1
|
Gabiatti BP, Freire ER, Odenwald J, de Freitas Nascimento J, Holetz F, Carrington M, Kramer S, Zoltner M. Trypanosomes lack a canonical EJC but possess an UPF1 dependent NMD-like pathway. PLoS One 2025; 20:e0315659. [PMID: 40053537 PMCID: PMC11888146 DOI: 10.1371/journal.pone.0315659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/28/2024] [Indexed: 03/09/2025] Open
Abstract
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
Collapse
Affiliation(s)
| | | | - Johanna Odenwald
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | | - Fabiola Holetz
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Mark Carrington
- Department of Biochemistry, Cambridge University, Cambridge, United Kingdom
| | - Susanne Kramer
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
2
|
Carbajo CG, Han X, Savur B, Upadhyaya A, Taha F, Tinti M, Wheeler RJ, Yates PA, Tiengwe C. A high-throughput protein tagging toolkit that retains endogenous untranslated regions for studying gene regulation in kinetoplastids. Open Biol 2025; 15:240334. [PMID: 39999874 PMCID: PMC11858757 DOI: 10.1098/rsob.240334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Kinetoplastid parasites cause diseases that threaten human and animal health. To survive transitions between vertebrate hosts and insect vectors, these parasites rely on precise regulation of gene expression to adapt to environmental changes. Since gene regulation in kinetoplastids is primarily post-transcriptional, developing efficient genetic tools for modifying genes at their endogenous loci while preserving regulatory mRNA elements is crucial for studying their complex biology. We present a CRISPR/Cas9-based tagging system that preserves untranslated regulatory elements and uses a viral 2A peptide from Thosea asigna to generate two separate proteins from a single transcript: a drug-selectable marker and a tagged protein of interest. This dual-function design maintains native control elements, allowing discrimination between regulation of transcript abundance, translational efficiency, and post-translational events. We validate the system by tagging six Trypanosoma brucei proteins and demonstrate (i) high-efficiency positive selection and separation of drug-selectable marker and target protein, (ii) preservation of regulatory responses to environmental cues like heat shock and iron availability, and (iii) maintenance of stage-specific regulation during developmental transitions. This versatile toolkit is applicable to all kinetoplastids amenable to CRISPR/Cas9 editing, providing a powerful reverse genetic tool for studying post-transcriptional regulation and protein function in organisms where post-transcriptional control is dominant.
Collapse
Affiliation(s)
| | - Xiaoyang Han
- Department of Life Sciences, Imperial College London, London, UK
| | - Bhairavi Savur
- Department of Life Sciences, Imperial College London, London, UK
| | - Arushi Upadhyaya
- Department of Life Sciences, Imperial College London, London, UK
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, London, UK
| | - Michele Tinti
- Wellcome Trust Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Richard J. Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Phillip A. Yates
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Calvin Tiengwe
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
3
|
Carbajo CG, Han X, Savur B, Upadhyaya A, Taha F, Tinti M, Wheeler RJ, Yates PA, Tiengwe C. A high-throughput protein tagging toolkit that retains endogenous UTRs for studying gene regulation in Kinetoplastids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.02.621556. [PMID: 39554005 PMCID: PMC11566017 DOI: 10.1101/2024.11.02.621556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kinetoplastid parasites cause diseases that threaten human and animal health. To survive transitions between vertebrate hosts and insect vectors, these parasites rely on precise regulation of gene expression to adapt to environmental changes. Since gene regulation in Kinetoplastids is primarily post-transcriptional, developing efficient genetic tools for modifying genes at their endogenous loci while preserving regulatory mRNA elements is crucial for studying their complex biology. We present a CRISPR/Cas9-based tagging system that preserves untranslated regulatory elements and uses a viral 2A peptide from Thosea asigna to generate two separate proteins from a single transcript: a drug-selectable marker and a tagged protein of interest. This dual-function design maintains native control elements, allowing discrimination between regulation of transcript abundance, translational efficiency, and post-translational events. We validate the system by tagging six Trypanosoma brucei proteins and demonstrate: (i) high-efficiency positive selection and separation of drug-selectable marker and target protein, (ii) preservation of regulatory responses to environmental cues like heat shock and iron availability, and (iii) maintenance of stage-specific regulation during developmental transitions. This versatile toolkit is applicable to all kinetoplastids amenable to CRISPR/Cas9 editing, providing a powerful reverse genetic tool for studying post-transcriptional regulation and protein function in organisms where post-transcriptional control is dominant.
Collapse
|
4
|
Moliner-Cubel S, Bahamontes-Rosa N, Rodriguez-Alejandre A, Nassau PM, Argyrou A, Bhardwaja A, Buxton RC, Calvo-Vicente D, Mouzon B, McDowell W, Mendoza-Losana A, Gomez-Lorenzo MG. Plasmodium RNA triphosphatase validation as antimalarial target. Int J Parasitol Drugs Drug Resist 2024; 25:100537. [PMID: 38810336 PMCID: PMC11157219 DOI: 10.1016/j.ijpddr.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 05/31/2024]
Abstract
Target-based approaches have traditionally been used in the search for new anti-infective molecules. Target selection process, a critical step in Drug Discovery, identifies targets that are essential to establish or maintain the infection, tractable to be susceptible for inhibition, selective towards their human ortholog and amenable for large scale purification and high throughput screening. The work presented herein validates the Plasmodium falciparum mRNA 5' triphosphatase (PfPRT1), the first enzymatic step to cap parasite nuclear mRNAs, as a candidate target for the development of new antimalarial compounds. mRNA capping is essential to maintain the integrity and stability of the messengers, allowing their translation. PfPRT1 has been identified as a member of the tunnel, metal dependent mRNA 5' triphosphatase family which differs structurally and mechanistically from human metal independent mRNA 5' triphosphatase. In the present study the essentiality of PfPRT1 was confirmed and molecular biology tools and methods for target purification, enzymatic assessment and target engagement were developed, with the goal of running a future high throughput screening to discover PfPRT1 inhibitors.
Collapse
Affiliation(s)
- Sonia Moliner-Cubel
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Noemi Bahamontes-Rosa
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Ane Rodriguez-Alejandre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Pamela M Nassau
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, SG2 7NY, UK
| | - Argyrides Argyrou
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, SG2 7NY, UK
| | - Anshu Bhardwaja
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, SG2 7NY, UK
| | - Rachel C Buxton
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, SG2 7NY, UK
| | - David Calvo-Vicente
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Bernadette Mouzon
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, SG2 7NY, UK
| | - William McDowell
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, SG2 7NY, UK
| | - Alfonso Mendoza-Losana
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain.
| |
Collapse
|
5
|
Sequences and proteins that influence mRNA processing in Trypanosoma brucei: Evolutionary conservation of SR-domain and PTB protein functions. PLoS Negl Trop Dis 2022; 16:e0010876. [PMID: 36288402 PMCID: PMC9639853 DOI: 10.1371/journal.pntd.0010876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Spliced leader trans splicing is the addition of a short, capped sequence to the 5' end of mRNAs. It is widespread in eukaryotic evolution, but factors that influence trans splicing acceptor site choice have been little investigated. In Kinetoplastids, all protein-coding mRNAs are 5' trans spliced. A polypyrimidine tract is usually found upstream of the AG splice acceptor, but there is no branch point consensus; moreover, splicing dictates polyadenylation of the preceding mRNA, which is a validated drug target. METHODOLOGY AND PRINCIPAL FINDINGS We here describe a trans splicing reporter system that can be used for studies and screens concerning the roles of sequences and proteins in processing site choice and efficiency. Splicing was poor with poly(U) tracts less than 9 nt long, and was influenced by an intergenic region secondary structure. A screen for signals resulted in selection of sequences that were on average 45% U and 35% C. Tethering of either the splicing factor SF1, or the cleavage and polyadenylation factor CPSF3 within the intron stimulated processing in the correct positions, while tethering of two possible homologues of Opisthokont PTB inhibited processing. In contrast, tethering of SR-domain proteins RBSR1, RBSR2, or TSR1 or its interaction partner TSR1IP, promoted use of alternative signals upstream of the tethering sites. RBSR1 interacts predominantly with proteins implicated in splicing, whereas the interactome of RBSR2 is more diverse. CONCLUSIONS Our selectable constructs are suitable for screens of both sequences, and proteins that affect mRNA processing in T. brucei. Our results suggest that the functions of PTB and SR-domain proteins in splice site definition may already have been present in the last eukaryotic common ancestor.
Collapse
|
6
|
Ribosome Profiling in Trypanosomatids. Methods Mol Biol 2019. [PMID: 30980300 DOI: 10.1007/978-1-4939-9210-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ribosomes are the machinery responsible for reading mRNAs and translating them into proteins. The ribosome profiling approach is based on high-throughput sequencing of ribosome-protected mRNAs. RNAs not harboring ribosomes are removed by nuclease digestion leaving the so-called ribosome "footprints." The purified "footprint" RNA molecules are processed into DNA libraries and their individual abundance is determined by deep sequencing. Ribosome profiling reveals the portion of transcripts which are actually protein-coding and can be used for differential gene expression analysis addressing rates of protein synthesis, and translational control and efficiency.
Collapse
|
7
|
Begolo D, Vincent IM, Giordani F, Pöhner I, Witty MJ, Rowan TG, Bengaly Z, Gillingwater K, Freund Y, Wade RC, Barrett MP, Clayton C. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog 2018; 14:e1007315. [PMID: 30252911 PMCID: PMC6173450 DOI: 10.1371/journal.ppat.1007315] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/05/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Kinetoplastid parasites-trypanosomes and leishmanias-infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition.
Collapse
Affiliation(s)
- Daniela Begolo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Timothy G. Rowan
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Zakaria Bengaly
- Centre International de Recherche–Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso 01, Burkina Faso
| | - Kirsten Gillingwater
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, CA, United States of America
| | - Rebecca C. Wade
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Christine Clayton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
8
|
de Freitas Nascimento J, Kelly S, Sunter J, Carrington M. Codon choice directs constitutive mRNA levels in trypanosomes. eLife 2018; 7:e32467. [PMID: 29543152 PMCID: PMC5896880 DOI: 10.7554/elife.32467] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Selective transcription of individual protein coding genes does not occur in trypanosomes and the cellular copy number of each mRNA must be determined post-transcriptionally. Here, we provide evidence that codon choice directs the levels of constitutively expressed mRNAs. First, a novel codon usage metric, the gene expression codon adaptation index (geCAI), was developed that maximised the relationship between codon choice and the measured abundance for a transcriptome. Second, geCAI predictions of mRNA levels were tested using differently coded GFP transgenes and were successful over a 25-fold range, similar to the variation in endogenous mRNAs. Third, translation was necessary for the accelerated mRNA turnover resulting from codon choice. Thus, in trypanosomes, the information determining the levels of most mRNAs resides in the open reading frame and translation is required to access this information.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Jack Sunter
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Mark Carrington
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Kramer S. Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res 2017; 45:e49. [PMID: 27940558 PMCID: PMC5397161 DOI: 10.1093/nar/gkw1245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
The detection of mRNAs undergoing transcription or decay is challenging, because both processes are fast. However, the relative proportion of an mRNA in synthesis or decay increases with mRNA size and decreases with mRNA half-life. Based on this rationale, I have exploited a 22 200 nucleotide-long, short-lived endogenous mRNA as a reporter for mRNA metabolism in trypanosomes. The extreme 5΄ and 3΄ ends were labeled with red- and green-fluorescent Affymetrix® single mRNA FISH probes, respectively. In the resulting fluorescence images, yellow spots represent intact mRNAs; red spots are mRNAs in transcription or 3΄-5΄ decay, and green spots are mRNAs in 5΄-3΄ degradation. Most red spots were nuclear and insensitive to transcriptional inhibition and thus likely transcription intermediates. Most green spots were cytoplasmic, confirming that the majority of cytoplasmic decay in trypanosomes is 5΄-3΄. The system showed the expected changes at inhibition of transcription or translation and RNAi depletion of the trypanosome homologue to the 5΄-3΄ exoribonuclease Xrn1. The method allows to monitor changes in mRNA metabolism both on cellular and on population/tissue wide levels, but also to study the subcellular localization of mRNA transcription and decay pathways. I show that the system is applicable to mammalian cells.
Collapse
Affiliation(s)
- Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
De Pablos LM, Kelly S, de Freitas Nascimento J, Sunter J, Carrington M. Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei. Open Biol 2017; 7:rsob.160159. [PMID: 28381627 PMCID: PMC5413900 DOI: 10.1098/rsob.160159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In Trypanosoma brucei and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs). Both RBPs have reduced expression in insect procyclic forms (PCFs) compared with bloodstream forms (BSFs). Upon overexpression in PCFs, both proteins were recruited to cytoplasmic foci, co-localizing with the processing body marker SCD6. Further, both RBPs altered the transcriptome from a PCF- to a BSF-like pattern. Notably, upon expression of BirA*-RBP9 and BirA*-RBP10, BioID yielded more than 200 high confidence protein interactors (more than 10-fold enriched); 45 (RBP9) and 31 (RBP10) were directly related to mRNA metabolism. This study validates the use of BioID for investigating mRNP components but also illustrates the complexity of mRNP function.
Collapse
Affiliation(s)
- Luis Miguel De Pablos
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.,Centre for Immunology and Infection (CII). Biology Dept., University of York, York YO10 5DD, UK
| | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Jack Sunter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
11
|
Carvalho S, Barreira da Silva R, Shawki A, Castro H, Lamy M, Eide D, Costa V, Mackenzie B, Tomás AM. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 2015; 96:581-95. [PMID: 25644708 DOI: 10.1111/mmi.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/18/2022]
Abstract
Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn(2+) was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis.
Collapse
Affiliation(s)
- Sandra Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4150-180, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fadda A, Ryten M, Droll D, Rojas F, Färber V, Haanstra JR, Merce C, Bakker BM, Matthews K, Clayton C. Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol Microbiol 2014; 94:307-26. [PMID: 25145465 PMCID: PMC4285177 DOI: 10.1111/mmi.12764] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 01/14/2023]
Abstract
African trypanosomes are an excellent system for quantitative modelling of post-transcriptional mRNA control. Transcription is constitutive and polycistronic; individual mRNAs are excised by trans splicing and polyadenylation. We here measure mRNA decay kinetics in two life cycle stages, bloodstream and procyclic forms, by transcription inhibition and RNASeq. Messenger RNAs with short half-lives tend to show initial fast degradation, followed by a slower phase; they are often stabilized by depletion of the 5′–3′ exoribonuclease XRNA. Many longer-lived mRNAs show initial slow degradation followed by rapid destruction: we suggest that the slow phase reflects gradual deadenylation. Developmentally regulated mRNAs often show regulated decay, and switch their decay pattern. Rates of mRNA decay are good predictors of steady state levels for short mRNAs, but mRNAs longer than 3 kb show unexpectedly low abundances. Modelling shows that variations in splicing and polyadenylation rates can contribute to steady-state mRNA levels, but this is completely dependent on competition between processing and co-transcriptional mRNA precursor destruction.
Collapse
Affiliation(s)
- Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Clayton CE. Networks of gene expression regulation in Trypanosoma brucei. Mol Biochem Parasitol 2014; 195:96-106. [PMID: 24995711 DOI: 10.1016/j.molbiopara.2014.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Regulation of gene expression in Kinetoplastids relies mainly on post-transcriptional mechanisms. Recent high-throughput analyses, combined with mathematical modelling, have demonstrated possibilities for transcript-specific regulation at every stage: trans splicing, polyadenylation, translation, and degradation of both the precursor and the mature mRNA. Different mRNA degradation pathways result in different types of degradation kinetics. The original idea that the fate of an mRNA - or even just its degradation kinetics - can be defined by a single "regulatory element" is an over-simplification. It is now clear that every mRNA can bind many different proteins, some of which may compete with each other. Superimposed upon this complexity are the interactions of those proteins with effectors of gene expression. The amount of protein that is made from a gene is therefore determined by a complex network of interactions.
Collapse
Affiliation(s)
- C E Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Vasquez JJ, Hon CC, Vanselow JT, Schlosser A, Siegel TN. Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 2014; 42:3623-37. [PMID: 24442674 PMCID: PMC3973304 DOI: 10.1093/nar/gkt1386] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While gene expression is a fundamental and tightly controlled cellular process that is regulated at multiple steps, the exact contribution of each step remains unknown in any organism. The absence of transcription initiation regulation for RNA polymerase II in the protozoan parasite Trypanosoma brucei greatly simplifies the task of elucidating the contribution of translation to global gene expression. Therefore, we have sequenced ribosome-protected mRNA fragments in T. brucei, permitting the genome-wide analysis of RNA translation and translational efficiency. We find that the latter varies greatly between life cycle stages of the parasite and ∼100-fold between genes, thus contributing to gene expression to a similar extent as RNA stability. The ability to map ribosome positions at sub-codon resolution revealed extensive translation from upstream open reading frames located within 5' UTRs and enabled the identification of hundreds of previously un-annotated putative coding sequences (CDSs). Evaluation of existing proteomics and genome-wide RNAi data confirmed the translation of previously un-annotated CDSs and suggested an important role for >200 of those CDSs in parasite survival, especially in the form that is infective to mammals. Overall our data show that translational control plays a prevalent and important role in different parasite life cycle stages of T. brucei.
Collapse
Affiliation(s)
- Juan-José Vasquez
- Research Center for Infectious Diseases, University of Wuerzburg, Wuerzburg 97080, Germany, Département Biologie cellulaire et infection, Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris 75015, France, INSERM U786, Paris 75015, France and Rudolf Virchow Center, University of Wuerzburg, Wuerzburg 97080, Germany
| | | | | | | | | |
Collapse
|
15
|
Sunter J, Webb H, Carrington M. Determinants of GPI-PLC localisation to the flagellum and access to GPI-anchored substrates in trypanosomes. PLoS Pathog 2013; 9:e1003566. [PMID: 23990786 PMCID: PMC3749955 DOI: 10.1371/journal.ppat.1003566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/05/2013] [Indexed: 02/01/2023] Open
Abstract
In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved. African trypanosomes are unicellular parasites with a single flagellum that maintain a persistent infection through antigenic variation based on changes in a densely packed cell surface coat of variant surface glycoprotein (VSG). The cells also contain an enzyme, GPI-PLC, able to shed the VSG from the cell surface. However, the activity is regulated and substantial shedding only occurs from dying cells. The GPI-PLC is found predominantly on the membrane of this flagellum. Here, we have investigated the relationship between this subcellular localisation and VSG shedding ability of the GPI-PLC. We found that two motifs are important: a cluster of three cysteines that are modified by the addition of fatty acids and a proline, mutation of which caused the redistribution of GPI-PLC from the flagellar to the plasma membrane. Localisation of GPI-PLC to the plasma membrane is necessary for GPI-PLC to access the VSG in dying cells. Finally, the correct localisation of the GPI-PLC was dependent on a functional flagellar pocket. These results have provided a significant and exploitable insight into the regulation of GPI-PLC and more generally into how proteins are targeted to the flagellum membrane.
Collapse
Affiliation(s)
- Jack Sunter
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Gunasekera K, Wüthrich D, Braga-Lagache S, Heller M, Ochsenreiter T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics 2012; 13:556. [PMID: 23067041 PMCID: PMC3545838 DOI: 10.1186/1471-2164-13-556] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
Background Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology. Results Using Stable Isotope Labelling of Amino acids in Cell culture (SILAC) in combination with mass spectrometry we determined the abundance of >1600 proteins in the long slender (LS), short stumpy (SS) mammalian bloodstream form stages relative to the procyclic (PC) insect-form stage. In total we identified 2645 proteins, corresponding to ~30% of the total proteome and for the first time present a comprehensive overview of relative protein levels in three life stages of the parasite. Conclusions We can show the extent of pre-adaptation in the SS cells, especially at the level of the mitochondrial proteome. The comparison to a previously published report on monomorphic in vitro grown bloodstream and procyclic T. brucei indicates a loss of stringent regulation particularly of mitochondrial proteins in these cells when compared to the pleomorphic in vivo situation. In order to better understand the different levels of gene expression regulation in this organism we compared mRNA steady state abundance with the relative protein abundance-changes and detected moderate but significant correlation indicating that trypanosomes possess a significant repertoire of translational and posttranslational mechanisms to regulate protein abundance.
Collapse
|
17
|
Schwede A, Kramer S, Carrington M. How do trypanosomes change gene expression in response to the environment? PROTOPLASMA 2012; 249:223-238. [PMID: 21594757 PMCID: PMC3305869 DOI: 10.1007/s00709-011-0282-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 05/30/2023]
Abstract
All organisms are able to modulate gene expression in response to internal and external stimuli. Trypanosomes represent a group that diverged early during the radiation of eukaryotes and do not utilise regulated initiation of transcription by RNA polymerase II. Here, the mechanisms present in trypanosomes to alter gene expression in response to stress and change of host environment are discussed and contrasted with those operating in yeast and cultured mammalian cells.
Collapse
Affiliation(s)
- Angela Schwede
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| |
Collapse
|
18
|
|
19
|
Manful T, Fadda A, Clayton C. The role of the 5'-3' exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA (NEW YORK, N.Y.) 2011; 17:2039-2047. [PMID: 21947264 PMCID: PMC3198596 DOI: 10.1261/rna.2837311] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
The steady-state level of each mRNA in a cell is a balance between synthesis and degradation. Here, we use high-throughput RNA sequencing (RNASeq) to determine the relationship between mRNA degradation and mRNA abundance on a transcriptome-wide scale. The model organism used was the bloodstream form of Trypanosoma brucei, a protist that lacks regulation of RNA polymerase II initiation. The mRNA half-lives varied over two orders of magnitude, with a median half-life of 13 min for total (rRNA-depleted) mRNA. Data for poly(A)+ RNA yielded shorter half-lives than for total RNA, indicating that removal of the poly(A) tail was usually the first step in degradation. Depletion of the major 5'-3' exoribonuclease, XRNA, resulted in the stabilization of most mRNAs with half-lives under 30 min. Thus, on a transcriptome-wide scale, degradation of most mRNAs is initiated by deadenylation. Trypanosome mRNA levels are strongly influenced by gene copy number and mRNA half-life: Very abundant mRNAs that are required throughout the life-cycle may be encoded by multicopy genes and have intermediate-to-long half-lives; those encoding ribosomal proteins, with one to two gene copies, are exceptionally stable. Developmentally regulated transcripts with a lower abundance in the bloodstream forms than the procyclic forms had half-lives around the median, whereas those with a higher abundance in the bloodstream forms than the procyclic forms, such as those encoding glycolytic enzymes, had longer half-lives.
Collapse
Affiliation(s)
- Theresa Manful
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D69120 Heidelberg, Germany
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D69120 Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D69120 Heidelberg, Germany
| |
Collapse
|
20
|
Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C. Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 2011; 6:e25112. [PMID: 21957477 PMCID: PMC3177853 DOI: 10.1371/journal.pone.0025112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
In many eukaryotes, messenger RNAs with premature termination codons are destroyed by a process called "nonsense-mediated decay", which requires the RNA helicase Upf1 and also, usually, an interacting factor, Upf2. Recognition of premature termination codons may rely on their distance from either a splice site or the polyadenylation site, and long 3'-untranslated regions can trigger mRNA decay. The protist Trypanosoma brucei relies heavily on mRNA degradation to determine mRNA levels, and 3'-untranslated regions play a major role in control of mRNA decay. We show here that trypanosomes have a homologue of Upf1, TbUPF1, which interacts with TbUPF2 and (in an RNA-dependent fashion) with poly(A) binding protein 1, PABP1. Introduction of a premature termination codon in either an endogenous gene or a reporter gene decreased mRNA abundance, as expected for nonsense-mediated decay, but a dependence of this effect on TbUPF1 could not be demonstrated, and depletion of TbUPF1 by over 95% had no effect on parasite growth or the mRNA transcriptome. Further investigations of the reporter mRNA revealed that increases in open reading frame length tended to increase mRNA abundance. In contrast, inhibition of translation, either using 5'-secondary structures or by lengthening the 5'-untranslated region, usually decreased reporter mRNA abundance. Meanwhile, changing the length of the 3'-untranslated region had no consistent effect on mRNA abundance. We suggest that in trypanosomes, translation per se may inhibit mRNA decay, and interactions with multiple RNA-binding proteins preclude degradation based on 3'-untranslated region length alone.
Collapse
Affiliation(s)
- Praveen Delhi
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| | - Rafael Queiroz
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Diana Inchaustegui
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| |
Collapse
|
21
|
Freire ER, Dhalia R, Moura DMN, da Costa Lima TD, Lima RP, Reis CRS, Hughes K, Figueiredo RCBQ, Standart N, Carrington M, de Melo Neto OP. The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol Biochem Parasitol 2010; 176:25-36. [PMID: 21111007 DOI: 10.1016/j.molbiopara.2010.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Translation initiation in eukaryotes requires eIF4E, the cap binding protein, which mediates its function through an interaction with the scaffolding protein eIF4G, as part of the eIF4F complex. In trypanosomatids, four eIF4E homologues have been described but the specific function of each is not well characterized. Here, we report a study of these proteins in Trypanosoma brucei (TbEIF4E1 through 4). At the sequence level, they can be assigned to two groups: TbEIF4E1 and 2, similar in size to metazoan eIF4E1; and TbEIF4E3 and 4, with long N-terminal extensions. All are constitutively expressed, but whilst TbEIF4E1 and 2 localize to both the nucleus and cytoplasm, TbEIF4E3 and 4 are strictly cytoplasmic and are also more abundant. After knockdown through RNAi, TbEIF4E3 was the only homologue confirmed to be essential for viability of the insect procyclic form. In contrast, TbEIF4E1, 3 and 4 were all essential for the mammalian bloodstream form. Simultaneous RNAi knockdown of TbEIF4E1 and 2 caused cessation of growth and death in procyclics, but with a delayed impact on translation, whilst knockdown of TbEIF4E3 alone or a combined TbEIF4E1 and 4 knockdown led to substantial translation inhibition which preceded cellular death by several days, at least. Only TbEIF4E3 and 4 were found to interact with T. brucei eIF4G homologues; TbEIF4E3 bound both TbEIF4G3 and 4 whilst TbEIF4E4 bound only to TbEIF4G3. These results are consistent with TbEIF4E3 and 4 having distinct but relevant roles in initiation of protein synthesis.
Collapse
Affiliation(s)
- Eden R Freire
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Campus UFPE, Recife, PE 50670-420, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Trypanosoma cruzi: modulation of HSP70 mRNA stability by untranslated regions during heat shock. Exp Parasitol 2010; 126:245-53. [PMID: 20493845 DOI: 10.1016/j.exppara.2010.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/25/2010] [Accepted: 05/16/2010] [Indexed: 11/22/2022]
Abstract
Gene regulation in trypanosomatids occurs mainly by post-transcriptional mechanisms modulating mRNA stability and translation. We have investigated heat shock protein (HSP) 70 gene regulation in Trypanosoma cruzi, the causal agent of Chagas' disease. The HSP70 mRNA's half-life increases after heat shock, and the stabilization is dependent on protein synthesis. In a cell-free RNA decay assay, a U-rich region in the 3' untranslated region (UTR) is a target for degradation, which is reduced when in the presence of protein extracts from heat shocked cells. In a transfected reporter gene assay, both the 5'- and 3'-UTRs confer temperature-dependent regulation. Both UTRs must be present to increase mRNA stability at 37 degrees C, indicating that the 5'- and 3'-UTRs act cooperatively to stabilize HSP70 mRNA during heat shock. We conclude that HSP70 5'- and 3'-UTRs regulate mRNA stability during heat shock in T. cruzi.
Collapse
|
23
|
Salavati R, Najafabadi HS. Sequence-based functional annotation: what if most of the genes are unique to a genome? Trends Parasitol 2010; 26:225-9. [DOI: 10.1016/j.pt.2010.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 12/08/2009] [Accepted: 02/04/2010] [Indexed: 11/30/2022]
|
24
|
Kramer S, Queiroz R, Ellis L, Hoheisel JD, Clayton C, Carrington M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 2010; 123:699-711. [PMID: 20124414 PMCID: PMC2823576 DOI: 10.1242/jcs.058511] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 01/17/2023] Open
Abstract
In trypanosomes, the predominant mechanisms of regulation of gene expression are post-transcriptional. The DEAD-box RNA helicase DHH1 was identified in a screen for gene products that are necessary for the instability of the GPI-PLC mRNA in insect-stage trypanosomes. Expression of an ATPase-deficient dhh1 mutant caused a rapid growth arrest associated with a decrease in polysomes, an increase in P-bodies and a slight decrease in average mRNA levels. However, the effect of dhh1 mutant expression on both turnover and translational repression of mRNAs was selective. Whereas there was little effect on the stability of constitutive mRNAs, the control of a large cohort of developmentally regulated mRNAs was reversed; many mRNAs normally downregulated in insect-stage trypanosomes were stabilized and many mRNAs normally upregulated decreased in level. One stabilised mRNA, ISG75, was characterised further. Despite the overall decrease in polysomes, the proportion of the ISG75 mRNA in polysomes was unchanged and the result was ISG75 protein accumulation. Our data show that specific mRNAs can escape DHH1-mediated translational repression. In trypanosomes, DHH1 has a selective role in determining the levels of developmentally regulated mRNAs.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Rafael Queiroz
- ZMBH, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Louise Ellis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Jörg D. Hoheisel
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | - Mark Carrington
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
25
|
Subramanya S, Armah DA, Mensa-Wilmot K. Trypanosoma brucei: reduction of GPI-phospholipase C protein during differentiation is dependent on replication of newly transformed cells. Exp Parasitol 2010; 125:222-9. [PMID: 20109448 DOI: 10.1016/j.exppara.2010.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 11/15/2022]
Abstract
The protozoan parasite Trypanosoma brucei lives in the bloodstream of vertebrates or in a tsetse fly. Expression of a GPI-phospholipase C polypeptide (GPI-PLCp) in the parasite is restricted to the bloodstream form. Events controlling the amount of GPI-PLCp expressed during differentiation are not completely understood. Our metabolic "pulse-chase" analysis reveals that GPI-PLCp is stable in bloodstream form. However, during differentiation of bloodstream to insect stage (procyclic) T. brucei, translation GPI-PLC mRNA ceases within 8h of initiating transformation. GPI-PLCp is not lost precipitously from newly transformed procyclic trypanosomes. Nascent procyclics contain 400-fold more GPI-PLCp than established insect stage T. brucei. Reduction of GPI-PLCp in early-stage procyclics is linked to parasite replication. Sixteen cell divisions are required to reduce the amount of GPI-PLCp in newly differentiated procyclics to levels present in the established procyclic. GPI-PLCp is retained in strains of T. brucei that fail to replicate after differentiation of the bloodstream to the procyclic form. Thus, at least two factors control levels of GPI-PLCp during differentiation of bloodstream T. brucei; (i) repression of GPI-PLC mRNA translation, and (ii) sustained replication of newly transformed procyclic T. brucei. These studies illustrate the importance of repeated cell divisions in controlling the steady-state amount of GPI-PLCp during differentiation of the African trypanosome.
Collapse
Affiliation(s)
- Sandesh Subramanya
- Department of Cellular Biology, The University of Georgia, 724 Biological Sciences, Athens, GA 30602, USA
| | | | | |
Collapse
|
26
|
Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, Carrington M. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci 2008; 121:3002-14. [PMID: 18713834 DOI: 10.1242/jcs.031823] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In trypanosomes there is an almost total reliance on post-transcriptional mechanisms to alter gene expression; here, heat shock was used to investigate the response to an environmental signal. Heat shock rapidly and reversibly induced a decrease in polysome abundance, and the consequent changes in mRNA metabolism were studied. Both heat shock and polysome dissociation were necessary for (1) a reduction in mRNA levels that was more rapid than normal turnover, (2) an increased number of P-body-like granules that contained DHH1, SCD6 and XRNA, (3) the formation of stress granules that remained largely separate from the P-body-like granules and localise to the periphery of the cell and, (4) an increase in the size of a novel focus located at the posterior pole of the cell that contain XRNA, but neither DHH1 nor SCD6. The response differed from mammalian cells in that neither the decrease in polysomes nor stress-granule formation required phosphorylation of eIF2alpha at the position homologous to that of serine 51 in mammalian eIF2alpha and in the occurrence of a novel XRNA-focus.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C. A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 2008; 36:3374-88. [PMID: 18442996 PMCID: PMC2425496 DOI: 10.1093/nar/gkn108] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic Ccr4/Caf1/Not complex is involved in deadenylation of mRNAs. The Caf1 and Ccr4 subunits both potentially have deadenylating enzyme activity. We investigate here the roles of Ccr4 and Caf1 in deadenylation in two organisms that separated early in eukaryotic evolution: humans and trypanosomes. In Trypanosoma brucei, we found a complex containing CAF1, NOT1, NOT2 and NOT5, DHH1 and a possible homologue of Caf130; no homologue of Ccr4 was found. Trypanosome CAF1 has deadenylation activity, and is essential for cell survival. Depletion of trypanosome CAF1 delayed deadenylation and degradation of constitutively expressed mRNAs. Human cells have two isozymes of Caf1: simultaneous depletion of both inhibited degradation of an unstable reporter mRNA. In both species, depletion of Caf1 homologues inhibited deadenylation of bulk RNA and resulted in an increase in average poly(A) tail length.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Louise Ellis
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Julia Luther
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Mark Carrington
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Georg Stoecklin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, Department of Biochemistry, 80 Tennis Court Rd., Cambridge CB2 1GA, UK, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and DKFZ-ZMBH Allianz
| |
Collapse
|
28
|
Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 2008; 10:569-77. [PMID: 18177626 DOI: 10.1016/j.mib.2007.10.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Kinetoplastids branched early from the eukaryotic lineage and include several parasitic protozoan species. Up to several hundred kinetoplastid genes are co-transcribed into polycistronic RNAs and individual mRNAs are resolved by coupled co-transcriptional trans-splicing of a universal splice-leader RNA (SL-RNA) and 3'-end maturation processes. Protein-coding genes lack RNA polymerase II promoters. Consequently, most of gene regulation in these organisms occurs post-transcriptionally. Over the last few years, many more genes that are regulated at the mRNA stability level and a few at the translation level have been reported. Almost all major trypanosome homologues of yeast/mammalian mRNA degradation enzymes have been functionally characterized and major pathways identified. Novel paradigms have also recently emerged: regulated post-transcriptional processing of cytoplasmic RNAs, SL-RNA transcriptional silencing-mediated global stress response, and Leishmania-specific large-scale modulation of post-transcriptional gene expression via inactive degenerated retroelements. Several of these developments have greatly benefited from the recently completed genomic sequences and functional genomic studies.
Collapse
|
29
|
The cell biology of Trypanosoma brucei differentiation. Curr Opin Microbiol 2007; 10:539-46. [PMID: 17997129 DOI: 10.1016/j.mib.2007.09.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
Abstract
Developmental events in the life-cycle of the sleeping sickness parasite comprise integrated changes in cell morphology, metabolism, gene expression and signalling pathways. In each case these processes differ from the eukaryotic norm. In the past three years, understanding of these developmental processes has progressed from a description of the cytological events of differentiation to a discovery of its underlying molecular controls. With an expanding set of reagents for the identification of distinct parasite life-cycle stages in the tsetse, trypanosome differentiation is being studied from the molecular to the organismal and population level. Interestingly, the new molecular discoveries provide insights into the biology of the parasite in the field.
Collapse
|
30
|
Su LH, Lee GA, Huang YC, Chen YH, Sun CH. Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Mol Biochem Parasitol 2007; 156:124-35. [PMID: 17765984 DOI: 10.1016/j.molbiopara.2007.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 07/17/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
Two systems for stable transfection of Giardia have been established using selection either by neomycin or by puromycin. We asked if these selection systems themselves influenced expression of endogenous giardial genes. Northern blot analysis showed a approximately 1.4 to approximately 7-fold increase in the encystation-induced cyst wall protein 1 (cwp1), cwp2, and gmyb2 gene transcripts in the drug selected cell lines during vegetative growth, compared with untransfected cells. However, the levels of the constitutive ran, lrp3, or alpha2-tubulin gene transcripts decreased slightly or did not change in these stably transfected cell lines. Part of the effect could be due to drug selection, since treatment of untransfected cells with G418 or puromycin also had similar effects. Nuclear run-on assays showed that part of the effect comes from an increase in transcription initiation rate. The levels of CWP and cyst formation during vegetative growth also increased in the transfected cell lines. Using proteomic technologies, we identified eight genes whose expression is upregulated in neomycin selected cell lines, including phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, ornithine carbamoyltransferase, carbamate kinase, orf 16424, cyclophilin, co-chaperone-like p21, and bip. Six of these are also upregulated in puromycin selected cell lines. Our results indicate that transfection and drug selection, per se, can alter expression of genes involved in metabolism, protein folding, and differentiation status in Giardia.
Collapse
Affiliation(s)
- Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | |
Collapse
|
31
|
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007; 156:93-101. [PMID: 17765983 DOI: 10.1016/j.molbiopara.2007.07.007] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Gene expression in Kinetoplastids is very unusual in that the open reading frames are arranged in long polycistronic arrays, monocistronic mRNAs being created by post-transcriptional processing. Thus the regulation of gene expression is post-transcriptional. We here discuss recent results concerning the enzymes required for mRNA degradation, and components of the translation initiation machinery, and how both are regulated.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekualre Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany.
| | | |
Collapse
|
32
|
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol 2007; 63:218-28. [PMID: 17229212 DOI: 10.1111/j.1365-2958.2006.05492.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 'two coat' model of the life cycle of Trypanosoma brucei has prevailed for more than 15 years. Metacyclic forms transmitted by infected tsetse flies and mammalian bloodstream forms are covered by variant surface glycoproteins. All other life cycle stages were believed to have a procyclin coat, until it was shown recently that epimastigote forms in tsetse salivary glands express procyclin mRNAs without translating them. As epimastigote forms cannot be cultured, a procedure was devised to compare the transcriptomes of parasites in different fly tissues. Transcripts encoding a family of glycosylphosphatidyl inositol-anchored proteins, BARPs (previously called bloodstream alanine-rich proteins), were 20-fold more abundant in salivary gland than midgut (procyclic) trypanosomes. Anti-BARP antisera reacted strongly and exclusively with salivary gland parasites and a BARP 3' flanking region directed epimastigote-specific expression of reporter genes in the fly, but inhibited expression in bloodstream and procyclic forms. In contrast to an earlier report, we could not detect BARPs in bloodstream forms. We propose that BARPs form a stage-specific coat for epimastigote forms and suggest renaming them brucei alanine-rich proteins.
Collapse
Affiliation(s)
- Simon Urwyler
- Institut für Zellbiologie, Universität Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
33
|
Li CH, Irmer H, Gudjonsdottir-Planck D, Freese S, Salm H, Haile S, Estévez AM, Clayton C. Roles of a Trypanosoma brucei 5'->3' exoribonuclease homolog in mRNA degradation. RNA (NEW YORK, N.Y.) 2006; 12:2171-86. [PMID: 17077271 PMCID: PMC1664730 DOI: 10.1261/rna.291506] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 09/21/2006] [Indexed: 05/09/2023]
Abstract
The genome of the kinetoplastid parasite Trypanosoma brucei encodes four homologs of the Saccharomyces cerevisiae 5'-->3' exoribonucleases Xrn1p and Xrn2p/Rat1p, XRNA, XRNB, XRNC, and XRND. In S. cerevisiae, Xrn1p is a cytosolic enzyme involved in degradation of mRNA, whereas Xrn2p is involved in RNA processing in the nucleus. Trypanosome XRND was found in the nucleus, XRNB and XRNC were found in the cytoplasm, and XRNA appeared to be in both compartments. XRND and XRNA were essential for parasite growth. Depletion of XRNA increased the abundances of highly unstable developmentally regulated mRNAs, perhaps by delaying a deadenylation-independent decay pathway. Degradation of more stable or unregulated mRNAs was not affected by XRNA depletion although a slight decrease in average poly(A) tail length was observed. We conclude that in trypanosomes 5'-->3' exonuclease activity is important in degradation of highly unstable, regulated mRNAs, but that for other mRNAs another step is more important in determining the decay rate.
Collapse
Affiliation(s)
- Chi-Ho Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mayho M, Fenn K, Craddy P, Crosthwaite S, Matthews K. Post-transcriptional control of nuclear-encoded cytochrome oxidase subunits in Trypanosoma brucei: evidence for genome-wide conservation of life-cycle stage-specific regulatory elements. Nucleic Acids Res 2006; 34:5312-24. [PMID: 17012283 PMCID: PMC1636420 DOI: 10.1093/nar/gkl598] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosomes represent an excellent model for the post-transcriptional regulation of gene expression because their genome is organized into polycistronic transcription units. However, few signals governing developmental stage-specific expression have been identified, with there being no compelling evidence for widespread conservation of regulatory motifs. As a tool to search for common regulatory sequences we have used the nuclear-encoded components of the cytochrome oxidase (COX) complex of the trypanosome respiratory chain. Components of this complex represent a form of post-transcriptional operon because trypanosome mitochondrial activity is unusual in being developmentally programmed. By genome analysis we identified the genes for seven components of the COX complex. Each mRNA exhibits bloodstream stage-specific instability, which is not mediated by the RNA silencing pathway but which is alleviated by cycloheximide. Reporter assays have identified regulatory regions within the 3′-untranslated regions of three COX mRNAs operating principally at the translational level, but also via mRNA stability. Interrogation of the mapped regions via oligonucleotide frequency scoring provides evidence for genome-wide conservation of regulatory sequences among a large cohort of procyclic-enriched transcripts. Analysis of the co-regulated subunits of a stage-specific enzyme is therefore a novel approach to uncover cryptic regulatory sequences controlling gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Matthew Mayho
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's BuildingsWest Mains Road, Edinburgh EH9 3JT, UK
- Faculty of Life Sciences, The University of ManchesterMichael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Katelyn Fenn
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's BuildingsWest Mains Road, Edinburgh EH9 3JT, UK
| | - Paul Craddy
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's BuildingsWest Mains Road, Edinburgh EH9 3JT, UK
| | - Susan Crosthwaite
- Faculty of Life Sciences, The University of ManchesterMichael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Keith Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's BuildingsWest Mains Road, Edinburgh EH9 3JT, UK
- To whom correspondence should be addressed. Tel: +44 131 651 3639; Fax: +44 131 651 3670;
| |
Collapse
|
35
|
Lukes J, Paris Z, Regmi S, Breitling R, Mureev S, Kushnir S, Pyatkov K, Jirků M, Alexandrov KA. Translational initiation in Leishmania tarentolae and Phytomonas serpens (Kinetoplastida) is strongly influenced by pre-ATG triplet and its 5' sequence context. Mol Biochem Parasitol 2006; 148:125-32. [PMID: 16644031 DOI: 10.1016/j.molbiopara.2006.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 03/13/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
To investigate the influence of sequence context of translation initiation codon on translation efficiency in Kinetoplastida, we constructed a library of expression plasmids randomized in the three nucleotides prefacing ATG of a reporter gene encoding enhanced green fluorescent protein (EGFP). All 64 possible combinations of pre-ATG triplets were individually stably integrated into the rDNA locus of Leishmania tarentolae and the resulting cell lines were assessed for EGFP expression. The expression levels were quantified directly by measuring the fluorescence of EGFP protein in living cells and confirmed by Western blotting. We observed a strong influence of the pre-ATG triplet on the level of protein expression over a 20-fold range. To understand the degree of evolutionary conservation of the observed effect, we transformed Phytomonas serpens, a trypanosomatid parasite of plants, with a subset of the constructs. The pattern of translational efficiency mediated by individual pre-ATG triplets in this species was similar to that observed in L. tarentolae. However, the pattern of translational efficiency of two other proteins (red fluorescent protein and tetracycline repressor) containing selected pre-ATG triplets did not correlate with either EGFP or each other. Thus, we conclude that a conserved mechanism of translation initiation site selection exists in kinetoplastids that is strongly influenced not only by the pre-ATG sequences but also by the coding region of the gene.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences and Faculty of Biology, University of South Bohemia, Ceské Budejovice, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gruszynski AE, van Deursen FJ, Albareda MC, Best A, Chaudhary K, Cliffe LJ, del Rio L, Dunn JD, Ellis L, Evans KJ, Figueiredo JM, Malmquist NA, Omosun Y, Palenchar JB, Prickett S, Punkosdy GA, van Dooren G, Wang Q, Menon AK, Matthews KR, Bangs JD. Regulation of surface coat exchange by differentiating African trypanosomes. Mol Biochem Parasitol 2006; 147:211-23. [PMID: 16564583 DOI: 10.1016/j.molbiopara.2006.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/14/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
African trypanosomes (Trypanosoma brucei) have a digenetic lifecycle that alternates between the mammalian bloodstream and the tsetse fly vector. In the bloodstream, replicating long slender parasites transform into non-dividing short stumpy forms. Upon transmission into the fly midgut, short stumpy cells differentiate into actively dividing procyclics. A hallmark of this process is the replacement of the bloodstream-stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procyclin. Pre-existing VSG is shed by a zinc metalloprotease activity (MSP-B) and glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC). We now provide a detailed analysis of the coordinate and inverse regulation of these activities during synchronous differentiation. MSP-B mRNA and protein levels are upregulated during differentiation at the same time as proteolysis whereas GPI-PLC levels decrease. When transcription or translation is inhibited, VSG release is incomplete and a substantial amount of protein stays cell-associated. Both modes of release are still evident under these conditions, but GPI hydrolysis plays a quantitatively minor role during normal differentiation. Nevertheless, GPI biosynthesis shifts early in differentiation from a GPI-PLC sensitive structure to a resistant procyclic-type anchor. Translation inhibition also results in a marked increase in the mRNA levels of both MSP-B and GPI-PLC, consistent with negative regulation by labile protein factors. The relegation of short stumpy surface GPI-PLC to a secondary role in differentiation suggests that it may play a more important role as a virulence factor within the mammalian host.
Collapse
Affiliation(s)
- Amy E Gruszynski
- Department of Biomolecular Chemistry, University of Wisonsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dhalia R, Marinsek N, Reis CRS, Katz R, Muniz JRC, Standart N, Carrington M, de Melo Neto OP. The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 2006; 34:2495-507. [PMID: 16687655 PMCID: PMC1459412 DOI: 10.1093/nar/gkl290] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/04/2006] [Accepted: 04/06/2006] [Indexed: 11/13/2022] Open
Abstract
Protozoan parasites belonging to the family Trypanosomatidae are characterized by an unusual pathway for the production of mRNAs via polycistronic transcription and trans-splicing of a 5' capped mini-exon which is linked to the 3' cleavage and polyadenylation of the upstream transcript. However, little is known of the mechanism of protein synthesis in these organisms, despite their importance as agents of a number of human diseases. Here we have investigated the role of two Trypanosoma brucei homologues of the translation initiation factor eIF4A (in the light of subsequent experiments these were named as TbEIF4AI and TbEIF4AIII). eIF4A, a DEAD-box RNA helicase, is a subunit of the translation initiation complex eIF4F which binds to the cap structure of eukaryotic mRNA and recruits the small ribosomal subunit. TbEIF4AI is a very abundant predominantly cytoplasmic protein (over 1 x 10(5) molecules/cell) and depletion to approximately 10% of normal levels through RNA interference dramatically reduces protein synthesis one cell cycle following double-stranded RNA induction and stops cell proliferation. In contrast, TbEIF4AIII is a nuclear, moderately expressed protein (approximately 1-2 x 10(4) molecules/cell), and its depletion stops cellular proliferation after approximately four cell cycles. Ectopic expression of a dominant negative mutant of TbEIF4AI, but not of TbEIF4AIII, induced a slow growth phenotype in transfected cells. Overall, our results suggest that only TbEIF4AI is involved in protein synthesis while the properties and sequence of TbEIF4AIII indicate that it may be the orthologue of eIF4AIII, a component of the exon junction complex in mammalian cells.
Collapse
Affiliation(s)
- Rafael Dhalia
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo CruzAvenue Moraes Rego s/n, Campus UFPE, Recife PE 50670-420, Brazil
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - Nina Marinsek
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christian R. S. Reis
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo CruzAvenue Moraes Rego s/n, Campus UFPE, Recife PE 50670-420, Brazil
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - Rodolfo Katz
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo CruzAvenue Moraes Rego s/n, Campus UFPE, Recife PE 50670-420, Brazil
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - João R. C. Muniz
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
38
|
Webb H, Burns R, Kimblin N, Ellis L, Carrington M. A novel strategy to identify the location of necessary and sufficient cis-acting regulatory mRNA elements in trypanosomes. RNA (NEW YORK, N.Y.) 2005; 11:1108-16. [PMID: 15928343 PMCID: PMC1360220 DOI: 10.1261/rna.2510505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Expression of nearly all protein coding genes in trypanosomes is regulated post-transcriptionally, predominantly at the level of mRNA half-life. The identification of cis-acting elements involved in mRNA stability has been hindered by a lack of ability to screen for loss-of-regulation mutants. The method described in this article allows the region containing the necessary and sufficient elements within a mRNA to be identified and uses antibiotic resistance genes as both selectable markers and reporters. In the case of unstable mRNAs, the strategy can be extended by performing a screen for spontaneous loss-of-function mutants in regulatory parts of a mRNA. The method was validated by using the GPI-PLC mRNA, which is unstable in procyclic form trypanosomes and showed that the 3'UTR of the GPI-PLC mRNA contains all elements required for developmentally regulated instability. Loss-of-instability mutants all contained deletions within the 2300-nucleotide-long 3'UTR, and their analysis showed that a deletion including the last 800 nt of the gene stabilized the mRNA. The method is nonpresumptive, allows far more rapid screening for cis-elements than existing procedures, and has the advantage of identifying functional mutants. It is applicable to all eukaryotes using polycistronic transcription.
Collapse
Affiliation(s)
- Helena Webb
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|