1
|
Haskett TL, Cooke L, Green P, Poole PS. Regulation of Rhizobial Nodulation Genes by Flavonoid-Independent NodD Supports Nitrogen-Fixing Symbioses With Legumes. Environ Microbiol 2025; 27:e70014. [PMID: 39865396 PMCID: PMC11771551 DOI: 10.1111/1462-2920.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis. Although evidence suggests differential regulation of nodD expression and NF biosynthesis during symbiosis, the necessity of this regulation for the formation of nitrogen-fixing nodules remains uncertain. Here, we demonstrate that deletion of the Rlv3841 NodD regulatory domain results in a constitutively active protein (NodDFI) capable of activating NF biosynthesis gene expression without the presence of flavonoids. Optimised constitutive expression of nodDFI or nodD3 in nodD null mutants led to wild-type levels of nodulation and nitrogen fixation in pea and M. truncatula, respectively, indicating that flavonoid-regulated nodD expression is not essential for supporting symbiosis. These findings illustrate that transcriptional control of flavonoid-independent NodD regulators can be employed to drive NF biosynthesis, which holds potential for engineering symbiosis between rhizobia and cereals equipped with reconstituted NF receptors.
Collapse
Affiliation(s)
| | - Louise Cooke
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
2
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
5
|
Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14042253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The indiscriminate use of chemical fertilizers and pesticides has caused considerable environmental damage over the years. However, the growing demand for food in the coming years and decades requires the use of increasingly productive and efficient agriculture. Several studies carried out in recent years have shown how the application of plant growth-promoting microbes (PGPMs) can be a valid substitute for chemical industry products and represent a valid eco-friendly alternative. However, because of the complexity of interactions created with the numerous biotic and abiotic factors (i.e., environment, soil, interactions between microorganisms, etc.), the different formulates often show variable effects. In this review, we analyze the main factors that influence the effectiveness of PGPM applications and some of the applications that make them a useful tool for agroecological transition.
Collapse
|
6
|
de Castilho CL, Volpiano CG, Ambrosini A, Zulpo L, Passaglia L, Beneduzi A, de Sá ELS. Growth-promoting effects of Bradyrhizobium soybean symbionts in black oats, white oats, and ryegrass. Braz J Microbiol 2021; 52:1451-1460. [PMID: 34024037 PMCID: PMC8324701 DOI: 10.1007/s42770-021-00523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Although inoculating soybean with rhizobia for biological nitrogen fixation is a common practice in agriculture, rhizobia are also known to associate with grasses. In this study, we evaluate the potential utility of the rhizobial strains SEMIA 587 and 5019 (Bradyrhizobium elkanii), 5079 (Bradyrhizobium japonicum), and 5080 (Bradyrhizobium diazoefficiens), recommended for Brazilian soybean inoculation, in colonizing black oat plants and promoting growth in black and white oats, and ryegrass. Inoculation of white oats with SEMIA 587 increase the seed germination (SG) by 32.09%, whereas the SG of black oats inoculated with SEMIA 587 and 5019 increased by 40.38% and 37.85%, respectively. Similarly, inoculation of ryegrass with all strains increased SG values between 24.63 and 27.59%. In addition, white oats with SEMIA 587 and 5080 had root areas significantly superior to those in other treatments, whereas inoculation with SEMIA 5079 and 5080 resulted in the highest volume of roots. Likewise, SEMIA 5079 and 5080 significantly increased the length, volume, and area of black oats roots, whereas SEMIA 587 increased the volume, area, and dry mass of roots and shoot. Inoculation in ryegrass with SEMIA 587 significantly increased the root volume. Moreover, most strains transformed with gfp and gus were observed to colonize the roots of black oats. Collectively, the findings of this study indicate that rhizobial strains recommended for inoculation of soybean can also be used to promote the growth of the three assessed grass species, and are able to colonize the roots of black oats.
Collapse
Affiliation(s)
- Carolina Leal de Castilho
- Departamento de Solos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Camila Gazolla Volpiano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91501-970, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91501-970, Brazil
| | - Lucas Zulpo
- Departamento de Solos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Luciane Passaglia
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, CEP 91501-970, Brazil
| | - Anelise Beneduzi
- Departamento de Diagnóstico e Pesquisa Agropecuária (antiga FEPAGRO) da Secretaria da Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR) do Rio Grande do Sul, Rua Gonçalves Dias, 570, Porto Alegre, RS, CEP 90130-060, Brazil.
| | - Enílson Luiz Saccol de Sá
- Departamento de Solos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, CEP 91540-000, Brazil
| |
Collapse
|
7
|
Basile LA, Lepek VC. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol 2021; 14:1897-1917. [PMID: 34318611 PMCID: PMC8449669 DOI: 10.1111/1751-7915.13906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.
Collapse
Affiliation(s)
- Laura A. Basile
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| |
Collapse
|
8
|
Perry BJ, Sullivan JT, Colombi E, Murphy RJT, Ramsay JP, Ronson CW. Symbiosis islands of Loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings. Microb Genom 2020; 6. [PMID: 32845829 PMCID: PMC7643969 DOI: 10.1099/mgen.0.000426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mesorhizobium is a genus of soil bacteria, some isolates of which form an endosymbiotic relationship with diverse legumes of the Loteae tribe. The symbiotic genes of these mesorhizobia are generally carried on integrative and conjugative elements termed symbiosis islands (ICESyms). Mesorhizobium strains that nodulate Lotus spp. have been divided into host-range groupings. Group I (GI) strains nodulate L. corniculatus and L. japonicus ecotype Gifu, while group II (GII) strains have a broader host range, which includes L. pedunculatus. To identify the basis of this extended host range, and better understand Mesorhizobium and ICESym genomics, the genomes of eight Mesorhizobium strains were completed using hybrid long- and short-read assembly. Bioinformatic comparison with previously sequenced mesorhizobia genomes indicated host range was not predicted by Mesorhizobium genospecies but rather by the evolutionary relationship between ICESym symbiotic regions. Three radiating lineages of Loteae ICESyms were identified on this basis, which correlate with Lotus spp. host-range grouping and have lineage-specific nod gene complements. Pangenomic analysis of the completed GI and GII ICESyms identified 155 core genes (on average 30.1 % of a given ICESym). Individual GI or GII ICESyms carried diverse accessory genes with an average of 34.6 % of genes unique to a given ICESym. Identification and comparative analysis of NodD symbiotic regulatory motifs – nod boxes – identified 21 branches across the NodD regulons. Four of these branches were associated with seven genes unique to the five GII ICESyms. The nod boxes preceding the host-range gene nodZ in GI and GII ICESyms were disparate, suggesting regulation of nodZ may differ between GI and GII ICESyms. The broad host-range determinant(s) of GII ICESyms that confer nodulation of L. pedunculatus are likely present amongst the 53 GII-unique genes identified.
Collapse
Affiliation(s)
- Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Elena Colombi
- School of Pharmacy and Biomedical Science, Curtin University, Perth, Australia
| | - Riley J T Murphy
- School of Pharmacy and Biomedical Science, Curtin University, Perth, Australia
| | - Joshua P Ramsay
- School of Pharmacy and Biomedical Science, Curtin University, Perth, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Daubech B, Poinsot V, Klonowska A, Capela D, Chaintreuil C, Moulin L, Marchetti M, Masson-Boivin C. noeM, a New Nodulation Gene Involved in the Biosynthesis of Nod Factors with an Open-Chain Oxidized Terminal Residue and in the Symbiosis with Mimosa pudica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1635-1648. [PMID: 31617792 DOI: 10.1094/mpmi-06-19-0168-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The β-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.
Collapse
Affiliation(s)
- Benoit Daubech
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Verena Poinsot
- Université de Toulouse 3, UPS CNRS 5623, UMR, Lab IMRCP, F-31062 Toulouse, France
| | | | - Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Clémence Chaintreuil
- Université Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, LSTM, Montpellier, France
| | - Lionel Moulin
- IRD, CIRAD, Université Montpellier, IPME, Montpellier, France
| | - Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
10
|
De Paepe B, Maertens J, Vanholme B, De Mey M. Chimeric LysR-Type Transcriptional Biosensors for Customizing Ligand Specificity Profiles toward Flavonoids. ACS Synth Biol 2019; 8:318-331. [PMID: 30563319 DOI: 10.1021/acssynbio.8b00326] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transcriptional biosensors enable key applications in both metabolic engineering and synthetic biology. Due to nature's immense variety of metabolites, these applications require biosensors with a ligand specificity profile customized to the researcher's needs. In this work, chimeric biosensors were created by introducing parts of a donor regulatory circuit from Sinorhizobium meliloti, delivering the desired luteolin-specific response, into a nonspecific biosensor chassis from Herbaspirillum seropedicae. Two strategies were evaluated for the development of chimeric LysR-type biosensors with customized ligand specificity profiles toward three closely related flavonoids, naringenin, apigenin, and luteolin. In the first strategy, chimeric promoter regions were constructed at the biosensor effector module, while in the second strategy, chimeric transcription factors were created at the biosensor detector module. Via both strategies, the biosensor repertoire was expanded with luteolin-specific chimeric biosensors demonstrating a variety of response curves and ligand specificity profiles. Starting from the nonspecific biosensor chassis, a shift from 27.5% to 95.3% luteolin specificity was achieved with the created chimeric biosensors. Both strategies provide a compelling, faster, and more accessible route for the customization of biosensor ligand specificity, compared to de novo design and construction of each biosensor circuit for every desired ligand specificity.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University − VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
11
|
DbdR, a New Member of the LysR Family of Transcriptional Regulators, Coordinately Controls Four Promoters in the Thauera aromatica AR-1 3,5-Dihydroxybenzoate Anaerobic Degradation Pathway. Appl Environ Microbiol 2019; 85:AEM.02295-18. [PMID: 30389770 DOI: 10.1128/aem.02295-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
The facultative anaerobe Thauera aromatica strain AR-1 uses 3,5-dihydroxybenzoate (3,5-DHB) as a sole carbon and energy source under anoxic conditions using an unusual oxidative strategy to overcome aromatic ring stability. A 25-kb gene cluster organized in four main operons encodes the anaerobic degradation pathway for this aromatic. The dbdR gene coding for a LysR-type transcriptional regulator (LTTR), which is present at the foremost end of the cluster, is required for anaerobic growth on 3,5-DHB and for the expression of the main pathway operons. A model structure of DbdR showed conserved key residues for effector binding with its closest relative TsaR for p-toluenesulfonate degradation. We found that DbdR controlled expression of three promoters upstream from the operons coding for the three main steps of the pathway. While one of them (P orf20 ) was only active in the presence of 3,5-DHB, the other two (P dbhL and P orf18 ) showed moderate basal levels that were further induced in the presence of the pathway substrate, which needed be converted to hydroxyhydroquinone to activate transcription. Both basal and induced activities were strictly dependent on DbdR, which was also required for transcription from its own promoter. DbdR basal expression was moderately high and, unlike most LTTR, increased 2-fold in response to the presence of the effector. DbdR was found to be a tetramer in solution, producing a single retardation complex in binding assays with the three enzymatic promoters, consistent with its tetrameric structure. The three promoters had a conserved organization with a clear putative primary (regulatory) binding site and a putative secondary (activating) binding site positioned at the expected distances from the transcription start site. In contrast, two protein-DNA complexes were observed for the P dbdR promoter, which also showed significant sequence divergence from those of the three other promoters. Taken together, our results show that a single LTTR coordinately controls expression of the entire 3,5-DHB anaerobic degradation pathway in Thauera aromatica AR-1, allowing a fast and optimized response to the presence of the aromatic.IMPORTANCE Thauera aromatica AR-1 is a facultative anaerobe that is able to use 3,5-dihydroxybenzoat (3,5-DHB) as the sole carbon and energy source in a process that is dependent on nitrate respiration. We have shown that a single LysR-type regulator with unusual properties, DbdR, controls the expression of the pathway in response to the presence of the substrate; unlike other regulators of the family, DbdR does not repress but activates its own synthesis and is able to bind and activate three promoters directing the synthesis of the pathway enzymes. The promoter architecture is conserved among the three promoters but deviates from that of typical LTTR-dependent promoters. The substrate must be metabolized to an intermediate compound to activate transcription, which requires basal enzyme levels to always be present. The regulatory network present in this strain is designed to allow basal expression of the enzymatic machinery, which would rapidly metabolize the substrate when exposed to it, thus rendering the effector molecule. Once activated, the regulator induces the synthesis of the entire pathway through a positive feedback, increasing expression from all the target promoters to allow maximum growth.
Collapse
|
12
|
De Paepe B, Maertens J, Vanholme B, De Mey M. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor. ACS Synth Biol 2018; 7:1303-1314. [PMID: 29688705 DOI: 10.1021/acssynbio.7b00419] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant
Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Kelly S, Sullivan JT, Kawaharada Y, Radutoiu S, Ronson CW, Stougaard J. Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environ Microbiol 2018; 20:97-110. [PMID: 29194913 DOI: 10.1111/1462-2920.14006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
The Lotus japonicus symbiont Mesorhizobium loti R7A encodes two copies of nodD and here we identify striking differences in Nod factor biosynthesis gene induction by NodD1 and NodD2 both in vitro and in planta. We demonstrate that induction of Nod factor biosynthesis genes is preferentially controlled by NodD1 and NodD2 at specific stages of symbiotic infection. NodD2 is primarily responsible for induction in the rhizosphere and within nodules, while NodD1 is primarily responsible for induction within root hair infection threads. nodD1 and nodD2 mutants showed significant symbiotic phenotypes and competition studies establish that nodD1 and nodD2 mutants were severely outcompeted by wild-type R7A, indicating that both proteins are required for proficient symbiotic infection. These results suggest preferential activation of NodD1 and NodD2 by different inducing compounds produced at defined stages of symbiotic infection. We identified Lotus chalcone isomerase CHI4 as a root hair induced candidate involved in the biosynthesis of an inducer compound that may be preferentially recognized by NodD1 within root hair infection threads. We propose an alternative explanation for the function of multiple copies of nodD that provides the host plant with another level of compatibility scrutiny at the stage of infection thread development.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| |
Collapse
|
14
|
Differential protein-DNA contacts for activation and repression by ArgP, a LysR-type (LTTR) transcriptional regulator in Escherichia coli. Microbiol Res 2017; 206:141-158. [PMID: 29146251 DOI: 10.1016/j.micres.2017.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022]
Abstract
ArgP is a LysR-type transcriptional regulator (LTTR) that operates with two effector molecules, lysine and arginine, to differentially regulate gene expression. Effector-free ArgP stimulates transcription of all investigated regulon members, except argO, whereas lysine abolishes this effect. Activation of argO, encoding an exporter for arginine and canavanine, is strictly dependent on arginine-bound ArgP. Lysine counteracts this effect and even though lysine-bound ArgP stimulates RNA polymerase recruitment at the argO promoter, the complex is non-productive. It is presently unclear what distinguishes argO from other ArgP targets and how binding of arginine and lysine translates in antagonistic effects on promoter activity. Here we generate high resolution contact maps of effector-free and effector-bound ArgP-DNA interactions and identify the sequence 5'-CTTAT as the consensus recognition motif for ArgP binding. argO is the only operator at which ArgP binding overlaps the -35 promoter element and binding of arginine results in a repositioning of the promoter proximal bound ArgP-arg subunits. This effect was mimicked by the generation of a 10bp insertion mutant (ins-10) in the argO operator that renders its activation by ArgP arginine-independent. ArgP-induced DNA bending of the argO operator by approximately 60° was found to be effector independent. An ArgP:DNA binding stoichiometry of 4:1 indicates binding of four ArgP subunits even to DNA constructs that are truncated for one binding subsite (ΔABS). These results provide insight into the molecular mechanisms of ArgP-mediated regulation and a molecular explanation for the unique arginine-dependence of argO activation that distinguishes this particular ArgP target from all others.
Collapse
|
15
|
Wassem R, Marin AM, Daddaoua A, Monteiro RA, Chubatsu LS, Ramos J, Deakin WJ, Broughton WJ, Pedrosa FO, Souza EM. A NodD-like protein activates transcription of genes involved with naringenin degradation in a flavonoid-dependent manner inHerbaspirillum seropedicae. Environ Microbiol 2017; 19:1030-1040. [DOI: 10.1111/1462-2920.13604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
Affiliation(s)
- R. Wassem
- Departamento de Genética; Universidade Federal do Paraná; Curitiba PR Brazil
| | - A. M. Marin
- Departamento de Bioquímica; Universidade Federal do Paraná; Curitiba PR Brazil
| | - A. Daddaoua
- Department of Environmental Protection; Estación Experimental del Zaídin CSIC; Granada Spain
| | - R. A. Monteiro
- Departamento de Bioquímica; Universidade Federal do Paraná; Curitiba PR Brazil
| | - L. S. Chubatsu
- Departamento de Bioquímica; Universidade Federal do Paraná; Curitiba PR Brazil
| | - J.L. Ramos
- Department of Environmental Protection; Estación Experimental del Zaídin CSIC; Granada Spain
| | - W. J. Deakin
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Département de Biologie végétale; Sciences III, 30 Quai Ernest-Ansermet, Université de Genève; Genève 4 CH-1211 Switzerland
| | - W. J. Broughton
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Département de Biologie végétale; Sciences III, 30 Quai Ernest-Ansermet, Université de Genève; Genève 4 CH-1211 Switzerland
| | - F. O. Pedrosa
- Departamento de Bioquímica; Universidade Federal do Paraná; Curitiba PR Brazil
| | - E. M. Souza
- Departamento de Bioquímica; Universidade Federal do Paraná; Curitiba PR Brazil
| |
Collapse
|
16
|
Hirooka K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Biosci Biotechnol Biochem 2015; 78:1471-84. [PMID: 25209494 DOI: 10.1080/09168451.2014.943689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacillus subtilis collectively inhabits the rhizosphere, where it contributes to the promotion of plant growth, although it does not have a direct symbiotic relationship to plants as observed in the case of rhizobia between leguminous plants. As rhizobia sense the flavonoids released from their host roots through the NodD transcriptional factor, which triggers transcription of the nod genes involved in the symbiotic processes, we supposed that B. subtilis utilizes certain flavonoids as signaling molecules to perceive and adapt to the rhizospheric environment that it is in. Our approaches to identify the flavonoid-responsive transcriptional regulatory system from B. subtilis resulted in the findings that three transcriptional factors (LmrA/QdoR, YetL, and Fur) are responsive to flavonoids, with the modes of action being different from each other. We also revealed a unique regulatory system by two transcriptional factors, YcnK and CsoR, for copper homeostasis in B. subtilis. In this review, we summarize the molecular mechanisms of these regulatory systems with the relevant information and discuss their physiological significances in the mutually beneficial interaction between B. subtilis and plants, considering the possibility of their application for plant cultivation.
Collapse
Affiliation(s)
- Kazutake Hirooka
- a Department of Biotechnology, Faculty of Life Science and Biotechnology , Fukuyama University , Fukuyama , Hiroshima , Japan
| |
Collapse
|
17
|
Function of MsiR on canavanine-mediated repression in Mesorhizobium tianshanense. Arch Microbiol 2015; 197:729-35. [PMID: 25854984 DOI: 10.1007/s00203-015-1106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/16/2014] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Mesorhizobium tianshanense employs MsiA as canavanine exporter, which is upregulated by MsiR, to successfully form a symbiosis with the legume Glycyrrhiza uralensis. In this research, through gel-shift and bacterial two-hybrid examination, MsiR was found to spontaneously form dimers and bind to msiA promoter without additional canavanine. Six truncated forms of MsiR were constructed, and the conserved helix-turn-helix (HTH), substrate-binding, and surface-loop domains were found essential for MsiR functions. Random mutagenesis was used to study the functional sites of MsiR. Seven point mutants were selected, in which three mutants constitutively induced msiA expression without additional canavanine, two mutants partially changed substrate specificity, and the other two were almost null mutants. Results from the site mutation show that the functional subunits (HTH domain, dimerization interface domains, and C-terminal) are important in the conformation and induction ability of MsiR.
Collapse
|
18
|
Transcriptional cross-regulation between Gram-negative and gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol 2012; 194:5657-66. [PMID: 22904281 DOI: 10.1128/jb.00947-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein-gene pairs ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum are orthologous, with the first member of each pair being a LysR-type transcriptional regulator and the second its target gene encoding a basic amino acid exporter. Whereas LysE is an exporter of arginine (Arg) and lysine (Lys) whose expression is induced by Arg, Lys, or histidine (His), ArgO exports Arg alone, and its expression is activated by Arg but not Lys or His. We have now reconstituted in E. coli the activation of lysE by LysG in the presence of its coeffectors and have shown that neither ArgP nor LysG can regulate expression of the noncognate orthologous target. Of several ArgP-dominant (ArgP(d)) variants that confer elevated Arg-independent argO expression, some (ArgP(d)-P274S, -S94L, and, to a lesser extent, -P108S) activated lysE expression in E. coli. However, the individual activating effects of LysG and ArgP(d) on lysE were mutually extinguished when both proteins were coexpressed in Arg- or His-supplemented cultures. In comparison with native ArgP, the active ArgP(d) variants exhibited higher affinity of binding to the lysE regulatory region and less DNA bending at both argO and lysE. We conclude that the transcription factor LysG from a Gram-positive bacterium, C. glutamicum, is able to engage appropriately with the RNA polymerase from a Gram-negative bacterium, E. coli, for activation of its cognate target lysE in vivo and that single-amino-acid-substitution variants of ArgP can also activate the distantly orthologous target lysE, but by a subtly different mechanism that renders them noninterchangeable with LysG.
Collapse
|
19
|
Baraquet C, Murakami K, Parsek MR, Harwood CS. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 2012; 40:7207-18. [PMID: 22581773 PMCID: PMC3424551 DOI: 10.1093/nar/gks384] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) modulates the transition between planktonic and biofilm life styles. In response to c-di-GMP, the enhancer binding protein FleQ from Pseudomonas aeruginosa derepresses the expression of Pel exopolysaccharide genes required for biofilm formation when a second protein, FleN is present. A model is that binding of c-di-GMP to FleQ induces its dissociation from the pelA promoter allowing RNA polymerase to access this site. To test this, we analyzed pelA DNA footprinting patterns with various combinations of FleQ, FleN and c-di-GMP, coupled to in vivo promoter activities. FleQ binds to two sites called box 1 and 2. FleN binds to FleQ bound at these sites causing the intervening DNA to bend. Binding of c-di-GMP to FleQ relieves the DNA distortion but FleQ remains bound to the two sites. Analysis of wild type and mutated versions of pelA-lacZ transcriptional fusions suggests that FleQ represses gene expression from box 2 and activates gene expression in response to c-di-GMP from box 1. The role of c-di-GMP is thus to convert FleQ from a repressor to an activator. The mechanism of action of FleQ is distinct from that of other bacterial transcription factors that both activate and repress gene expression from a single promoter.
Collapse
Affiliation(s)
- Claudine Baraquet
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | | | | | | |
Collapse
|
20
|
The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Pande SG, Pagliai FA, Gardner CL, Wrench A, Narvel R, Gonzalez CF, Lorca GL. Lactobacillus brevis responds to flavonoids through KaeR, a LysR-type of transcriptional regulator. Mol Microbiol 2011; 81:1623-39. [PMID: 21819457 DOI: 10.1111/j.1365-2958.2011.07796.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of transcription factors to respond to flavonoids as signal molecules was investigated in Lactobacillus brevis. Through in vitro screening of a small library of flavonoids, LVIS1989 (KaeR), a LysR-type transcriptional regulator (LTTR), was identified as responsive to kaempferol. The modulation of KaeR activity by flavonoids was characterized in vivo and in vitro. DNase I footprint assays identified the binding of KaeR at two distinctive sites, one in the intergenic region between LVIS1988 and kaeR (-39 to +2) and another within LVIS1988 (-314 to -353, from kaeR translational start point). EMSA assays revealed that both binding sites are required for KaeR binding in vitro. Furthermore, KaeR-DNA interactions were stabilized by the addition of kaempferol (20 µM). In vivo qRT-PCR experiments performed in L. brevis confirmed that the divergently transcribed genes LVIS1988, LVIS1987 and LVIS1986 and kaeR are upregulated in the presence of kaempferol, indicating the role of KaeR as a transcriptional activator. Transcriptional lacZ fusions using Bacillus subtilis as a surrogate host showed that expression of kaeR and LVIS1988 were induced by the presence of the flavonoid. These results indicate that KaeR belongs to a small and poorly understood group of LTTRs that are positively autoregulated in the presence of a ligand.
Collapse
Affiliation(s)
- Santosh G Pande
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610-3610, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Identification of aromatic residues critical to the DNA binding and ligand response of the Bacillus subtilis QdoR (YxaF) repressor antagonized by flavonoids. Biosci Biotechnol Biochem 2011; 75:1325-34. [PMID: 21737930 DOI: 10.1271/bbb.110098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus subtilis LmrA and QdoR (formerly YxaF) are paralogous transcriptional regulators that repress their regulon comprising the lmrAB operon, the qdoR gene, and the qdoI-yxaH operon, by binding to the LmrA/QdoR boxes located in the promoter regions. Detachment of them followed by derepression of the target genes is induced by certain flavonoids. To identify the residues critical to the ligand response in QdoR, we selected eight residues based on structural information, produced eight single-mutated QdoRs in which each residue was replaced with alanine, and evaluated their capacities for DNA binding and the flavonoid response by gel retardation analysis. The three mutants, carrying the alanine substitution at Phe87, Trp131, or Phe135, showed features distinctly different from those of the wild type and from each other. We further examined the in vivo function of the mutant with alanine substitution at Trp131 by reporter assay. This largely supported the corresponding in vitro results. The in vitro and in vivo data suggest that Phe87, Trp131, and Phe135, forming a hydrophobic cluster in QdoR, play crucial roles in the DNA binding, flavonoid accommodation, and/or conformational change triggered by ligand binding.
Collapse
|
23
|
Moscatiello R, Squartini A, Mariani P, Navazio L. Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. viciae. THE NEW PHYTOLOGIST 2010; 188:814-823. [PMID: 20738787 DOI: 10.1111/j.1469-8137.2010.03411.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Legume-rhizobium symbiosis requires a complex dialogue based on the exchange of diffusible signals between the partners. Compatible rhizobia express key nodulation (nod) genes in response to plant signals - flavonoids - before infection. Host plants sense counterpart rhizobial signalling molecules - Nod factors - through transient changes in intracellular free-calcium. Here we investigate the potential involvement of Ca(2+) in the symbiotic signalling pathway activated by flavonoids in Rhizobium leguminosarum bv. viciae. • By using aequorin-expressing rhizobial strains, we monitored intracellular Ca(2+) dynamics and the Ca(2+) dependence of nod gene transcriptional activation. • Flavonoid inducers triggered, in R. leguminosarum, transient increases in the concentration of intracellular Ca(2+) that were essential for the induction of nod genes. Signalling molecules not specifically related to rhizobia, such as strigolactones, were not perceived by rhizobia through Ca(2+) variations. A Rhizobium strain cured of the symbiotic plasmid responded to inducers with an unchanged Ca(2+) signature, showing that the transcriptional regulator NodD is not directly involved in this stage of flavonoid perception and plays its role downstream of the Ca(2+) signalling event. • These findings demonstrate a key role played by Ca(2+) in sensing and transducing plant-specific flavonoid signals in rhizobia and open up a new perspective in the flavonoid-NodD paradigm of nod gene regulation.
Collapse
|
24
|
Hou B, Li F, Yang X, Hong G. The properties of NodD were affected by mere variation in length within its hinge region. Acta Biochim Biophys Sin (Shanghai) 2009; 41:963-71. [PMID: 19902131 DOI: 10.1093/abbs/gmp090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Rhizobium leguminosarum bv. viciae, NodD, a member of the LysR-type transcriptional regulators, while auto-regulating, activates transcription of other nod genes in the presence of naringenin. A hinge region of NodD was previously identified in our laboratory as a functional region independent of its N-terminal DNA-binding and C-terminal regulatory domain. Further study was carried out to see the possible effect of the length variation in the hinge region on NodD properties. To our surprise, as many as seven classes of phenotypes were observed. Class I is deficient of activating nodA transcription and abolishes auto-regulation; class II is able to activate nodA transcription independently of naringenin and abolishes auto-regulation; class III retains autoregulating but partial activating ability; class IV is able to activate transcription independently of naringenin and retains auto-regulation; in class V, nodA is transcribed constitutively but the transcription level is drastically down-regulated in the presence of naringenin; in class VI, nodA is transcribed constitutively with higher induction ratio; in class VII, nodA is transcribed constitutively with lower induction ratio. To learn more about the possible mechanism, circular permutation assays were done, which showed that the length variation of the hinge of NodD caused by mutation led to the change in bend angles of nod promoter. This finding should help to get an insight into how transcriptional regulation is mediated by NodD at the molecular level as well as to understand the regulatory system of this important family.
Collapse
Affiliation(s)
- Bihe Hou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
25
|
Hou B, Li F, Yang X, Hong G. A small functional intramolecular region of NodD was identified by mutation. Acta Biochim Biophys Sin (Shanghai) 2009; 41:822-30. [PMID: 19779647 DOI: 10.1093/abbs/gmp073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Rhizobium leguminosarum bv. viciae, NodD, as a member of the LysR-type transcriptional regulators (LTTRs), exerts auto-regulation and activates transcription of other nod genes in the presence of naringenin. LTTRs were typically composed of N-terminal DNA-binding domain and C-terminal regulatory domain. In this study, by systematic insertion mutation, a region of 12 amino acids in length of NodD was identified as functional domain. Insertion mutants in this region appeared to acquire the ability of constitutively activating nodA gene and retained their auto-regulation properties. This identified region was shown to be a hinge of NodD as revealed through the model built using Swiss- PDB Viewer software. It is the first time to report that as a member of LysR family, NodD has been shown to contain a short intramolecular domain that influences its performance.
Collapse
Affiliation(s)
- Bihe Hou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
26
|
Half-Site DNA sequence and spacing length contributions to PrrA binding to PrrA site 2 of RSP3361 in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2009; 191:4353-64. [PMID: 19411326 DOI: 10.1128/jb.00244-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The consensus DNA binding sequence for PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, is poorly defined. We have performed mutational analysis of PrrA site 2, of the RSP3361 gene, to which PrrA binds in vitro (J. M. Eraso and S. Kaplan, J. Bacteriol. 191:4341-4352, 2009), to further define the consensus sequence for DNA binding. Two half-sites of equal length, containing 6 nucleotides each, were required for PrrA binding to this DNA sequence. Systematic nucleotide substitutions in both inverted half-sites led to a decrease in binding affinity of phosphorylated PrrA in vitro, the level of which was dependent on the substitution. The reduced binding affinities were confirmed by competition experiments and led to proportional decreases in the expression of lacZ transcriptional fusions to the RSP3361 gene in vivo. The 5-nucleotide spacer region between the half-sites was found to be optimal for PrrA binding to the wild-type half-sites, as shown by decreased PrrA DNA binding affinities to synthetic DNA sequences without spacer regions or with spacer regions ranging from 1 to 10 nucleotides. The synthetic spacer region alleles also showed decreased gene expression in vivo when analyzed using lacZ transcriptional fusions. We have studied three additional DNA sequences to which PrrA binds in vitro. They are located in the regulatory regions of genes positively regulated by PrrA and contain spacer regions with 5 or 8 nucleotides. We demonstrate that PrrA can bind in vitro to DNA sequences with different lengths in the spacer regions between the half-sites.
Collapse
|
27
|
Li F, Hou B, Hong G. Symbiotic plasmid is required for NolR to fully repress nodulation genes inRhizobium leguminosarumA34. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00467.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res 2008; 165:50-60. [PMID: 18678476 DOI: 10.1016/j.micres.2008.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/03/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
Flavonoids play a crucial role as signal molecules in promoting the formation of nodules by symbiotic bacteria commonly known as rhizobia. The early interaction between flavonoids and NodD regulatory protein activates nod gene transcription and the synthesis of Nod factor that initiates nodule primordium. In this study, we assessed response to flavonoids as factors influencing competitiveness of rhizobia and their symbiotic activity. Rhizobium leguminosarum nodule isolates belonging to three biovars, trifolii, viciae and phaseoli characterized earlier as competitive or uncompetitive relative to native rhizobia, were used. Investigating nodA promoter induction using plasmid lacZ fusion, we found that competitive strains more readily responded to a wide range of synthetic flavonoids and seed exudates in comparison to uncompetitive strains, albeit some exceptions were noticed. Of all the synthetic flavonoids and seed exudates studied, naringenin, hespertin and clover and vetch exudates were the most effective inducers of nodA promoter in competitive strains. Only one of the nine examined uncompetitive strains was highly induced by clover seed exudate. Subsequently, the effect of preinduction of R. leguminosarum bv. trifolii with clover exudate was assessed. Out of 18 pre-activated strains, nine strains (including competitive ones) increased clover wet mass of shoots and nodule number when used as inoculants. Our results demonstrate a plausible approach of isolating and characterizing flavonoid-responsive field isolates that could be further developed into relevant legume inoculants.
Collapse
Affiliation(s)
- Dominika Maj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 st., 20-033 Lublin, Poland
| | | | | | | |
Collapse
|
29
|
Carresi L, Comparini C, Bettini PP, Pazzagli L, Cappugi G, Scala F, Scala A. Isolation of the orthologue of the cerato-ulmin gene in Ophiostoma quercus and characterization of the purified protein. ACTA ACUST UNITED AC 2008; 112:1245-55. [PMID: 18783930 DOI: 10.1016/j.mycres.2008.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/30/2022]
Abstract
Ophiostoma quercus is an ophiostomatoid fungus strictly related to the Ophiostoma's (O. ulmi, O. novo-ulmi, and O. himal-ulmi) that cause Dutch elm disease (DED). O. quercus has a number of morphological characteristics in common with the DED pathogens, and is a well-known and economically important sapstaining fungus occurring worldwide on hardwoods and commercially produced pines, and causes typical cankers on oak stems. In elm trees O. quercus can survive for months without causing any disease symptoms. DED fungi produce cerato-ulmin (CU), a class II hydrophobin, which is generally considered as the main toxin potentially involved in various phases of the DED pathogenesis. In the present work we isolated and sequenced the orthologue of the cu gene in the O. quercus isolates H988, H1042, and H2053. Moreover the CU protein from O. quercus isolate H988 was also purified and characterized. Sequence analysis showed that there is a pronounced difference between the whole cu gene region of O. quercus and the homologous fragments of the DED-causing species O. ulmi, O. novo-ulmi, and O. himal-ulmi. It also appeared that differences in the structural conformation of the promoter were unlikely to play a role in the modulation of the transcript level and that, for O. quercus, differences in CU production did not result from the potential different regulation levels. Clear differences were shown in the transcriptional unit of the cu genes and in the amino acid sequences among all the CUs. The purified O. quercus CU was separated using matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) spectrometry into seven forms of increasing molecular weight from 7190 to 7724Da. The hydrophobicity profiles indicated that two regions of the O. quercus CU protein were more hydrophobic than the corresponding regions of the CUs of the DED fungi. The O. quercus CUs had theoretical isoelectric point values similar to those of the DED fungi. Finally, the contradiction between the consistent differences between these four Ophiostoma species in the cu gene region and in the CU proteins and their strict phylogenetic relationship is discussed.
Collapse
Affiliation(s)
- Lara Carresi
- Dipartimento Biotecnologie Agrarie-sezione Patologia Vegetale, University of Florence, via della Lastruccia, 10 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Cooper J. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 2007; 103:1355-65. [DOI: 10.1111/j.1365-2672.2007.03366.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Goller C, Wang X, Itoh Y, Romeo T. The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 2006; 188:8022-32. [PMID: 16997959 PMCID: PMC1698181 DOI: 10.1128/jb.01106-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pgaABCD operon of Escherichia coli is required for production of the biofilm adhesin poly-beta-1,6-N-acetyl-d-glucosamine (PGA). We establish here that NhaR, a DNA-binding protein of the LysR family of transcriptional regulators, activates transcription of this operon. Disruption of the nhaR gene decreased biofilm formation without affecting planktonic growth. PGA production was undetectable in an nhaR mutant strain. Expression of a pgaA'-'lacZ translational fusion was induced by NaCl and alkaline pH, but not by CaCl(2) or sucrose, in an nhaR-dependent fashion. Primer extension and quantitative real-time reverse transcription-PCR analyses further revealed that NhaR affects the steady-state level of pga mRNA. A purified recombinant NhaR protein bound specifically and with high affinity within the pgaABCD promoter region; one apparent binding site overlaps the -35 element, and a second site lies immediately upstream of the first. This protein was necessary and sufficient for activation of in vitro transcription from the pgaA promoter. These results define a novel mechanism for regulation of biofilm formation in response to environmental conditions and suggest an expanded role for NhaR in promoting bacterial survival.
Collapse
MESH Headings
- Adaptation, Physiological
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Antigens, Bacterial/genetics
- Base Sequence
- Biofilms/growth & development
- Cations
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli/physiology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Operon/genetics
- Promoter Regions, Genetic/physiology
- Protein Binding
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Sodium Chloride/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Carlos Goller
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd., N.E., Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
32
|
Vijayanathan V, Thomas TJ, Nair SK, Shirahata A, Gallo MA, Thomas T. Bending of the estrogen response element by polyamines and estrogen receptors alpha and beta: a fluorescence resonance energy transfer study. Int J Biochem Cell Biol 2006; 38:1191-1206. [PMID: 16767802 DOI: 10.1016/j.biocel.2005.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Estrogenic regulation of gene expression is mediated by the binding of the hormone to its receptors (ERalpha and ERbeta) followed by their binding to estrogen response element (ERE). Previous studies showed that natural polyamines -- putrescine, spermidine, and spermine -- facilitated ERalpha.ERE recognition. We determined the effects of natural and synthetic polyamines on the bending of a 27-mer oligonucleotide (ODN) harboring the ERE (ERE-ODN), using fluorescence resonance energy transfer (FRET) technique. Complementary strands of the ERE-ODN were labeled with fluorescein and tetramethylrhodamine, as donor and acceptor, respectively. The ERE-ODN was intrinsically bent with an end-to-end distance of 76 +/- 2 Angstrom, compared to a theoretical value of 98 Angstrom. The end-to-end distance of the ERE-ODN was reduced to 64 Angstrom in the presence of 250 microM spermine. A control ODN with scrambled sequence did not show intrinsic bending or spermine-induced bending. Alkyl substitution at the pendant amino groups reduced the ability of spermine to bend the ERE-ODN. Both ERalpha and ERbeta decreased the end-to-end distance of the ERE-ODN, although ERalpha was more efficient than ERbeta in inducing ERE bending. Spermine-induced bending of the ERE-ODN was significantly increased by ERalpha. Fluorescence anisotropy measurement showed that the equilibrium association constant of ERalpha-ERE binding increased by 12-fold in the presence of 250 microM spermine compared to control. The free energy change (Delta G) of ERalpha.ERE complex formation was -13.1 kcal/mol at 22 degrees C in the presence of spermine. Our results suggest that polyamine-induced bending of the ERE might be a mechanism for enhancing ERalpha-ERE binding affinity and thereby fine-tuning the transcriptional response of estrogen-responsive genes.
Collapse
Affiliation(s)
- Veena Vijayanathan
- Department of Medicine, University of Medicine and Dentistry of New Jersey--Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | | | | | | | | | | |
Collapse
|