or a potent subdomain of VP16. Permanganate footprinting was used to monitor polymerase II (Pol II) on the transgenic promoters in vivo. Activation by Tet(on)-HSF but not by Tet(on)-VP16(A2) required the GAGA element; this correlated with the ability of the GAGA element to establish a paused Pol II. Although the GAGA element was not required for activation by Tet(on)-VP16(A2), the GAGA element greatly accelerated the rate of activation. The permanganate data also provided evidence that Pol II encountered different rate-limiting steps, following initiation in the presence of Tet(on)-HSF and Tet(on)-VP16(A2). The rate-limiting step in the presence of Tet(on)-HSF was release of Pol II paused about 20 to 40 nucleotides downstream from the start site. The rate-limiting step in the presence of Tet(on)-VP16(A2) occurred much closer to the transcription start site. Several biochemical studies have provided evidence for a structural transition shortly after Pol II initiates transcription. The behavior of Pol II in the presence of Tet(on)-VP16(A2) provides the first evidence that this transition occurs in vivo.
Collapse
Affiliation(s)
- Yunyuan Vivian Wang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|