1
|
Chai J, Gu X, Song P, Zhao X, Gao Y, Wang H, Zhang Q, Cai T, Liu Y, Li X, Song T, Zhu Z. Histone demethylase JMJ713 interaction with JMJ708 modulating H3K36me2, enhances rice heat tolerance through promoting hydrogen peroxide scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109284. [PMID: 39536507 DOI: 10.1016/j.plaphy.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The Earth is currently undergoing rapid warming cause of the accumulation in greenhouse gas emissions into the atmosphere and the consequent rise in global temperatures. High temperatures can bring the effects on rice development and growth and thereby decrease rice yield. In this study, we have identified that both JMJ713 and JMJ708 possess distinct histone demethylase activities. Specifically, JMJ713 modulates the levels of H3K36me2 while JMJ708 alters H3K9me3. Additionally, we have observed an interaction between JMJ713 and JMJ708, which collectively modify the level of H3K36me2. Furthermore, our findings demonstrate that JMJ713 plays an essential role to heat stress responses in rice (Oryza sativa). The overexpression of JMJ713 enhances heat tolerance in rice, whereas JMJ713 RNA interference rice lines exhibit increased sensitivity to heat. Further investigations revealed that overexpression of JMJ713 activated catalase (CAT) and peroxidase (POD) activities by mitigating excessive accumulation of reactive oxygen species (ROS) caused by heat stress. Interestingly, the setting rates of JMJ713 RNA interference lines decreased in comparing to wild-type, indicating that JMJ713 might play a crucial role in the rice seed development stage as well. Collectively, this study not only highlights JMJ713 is involved in heat stress responses but also provides insights into the conserved Fe(Ⅱ) and α-ketoglutarate (KG) binding residues are crucial for the demethylase activity of JMJ713, as well as JMJ713 interacts with JMJ708 to jointly regulate the levels of H3K36me2.
Collapse
Affiliation(s)
- Jiaxin Chai
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiangyang Gu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinzhou Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yingjie Gao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haiqi Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tingting Cai
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yutong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoting Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tao Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China.
| | - Zhengge Zhu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
2
|
Su S, Ji M, Chen J, Zhang M, Xu X, Cheng C. Genome-wide identification and expression analysis of protein arginine methyltransferase and JmjC domain-containing family in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1381753. [PMID: 38863543 PMCID: PMC11165092 DOI: 10.3389/fpls.2024.1381753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Histone methylation is an important type of histone modification that regulates gene expression in plants. In this study, we identified 14 arginine methylation-related genes (Protein Arginine Methyltransferase, MdPRMT) and 32 demethylation-related genes (JmjC Domain-Containing Family, MdJMJ) in apple. Furthermore, we investigated the phylogenetic relationship, chromosome distribution, gene structure, motif analysis, promoter sequence analysis, and expression patterns of MdPRMT and MdJMJ genes. Homology analysis showed a high degree of conservation and homology between PRMT and JMJ genes in Arabidopsis and apple. We identified the types of duplicated genes in the MdJMJ and MdPRMT gene families, found a large number of whole-genome duplicates (WGD) gene pairs and a small number of tandem duplicates (TD) pairs, transposed duplication (TRD) gene pairs as well as proximal duplicates (PD) pairs, and discussed the possible evolutionary pathways of the gene families from the perspective of duplicated genes. Homology analysis showed a high degree of conservation and homology between PRMT and JMJ genes in Arabidopsis and apple. In addition, the promoter regions of MdPRMT and MdJMJ contain numerous cis-acting elements involved in plant growth and development, hormone response, and stress responses. Based on the transcriptional profiles of MdPRMT and MdJMJ in different tissues and developmental stages, it was found that MdPRMT and MdJMJ may play multiple roles in apple growth and development, for example, MdJMJ21 may be involved in the regulation of apple endosperm formation. MdPRMT and MdJMJ exhibit different expression patterns in response to hormone signaling in apple, MdJMJ3, MdJMJ18, MdJMJ30, MdPRMT2, MdPRMT13, and MdPRMT14 may play roles in apple response to drought stress, while the expression of MdJMJ13, MdPRMT3, MdPRMT4, and MdPRMT6 is affected by cold stress. Our study provides a foundation for determining the functional roles of MdPRMT and MdJMJ genes in apple.
Collapse
Affiliation(s)
- Shenghui Su
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Min Ji
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Jiaqi Chen
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Agricultural University, Qingdao, China
| | - Meidie Zhang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, China
| | - Xiaozhao Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Lab of Modern Agricultural Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Chenxia Cheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Wang H, Yin C, Zhang G, Yang M, Zhu B, Jiang J, Zeng Z. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modification and nucleosome depletion in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:549-564. [PMID: 38184780 DOI: 10.1111/tpj.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Epigenetic regulation of gene expression plays a crucial role in plant development and environmental adaptation. The H3K4me3 and H3K27me3 have not only been discovered in the regulation of gene expression in multiple biological processes but also in responses to abiotic stresses in plants. However, evidence for the presence of both H3K4me3 and H3K27me3 on the same nucleosome is sporadic. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modifications and nucleosome depletion over a considerable number of active genes is documented in potato tubers and provides clues on an additional role of the bivalent modifications. Limited by the available information of genes encoding PcG/TrxG proteins as well as their corresponding mutants in potatoes, the molecular mechanism underlying the cold-induced deposition of the bivalent mark remains elusive. In this study, we found a similar deposition of the bivalent H3K4me3-H3K27me3 mark over 2129 active genes in cold-treated Arabidopsis Col-0 seedlings. The expression levels of the bivalent mark-associated genes tend to be independent of bivalent modification levels. However, these genes were associated with greater chromatin accessibility, presumably to provide a distinct chromatin environment for gene expression. In mutants clf28 and lhp1, failure to deposit H3K27me3 in active genes upon cold treatment implies that the CLF is potentially involved in cold-induced deposition of H3K27me3, with assistance from LHP1. Failure to deposit H3K4me3 during cold treatment in atx1-2 suggests a regulatory role of ATX1 in the deposition of H3K4me3. In addition, we observed a cold-induced global reduction in nucleosome occupancy, which is potentially mediated by LHP1 in an H3K27me3-dependent manner.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Chang Yin
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Guoyan Zhang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Miao Yang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| |
Collapse
|
4
|
Li J, Zhang Q, Wang Z, Liu Q. The roles of epigenetic regulators in plant regeneration: Exploring patterns amidst complex conditions. PLANT PHYSIOLOGY 2024; 194:2022-2038. [PMID: 38290051 PMCID: PMC10980418 DOI: 10.1093/plphys/kiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Plants possess remarkable capability to regenerate upon tissue damage or optimal environmental stimuli. This ability not only serves as a crucial strategy for immobile plants to survive through harsh environments, but also made numerous modern plant improvements techniques possible. At the cellular level, this biological process involves dynamic changes in gene expression that redirect cell fate transitions. It is increasingly recognized that chromatin epigenetic modifications, both activating and repressive, intricately interact to regulate this process. Moreover, the outcomes of epigenetic regulation on regeneration are influenced by factors such as the differences in regenerative plant species and donor tissue types, as well as the concentration and timing of hormone treatments. In this review, we focus on several well-characterized epigenetic modifications and their regulatory roles in the expression of widely studied morphogenic regulators, aiming to enhance our understanding of the mechanisms by which epigenetic modifications govern plant regeneration.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Zhang B, Wang Z, Dai X, Gao J, Zhao J, Ma R, Chen Y, Sun Y, Ma H, Li S, Zhou C, Wang JP, Li W. A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 241:1950-1972. [PMID: 38095236 DOI: 10.1111/nph.19481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Histone H3 lysine-4 trimethylation (H3K4me3) activating drought-responsive genes in plants for drought adaptation has long been established, but the underlying regulatory mechanisms are unknown. Here, using yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa, we unveiled in this adaptation a regulatory interplay between chromatin regulation and gene transactivation mediated by an epigenetic determinant, a PtrSDG2-1-PtrCOMPASS (complex proteins associated with Set1)-like H3K4me3 complex, PtrSDG2-1-PtrWDR5a-1-PtrRbBP5-1-PtrAsh2-2 (PtrSWRA). Under drought conditions, a transcription factor PtrAREB1-2 interacts with PtrSWRA, forming a PtrSWRA-PtrAREB1-2 pentamer, to recruit PtrSWRA to specific promoter elements of drought-tolerant genes, such as PtrHox2, PtrHox46, and PtrHox52, for depositing H3K4me3 to promote and maintain activated state of such genes for tolerance. CRISPR-edited defects in the pentamer impaired drought tolerance and elevated expression of PtrHox2, PtrHox46, or PtrHox52 improved the tolerance as well as growth in P. trichocarpa. Our findings revealed the identity of the underlying H3K4 trimethyltransferase and its interactive arrangement with the COMPASS for catalysis specificity and efficiency. Furthermore, our study uncovered how the H3K4 trimethyltransferase-COMPASS complex is recruited to the effector genes for elevating H3K4me3 marks for improved drought tolerance and growth/biomass production in plants.
Collapse
Affiliation(s)
- Baofeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinfeng Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Rong Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yanjie Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
6
|
Sinha S, Pindi C, Ahsan M, Arantes PR, Palermo G. Machines on Genes through the Computational Microscope. J Chem Theory Comput 2023; 19:1945-1964. [PMID: 36947696 PMCID: PMC10104023 DOI: 10.1021/acs.jctc.2c01313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Macromolecular machines acting on genes are at the core of life's fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of "machines on genes", focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications. As this review unfolds, advanced computational methods describe the biophysical function that is unseen through experimental techniques, accomplishing the power of the "computational microscope", an expression coined by Klaus Schulten to highlight the extraordinary capability of computer simulations. Pushing the frontiers of computational biophysics toward a pragmatic representation of large multimegadalton biomolecular complexes is instrumental in bridging the gap between experimentally obtained macroscopic observables and the molecular principles playing at the microscopic level. This understanding will help harness molecular machines for medical, pharmaceutical, and biotechnological purposes.
Collapse
Affiliation(s)
- Souvik Sinha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Chinmai Pindi
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
7
|
Shang JY, Cai XW, Su YN, Zhang ZC, Wang X, Zhao N, He XJ. Arabidopsis Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2438-2454. [PMID: 36354145 DOI: 10.1111/jipb.13406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.
Collapse
Affiliation(s)
- Ji-Yun Shang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Zhang D, Guo W, Wang T, Wang Y, Le L, Xu F, Wu Y, Wuriyanghan H, Sung ZR, Pu L. RNA 5-Methylcytosine Modification Regulates Vegetative Development Associated with H3K27 Trimethylation in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204885. [PMID: 36382558 PMCID: PMC9811455 DOI: 10.1002/advs.202204885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Methylating RNA post-transcriptionally is emerging as a significant mechanism of gene regulation in eukaryotes. The crosstalk between RNA methylation and histone modification is critical for chromatin state and gene expression in mammals. However, it is not well understood mechanistically in plants. Here, the authors report a genome-wide correlation between RNA 5-cytosine methylation (m5 C) and histone 3 lysine27 trimethylation (H3K27me3) in Arabidopsis. The plant-specific Polycomb group (PcG) protein EMBRYONIC FLOWER1 (EMF1) plays dual roles as activators or repressors. Transcriptome-wide RNA m5 C profiling revealed that m5 C peaks are mostly enriched in chromatin regions that lacked H3K27me3 in both wild type and emf1 mutants. EMF1 repressed the expression of m5 C methyltransferase tRNA specific methyltransferase 4B (TRM4B) through H3K4me3, independent of PcG-mediated H3K27me3 mechanism. The 5-Cytosine methylation on targets is increased in emf1 mutants, thereby decreased the mRNA transcripts of photosynthesis and chloroplast genes. In addition, impairing EMF1 activity reduced H3K27me3 levels of PcG targets, such as starch genes, which are de-repressed in emf1 mutants. Both EMF1-mediated promotion and repression of gene activities via m5 C and H3K27me3 are required for normal vegetative growth. Collectively, t study reveals a previously undescribed epigenetic mechanism of RNA m5 C modifications and histone modifications to regulate gene expression in eukaryotes.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Ting Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Shangrao Normal UniversityShangrao334001P. R. China
| | - Yifan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Fan Xu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yue Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Hada Wuriyanghan
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Zinmay Renee Sung
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| |
Collapse
|
9
|
Oya S, Takahashi M, Takashima K, Kakutani T, Inagaki S. Transcription-coupled and epigenome-encoded mechanisms direct H3K4 methylation. Nat Commun 2022; 13:4521. [PMID: 35953471 PMCID: PMC9372134 DOI: 10.1038/s41467-022-32165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mono-, di-, and trimethylation of histone H3 lysine 4 (H3K4me1/2/3) are associated with transcription, yet it remains controversial whether H3K4me1/2/3 promote or result from transcription. Our previous characterizations of Arabidopsis H3K4 demethylases suggest roles for H3K4me1 in transcription. However, the control of H3K4me1 remains unexplored in Arabidopsis, in which no methyltransferase for H3K4me1 has been identified. Here, we identify three Arabidopsis methyltransferases that direct H3K4me1. Analyses of their genome-wide localization using ChIP-seq and machine learning reveal that one of the enzymes cooperates with the transcription machinery, while the other two are associated with specific histone modifications and DNA sequences. Importantly, these two types of localization patterns are also found for the other H3K4 methyltransferases in Arabidopsis and mice. These results suggest that H3K4me1/2/3 are established and maintained via interplay with transcription as well as inputs from other chromatin features, presumably enabling elaborate gene control.
Collapse
Affiliation(s)
- Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | | | | | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- National Institute of Genetics, Mishima, Japan.
| | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
10
|
N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. Int J Mol Sci 2022; 23:ijms23126492. [PMID: 35742935 PMCID: PMC9224371 DOI: 10.3390/ijms23126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers’ resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.
Collapse
|
11
|
Miryeganeh M. Epigenetic Mechanisms of Senescence in Plants. Cells 2022; 11:251. [PMID: 35053367 PMCID: PMC8773728 DOI: 10.3390/cells11020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
12
|
Fang H, Shao Y, Wu G. Reprogramming of Histone H3 Lysine Methylation During Plant Sexual Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:782450. [PMID: 34917115 PMCID: PMC8669150 DOI: 10.3389/fpls.2021.782450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants undergo extensive reprogramming of chromatin status during sexual reproduction, a process vital to cell specification and pluri- or totipotency establishment. As a crucial way to regulate chromatin organization and transcriptional activity, histone modification can be reprogrammed during sporogenesis, gametogenesis, and embryogenesis in flowering plants. In this review, we first introduce enzymes required for writing, recognizing, and removing methylation marks on lysine residues in histone H3 tails, and describe their differential expression patterns in reproductive tissues, then we summarize their functions in the reprogramming of H3 lysine methylation and the corresponding chromatin re-organization during sexual reproduction in Arabidopsis, and finally we discuss the molecular significance of histone reprogramming in maintaining the pluri- or totipotency of gametes and the zygote, and in establishing novel cell fates throughout the plant life cycle. Despite rapid achievements in understanding the molecular mechanism and function of the reprogramming of chromatin status in plant development, the research in this area still remains a challenge. Technological breakthroughs in cell-specific epigenomic profiling in the future will ultimately provide a solution for this challenge.
Collapse
|
13
|
Shang FHZ, Liu HN, Wan YT, Yu YH, Guo DL. Identification of grape H3K4 genes and their expression profiles during grape fruit ripening and postharvest ROS treatment. Genomics 2021; 113:3793-3803. [PMID: 34534647 DOI: 10.1016/j.ygeno.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Fruit development is modified by different types of epigenetics. Histone methylation is an important way of epigenetic modification. Eight genes related to H3K4 methyltransferase, named VvH3K4s, were identified and isolated from the grape genome based on conserved domain analysis, which could be divided into 3 categories by the phylogenetic relationship. Transcriptome data showed that VvH3K4-5 was obviously up-regulated during fruit ripe, and its expression level was significantly different between 'Kyoho' and 'Fengzao'. The VvH3K4s promoters contains cis-acting elements of in response to stress, indicating that they may be involved in the metabolic pathways regulated by ROS signaling. The subcellular localization experiment and promoter activity analysis experiment on VvH3K4-5 showed that VvH3K4s may be regulated by H2O2. With H2O2 and Hypotaurine treatment, it was found that the expression pattern of most genes was opposite, and the expression level showed different expression trend with the extension of treatment time.
Collapse
Affiliation(s)
- Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, PR China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, PR China
| | - Yu-Tong Wan
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, PR China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, PR China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, PR China.
| |
Collapse
|
14
|
He K, Cao X, Deng X. Histone methylation in epigenetic regulation and temperature responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102001. [PMID: 33508540 DOI: 10.1016/j.pbi.2021.102001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Methylation of histones on different lysine residues is dynamically added by distinct writer enzymes, interpreted by reader proteins, and removed by eraser enzymes. This epigenetic mark has widespread, dynamic roles in plant development and environmental responses. For example, histone methylation plays a key role in mediating plant responses to temperature, including alterations of flowering time. In this review, we summarize recent advances in understanding the mechanism by which histone methylation regulates these processes, and discuss the role of histone methylation in temperature responses, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Wang X, Wang D, Xu W, Kong L, Ye X, Zhuang Q, Fan D, Luo K. Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. Nucleic Acids Res 2021; 49:190-205. [PMID: 33332564 PMCID: PMC7797065 DOI: 10.1093/nar/gkaa1191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.
Collapse
Affiliation(s)
- Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Denghui Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qianye Zhuang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China.,Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Foroozani M, Vandal MP, Smith AP. H3K4 trimethylation dynamics impact diverse developmental and environmental responses in plants. PLANTA 2021; 253:4. [PMID: 33387051 DOI: 10.1007/s00425-020-03520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The H3K4me3 histone mark in plants functions in the regulation of gene expression and transcriptional memory, and influences numerous developmental processes and stress responses. Plants execute developmental programs and respond to changing environmental conditions via adjustments in gene expression, which are modulated in part by chromatin structure dynamics. Histone modifications alter chromatin in precise ways on a global scale, having the potential to influence the expression of numerous genes. Trimethylation of lysine 4 on histone H3 (H3K4me3) is a prominent histone modification that is dogmatically associated with gene activity, but more recently has also been linked to gene repression. As in other eukaryotes, the distribution of H3K4me3 in plant genomes suggests it plays a central role in gene expression regulation, however the underlying mechanisms are not fully understood. Transcript levels of many genes related to flowering, root, and shoot development are affected by dynamic H3K4me3 levels, as are those for a number of stress-responsive and stress memory-related genes. This review examines the current understanding of how H3K4me3 functions in modulating plant responses to developmental and environmental cues.
Collapse
Affiliation(s)
- Maryam Foroozani
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Matthew P Vandal
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
17
|
Noh SW, Seo RR, Park HJ, Jung HW. Two Arabidopsis Homologs of Human Lysine-Specific Demethylase Function in Epigenetic Regulation of Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:688003. [PMID: 34194459 PMCID: PMC8236864 DOI: 10.3389/fpls.2021.688003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Epigenetic marks such as covalent histone modification and DNA methylation are crucial for mitotically and meiotically inherited cellular memory-based plant immunity. However, the roles of individual players in the epigenetic regulation of plant immunity are not fully understood. Here we reveal the functions of two Arabidopsis thaliana homologs of human lysine-specific demethylase1-like1, LDL1 and LDL2, in the maintenance of methyl groups at lysine 4 of histone H3 and in plant immunity to Pseudomonas syringae infection. The growth of virulent P. syringae strains was reduced in ldl1 and ldl2 single mutants compared to wild-type plants. Local and systemic disease resistance responses, which coincided with the rapid, robust transcription of defense-related genes, were more stably expressed in ldl1 ldl2 double mutants than in the single mutants. At the nucleosome level, mono-methylated histone H3K4 accumulated in ldl1 ldl2 plants genome-wide and in the mainly promoter regions of the defense-related genes examined in this study. Furthermore, in silico comparative analysis of RNA-sequencing and chromatin immunoprecipitation data suggested that several WRKY transcription factors, e.g., WRKY22/40/70, might be partly responsible for the enhanced immunity of ldl1 ldl2. These findings suggest that LDL1 and LDL2 control the transcriptional sensitivity of a group of defense-related genes to establish a primed defense response in Arabidopsis.
Collapse
Affiliation(s)
- Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Ri-Ra Seo
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hee Jin Park
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- *Correspondence: Hee Jin Park,
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Ho Won Jung,
| |
Collapse
|
18
|
Yang K, Zhu J, Wu J, Zhong Y, Shen X, Petrov B, Cai W. Maternal Vitamin D Deficiency Increases Intestinal Permeability and Programs Wnt/β-Catenin Pathway in BALB/C Mice. JPEN J Parenter Enteral Nutr 2020; 45:102-114. [PMID: 32270535 DOI: 10.1002/jpen.1820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies suggest that vitamin D deficiency is associated with intestinal dysfunctions, but the underlying mechanism remains unclear. This study aimed to investigate whether maternal vitamin D deficiency increases intestinal permeability in offspring and its related mechanism. METHODS Timed-pregnant mice were fed with either a standard chow diet (SC) or a vitamin D-deprived chow diet (VD-) 6 weeks prior to breeding and kept on the same diet until the end of gestation. All offspring were fed an SC for 3 weeks after weaning and then observed for effects associated with maternal vitamin D deficiency. RESULTS Maternal vitamin D deficiency increased intestinal permeability in offspring, which corresponded with the decreased expression of the tight junction protein claudin-1. Maternal vitamin D deficiency also repressed the messenger RNA expression of wingless/integrated family member 3a (Wnt3a) and the protein expression of nuclear β-catenin. The decreased Wnt3a gene expression in male was concurrent with the changes in histone H4 acetylation at either promoter or coding regions. The activation of the Wnt/β-catenin pathway protected against the impairment of intestinal permeability induced by maternal vitamin D deficiency. CONCLUSIONS Maternal vitamin D deficiency increased intestinal permeability and decreased tight junction protein expression in offspring. The suppression of the Wnt/β-catenin signaling pathway through histone modification might be involved in the underlying mechanism.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas, USA
| | - Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhong
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Brawnie Petrov
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
19
|
The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis. G3-GENES GENOMES GENETICS 2019; 9:4029-4043. [PMID: 31604825 PMCID: PMC6893208 DOI: 10.1534/g3.119.400559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In eukaryotes, Polycomb group (PcG) and trithorax group (trxG) factors oppositely regulate gene transcription during development through histone modifications, with PcG factors repressing and trxG factors activating the expression of their target genes. Although plant trxG factors regulate many developmental and physiological processes, their downstream targets are poorly characterized. Here we use transcriptomics to identify genome-wide targets of the Arabidopsis thaliana trxG factor ULTRAPETALA1 (ULT1) during vegetative and reproductive development and compare them with those of the PcG factor CURLY LEAF (CLF). We find that genes involved in development and transcription regulation are over-represented among ULT1 target genes. In addition, stress response genes and defense response genes such as those in glucosinolate metabolic pathways are enriched, revealing a previously unknown role for ULT1 in controlling biotic and abiotic response pathways. Finally, we show that many ULT1 target genes can be oppositely regulated by CLF, suggesting that ULT1 and CLF may have antagonistic effects on plant growth and development in response to various endogenous and environmental cues.
Collapse
|
20
|
Jing Y, Guo Q, Lin R. The Chromatin-Remodeling Factor PICKLE Antagonizes Polycomb Repression of FT to Promote Flowering. PLANT PHYSIOLOGY 2019; 181:656-668. [PMID: 31377725 PMCID: PMC6776858 DOI: 10.1104/pp.19.00596] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/16/2019] [Indexed: 05/19/2023]
Abstract
Changing daylength (or photoperiod) is a seasonal cue used by many plants to adjust the timing of their floral transition to ensure reproductive success. An inductive long-day photoperiod triggers the expression of FLOWERING LOCUS T (FT), which promotes flowering. FT, encoding a major component of florigen, is induced in leaf veins specifically at dusk through the photoperiod pathway; however, the modulation of FT expression in response to photoperiod cues remains poorly understood. Here, we report that the balance between Polycomb group (PcG) and Trithorax group (TrxG) proteins sets appropriate FT expression in long days in Arabidopsis (Arabidopsis thaliana). In PcG mutant lines, FT was highly derepressed, but FT expression was decreased to an almost wild-type level and pattern upon the additional disruption of chromatin-remodeling factors PICKLE (PKL) and ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), but not by disruption of photoperiod pathway components. PKL interacts with ATX1 to mediate trimethylation of histone H3 on lysine-4 at the FT locus, leading to antagonistic effects of PKL and ATX1 on PcG proteins in the regulation of FT expression. Therefore, the TrxG-like protein PKL prevents PcG-mediated silencing to ensure specific and appropriate expression of FT, thereby determining the proper flowering response.
Collapse
Affiliation(s)
- Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang Guo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
21
|
Hou H, Zhao L, Zheng X, Gautam M, Yue M, Hou J, Chen Z, Wang P, Li L. Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. PROTOPLASMA 2019; 256:1245-1256. [PMID: 31030267 DOI: 10.1007/s00709-019-01364-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Histone modification plays a significant role in plant responses to abiotic stress. However, there are little scientific studies available on the involvement of dynamic changes in histone modification in the heat stress response in maize. The present investigation was aimed to analyze the epigenetic mechanisms involved in regulating the physiological and biochemical alterations in maize seedlings under heat stress. Our results and observations indicated an increase in electrolyte leakage and hydrolytic activity of the plasma membrane H+-ATPase as well as the high pigment content and reactive oxygen species (ROS) content under high temperature. Furthermore, decondensation of ribosomal DNA (rDNA) chromatin and a simultaneous increase in rRNA gene expression were observed during heat stress, accompanied by a genome-wide increase in the levels of histone H3K4me2 and H3K9ac. Additionally, chromatin immunoprecipitation (ChIP) analysis revealed that alterations in H3K4me2 and H3K9ac levels occurred in promoter regions, which were found to be associated with the upregulation of heat stress factor (Hsf) and rRNA genes. In conclusion, short-term heat stress induces dynamic histone alterations which are associated with Hsf and rRNA gene transcription, accompanied by perturbations of cell membranes and an increase in ROS during acclimation in maize seedlings.
Collapse
Affiliation(s)
- Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- School of electrical engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Institute of Food and Agriculture Standardization, China National Institute of Standardization, Beijing, 100191, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mayank Gautam
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
22
|
Liu Y, Liu K, Yin L, Yu Y, Qi J, Shen WH, Zhu J, Zhang Y, Dong A. H3K4me2 functions as a repressive epigenetic mark in plants. Epigenetics Chromatin 2019; 12:40. [PMID: 31266517 PMCID: PMC6604379 DOI: 10.1186/s13072-019-0285-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In animals, H3K4me2 and H3K4me3 are enriched at the transcription start site (TSS) and function as epigenetic marks that regulate gene transcription, but their functions in plants have not been fully characterized. RESULTS We used chromatin immunoprecipitation sequencing to analyze the rice genome-wide changes to H3K4me1/H3K4me2/H3K4me3 following the loss of an H3K4-specific methyltransferase, SDG701. The knockdown of SDG701 resulted in a global decrease in H3K4me2/H3K4me3 levels throughout the rice genome. An RNA-sequencing analysis revealed that many genes related to diverse developmental processes were misregulated in the SDG701 knockdown mutant. In rice, H3K4me3 and H3K36me3 are positively correlated with gene transcription; however, surprisingly, the H3K4me2 level was negatively associated with gene transcription levels. Furthermore, the H3K4me3 level at the TSS region decreased significantly in the genes that exhibited down-regulated expression in the SDG701 knockdown mutant. In contrast, the genes with up-regulated expression in the mutant were associated with a considerable decrease in H3K4me2 levels over the gene body region. CONCLUSION A comparison of the genome-wide distributions of H3K4me2 in eukaryotes indicated that the H3K4me2 level is not correlated with the gene transcription level in yeast, but is positively and negatively correlated with gene expression in animals and plants, respectively. Our results uncovered H3K4me2 as a novel repressive mark in plants.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kunpeng Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universite de Strasbourg, CNRS, IBMP UPR 2357, 67000, Strasbourg, France
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
23
|
Fiorucci AS, Bourbousse C, Concia L, Rougée M, Deton-Cabanillas AF, Zabulon G, Layat E, Latrasse D, Kim SK, Chaumont N, Lombard B, Stroebel D, Lemoine S, Mohammad A, Blugeon C, Loew D, Bailly C, Bowler C, Benhamed M, Barneche F. Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biol 2019; 20:100. [PMID: 31113491 PMCID: PMC6528313 DOI: 10.1186/s13059-019-1705-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. Results We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Conclusions Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis. Electronic supplementary material The online version of this article (10.1186/s13059-019-1705-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France.,Present address: Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Clara Bourbousse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Martin Rougée
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Gérald Zabulon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Elodie Layat
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Soon Kap Kim
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Nicole Chaumont
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - Bérangère Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Sophie Lemoine
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Ammara Mohammad
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France.
| |
Collapse
|
24
|
Sun L, Song G, Guo W, Wang W, Zhao H, Gao T, Lv Q, Yang X, Xu F, Dong Y, Pu L. Dynamic Changes in Genome-Wide Histone3 Lysine27 Trimethylation and Gene Expression of Soybean Roots in Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1031. [PMID: 31552061 PMCID: PMC6746917 DOI: 10.3389/fpls.2019.01031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Collapse
Affiliation(s)
- Lei Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tingting Gao
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xue Yang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingshan Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| |
Collapse
|
25
|
Barraza A, Coss-Navarrete EL, Vizuet-de-Rueda JC, Martínez-Aguilar K, Hernández-Chávez JL, Ordaz-Ortiz JJ, Winkler R, Tiessen A, Alvarez-Venegas R. Down-regulation of PvTRX1h increases nodule number and affects auxin, starch, and metabolic fingerprints in the common bean (Phaseolus vulgaris L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:45-58. [PMID: 30080634 DOI: 10.1016/j.plantsci.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The legume-rhizobium symbiotic relationship has been widely studied and characterized. However, little information is available about the role of histone lysine methyltransferases in the legume-rhizobium interaction and in the formation of nitrogen-fixing nodules in the common bean. Thus, this study aimed to gain a better understanding of the epigenetic control of nodulation in the common bean. Specifically, we studied the role of PvTRX1h, a histone lysine methyltransferase coding gene, in nodule development and auxin biosynthesis. Through a reverse genetics approach, we generated common bean composite plants to knock-down PvTRX1h expression. Here we found that the down-regulation of PvTRX1h increased the number of nodules per plant, but reduced the number of colony-forming units recovered from nodules. Genes coding for enzymes involved in the synthesis of the indole-3-acetic acid were up-regulated, as was the concentration of this hormone. In addition, PvTRX1h down-regulation altered starch accumulation as determined by the number of amyloplasts per nodule. Metabolic fingerprinting by direct liquid introduction-electrospray ionization-mass spectrometry (DLI-ESI-MS) revealed that the root nodules were globally affected by PvTRX1h down-regulation. Therefore, PvTRX1h likely acts through chromatin histone modifications that alter the auxin signaling network to determine bacterial colonization, nodule number, starch accumulation, hormone levels, and cell proliferation.
Collapse
Affiliation(s)
- Aarón Barraza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Evelia Lorena Coss-Navarrete
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Juan Carlos Vizuet-de-Rueda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Keren Martínez-Aguilar
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - José Luis Hernández-Chávez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - José Juan Ordaz-Ortiz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Guanajuato, Mexico
| | - Robert Winkler
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Raúl Alvarez-Venegas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico.
| |
Collapse
|
26
|
Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H. Plant Immunity: From Signaling to Epigenetic Control of Defense. TRENDS IN PLANT SCIENCE 2018; 23:833-844. [PMID: 29970339 DOI: 10.1016/j.tplants.2018.06.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/21/2023]
Abstract
Pathogen recognition by plants results in the activation of signaling pathways that induce defense reactions. There is growing evidence indicating that epigenetic mechanisms directly participate in plant immune memory. Here, we discuss current knowledge of diverse epigenomic processes and elements, such as noncoding RNAs, DNA and RNA methylation, histone post-translational modifications, and chromatin remodeling, that have been associated with the regulation of immune responses in plants. Furthermore, we discuss the currently limited evidence of transgenerational inheritance of pathogen-induced defense priming, together with its potentials, challenges, and limitations for crop improvement and biotechnological applications.
Collapse
Affiliation(s)
- Juan S Ramirez-Prado
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Institut des Sciences des Plantes de Paris Saclay, IPS2, Bâtiment 630, Plateau du Moulon, Rue Noetzlin CS 80004, 91192 Gif-sur-Yvette, France; These authors contributed equally
| | - Aala A Abulfaraj
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Department of Biology, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia; These authors contributed equally
| | - Naganand Rayapuram
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; These authors contributed equally
| | - Moussa Benhamed
- Institut des Sciences des Plantes de Paris Saclay, IPS2, Bâtiment 630, Plateau du Moulon, Rue Noetzlin CS 80004, 91192 Gif-sur-Yvette, France.
| | - Heribert Hirt
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Institut des Sciences des Plantes de Paris Saclay, IPS2, Bâtiment 630, Plateau du Moulon, Rue Noetzlin CS 80004, 91192 Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Meller B, Kuźnicki D, Arasimowicz-Jelonek M, Deckert J, Floryszak-Wieczorek J. BABA-Primed Histone Modifications in Potato for Intergenerational Resistance to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:1228. [PMID: 30233606 PMCID: PMC6135045 DOI: 10.3389/fpls.2018.01228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 05/23/2023]
Abstract
In this paper we analyzed β-aminobutyric acid (BABA)-primed epigenetic adjustment of potato cv. "Sarpo Mira" to Phytophthora infestans. The first stress-free generation of the potato genotype obtained from BABA-primed parent plants via tubers and seeds showed pronounced resistance to the pathogen, which was tuned with the transcriptional memory of SA-responsive genes. During the early priming phase before the triggering stress, we found robust bistable deposition of histone marks (H3K4me2 and H3K27me3) on the NPR1 (Non-expressor of PR genes) and the SNI1 gene (Suppressor of NPR1, Inducible), in which transcription antagonized silencing. Switchable chromatin states of these adverse systemic acquired resistance (SAR) regulators probably reprogrammed responsiveness of the PR1 and PR2 genes and contributed to stress imprinting. The elevated levels of heritable H3K4me2 tag in the absence of transcription on SA-dependent genes in BABA-primed (F0) and its vegetative and generative progeny (F1) before pathogen challenge provided evidence for the epigenetic mark for intergenerational memory in potato. Moreover, our study revealed that histone acetylation was not critical for maintaining BABA-primed defense information until the plants were triggered with the virulent pathogen when rapid and boosted PRs gene expression probably required histone acetyltransferase (HAT) activity both in F0 and F1 progeny.
Collapse
Affiliation(s)
- Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Joanna Deckert
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
28
|
Xu F, Kuo T, Rosli Y, Liu MS, Wu L, Chen LFO, Fletcher JC, Sung ZR, Pu L. Trithorax Group Proteins Act Together with a Polycomb Group Protein to Maintain Chromatin Integrity for Epigenetic Silencing during Seed Germination in Arabidopsis. MOLECULAR PLANT 2018; 11:659-677. [PMID: 29428247 DOI: 10.1016/j.molp.2018.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/01/2018] [Accepted: 01/29/2018] [Indexed: 05/02/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins have been shown to act antagonistically to epigenetically regulate gene expression in eukaryotes. The trxG proteins counteract PcG-mediated floral repression in Arabidopsis, but their roles in other developmental processes are poorly understood. We investigated the interactions between the trxG genes, ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) and ULTRAPETALA1 (ULT1), and the PcG gene EMBRYONIC FLOWER 1 (EMF1) during early development. Unexpectedly, we found that mutations in the trxG genes failed to rescue the early-flowering phenotype of emf1 mutants. Instead, emf1 atx1 ult1 seedlings showed a novel swollen root phenotype and massive deregulation of gene expression. Greater ectopic expression of seed master regulatory genes in emf1 atx1 ult1 triple than in emf1 single mutants indicates that PcG and trxG factors together repress seed gene expression after germination. Furthermore, we found that the widespread gene derepression is associated with reduced levels of H3K27me3, an epigenetic repressive mark of gene expression, and with globally altered chromatin organization. EMF1, ATX1, and ULT1 are able to bind the chromatin of seed genes and ULT1 can physically interact with ATX1 and EMF1, suggesting that the trxG and EMF1 proteins directly associate at target gene loci for EMF1-mediated gene silencing. Thus, while ATX1, ULT1, and EMF1 interact antagonistically to regulate flowering, they work together to maintain chromatin integrity and prevent precocious seed gene expression after germination.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tony Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan, China
| | - Yenny Rosli
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Long-Fang Oliver Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan, China
| | - Jennifer C Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Zinmay Renee Sung
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Yolcu S, Li X, Li S, Kim YJ. Beyond the genetic code in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:801-810. [PMID: 29253191 DOI: 10.1093/jxb/erx401] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Leaf senescence is not only genetically programmed but also induced by exogenous stress to ensure completion of the plant life cycle, successful reproduction and environmental adaptability. Genetic reprogramming is a major aspect of leaf senescence, and the senescence signaling that follows is controlled by a complex regulatory network. Recent studies suggest that the activity of transcription factors together with epigenetic mechanisms ensures the robustness of this network, with the latter including chromatin remodeling, DNA modification, and RNA-mediated control of transcription factors and other senescence-associated genes. In this review, we provide an overview of the relevant epigenetic mechanisms and summarize recent findings of epigenetic regulators of plant leaf senescence involved in DNA methylation and histone modification along with the functions of small RNAs in this process.
Collapse
Affiliation(s)
- Seher Yolcu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shengben Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| |
Collapse
|
30
|
Cho SH, Lee CH, Gi E, Yim Y, Koh HJ, Kang K, Paek NC. The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 Chromatin Remodeling Factor Epigenetically Regulates Genes Involved in Oxidative Stress Responses During Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:364. [PMID: 29616070 PMCID: PMC5870552 DOI: 10.3389/fpls.2018.00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
In rice (Oryza sativa), moderate leaf rolling increases photosynthetic competence and raises grain yield; therefore, this important agronomic trait has attracted much attention from plant biologists and breeders. However, the relevant molecular mechanism remains unclear. Here, we isolated and characterized Rolled Fine Striped (RFS), a key gene affecting rice leaf rolling, chloroplast development, and reactive oxygen species (ROS) scavenging. The rfs-1 gamma-ray allele and the rfs-2 T-DNA insertion allele of RFS failed to complement each other and their mutants had similar phenotypes, producing extremely incurved leaves due to defective development of vascular cells on the adaxial side. Map-based cloning showed that the rfs-1 mutant harbors a 9-bp deletion in a gene encoding a predicted CHD3/Mi-2 chromatin remodeling factor belonging to the SNF2-ATP-dependent chromatin remodeling family. RFS was expressed in various tissues and accumulated mainly in the vascular cells throughout leaf development. Furthermore, RFS deficiency resulted in a cell death phenotype that was caused by ROS accumulation in developing leaves. We found that expression of five ROS-scavenging genes [encoding catalase C, ascorbate peroxidase 8, a putative copper/zinc superoxide dismutase (SOD), a putative SOD, and peroxiredoxin IIE2] decreased in rfs-2 mutants. Western-blot and chromatin immunoprecipitation (ChIP) assays demonstrated that rfs-2 mutants have reduced H3K4me3 levels in ROS-related genes. Loss-of-function in RFS also led to multiple developmental defects, affecting pollen development, grain filling, and root development. Our results suggest that RFS is required for many aspects of plant development and its function is closely associated with epigenetic regulation of genes that modulate ROS homeostasis.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chung-Hee Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eunji Gi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yehyun Yim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Crop Biotechnology Institute, Institutes of Green Bio Science & Technology, Seoul National University, Seoul, South Korea
- *Correspondence: Kiyoon Kang, Nam-Chon Paek,
| |
Collapse
|
31
|
Ramirez-Prado JS, Piquerez SJM, Bendahmane A, Hirt H, Raynaud C, Benhamed M. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:355. [PMID: 29616066 PMCID: PMC5868138 DOI: 10.3389/fpls.2018.00355] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 05/02/2023]
Abstract
Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.
Collapse
Affiliation(s)
- Juan S. Ramirez-Prado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Sophie J. M. Piquerez
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Abdelhafid Bendahmane
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Cécile Raynaud
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
- *Correspondence: Moussa Benhamed,
| |
Collapse
|
32
|
Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:849-860. [PMID: 28621888 DOI: 10.1111/tpj.13613] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 05/23/2023]
Abstract
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Dekai Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
33
|
Chen LQ, Luo JH, Cui ZH, Xue M, Wang L, Zhang XY, Pawlowski WP, He Y. ATX3, ATX4, and ATX5 Encode Putative H3K4 Methyltransferases and Are Critical for Plant Development. PLANT PHYSIOLOGY 2017; 174:1795-1806. [PMID: 28550207 PMCID: PMC5490889 DOI: 10.1104/pp.16.01944] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/23/2017] [Indexed: 05/19/2023]
Abstract
Methylation of Lys residues in the tail of the H3 histone is a key regulator of chromatin state and gene expression, conferred by a large family of enzymes containing an evolutionarily conserved SET domain. One of the main types of SET domain proteins are those controlling H3K4 di- and trimethylation. The genome of Arabidopsis (Arabidopsis thaliana) encodes 12 such proteins, including five ARABIDOPSIS TRITHORAX (ATX) proteins and seven ATX-Related proteins. Here, we examined three until-now-unexplored ATX proteins, ATX3, ATX4, and ATX5. We found that they exhibit similar domain structures and expression patterns and are redundantly required for vegetative and reproductive development. Concurrent disruption of the ATX3, ATX4, and ATX5 genes caused marked reduction in H3K4me2 and H3K4me3 levels genome-wide and resulted in thousands of genes expressed ectopically. Furthermore, atx3/atx4/atx5 triple mutants resulted in exaggerated phenotypes when combined with the atx2 mutant but not with atx1 Together, we conclude that ATX3, ATX4, and ATX5 are redundantly required for H3K4 di- and trimethylation at thousands of sites located across the genome, and genomic features associated with targeted regions are different from the ATXR3/SDG2-controlled sites in Arabidopsis.
Collapse
Affiliation(s)
- Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Jin-Hong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
| | - Zhen-Hai Cui
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Xue
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
| | - Li Wang
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02142
| | - Xiao-Yu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
34
|
Berr A, Zhang X, Shen WH. [Reciprocity between active transcription and histone methylation]. Biol Aujourdhui 2017; 210:269-282. [PMID: 28327284 DOI: 10.1051/jbio/2017004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/08/2023]
Abstract
In the nucleus of eukaryotic cells, the chromatin states dictated by the different combinations of histone post-translational modifications, such as the methylation of lysine residues, are an integral part of the multitude of epigenomes involved in the fine tuning of all genome functions, and in particular transcription. Over the last decade, an increasing number of factors have been identified as regulators involved in the establishment, reading or erasure of histone methylations. Their characterization in model organisms such as Arabidopsis has thus unraveled their fundamental roles in the control and regulation of essential developmental processes such as the floral transition, cell differentiation, gametogenesis, and/or the response/adaptation of plants to environmental stresses. In this review, we will focus on the methylation of histones functioning as a mark of activate transcription and we will try to highlight, based on recent findings, the more or less direct links between this mark and gene expression. Thus, we will discuss the different mechanisms allowing the dynamics and the integration of the chromatin states resulting from the different histone methylations in connection with the transcriptional machinery of the RNA polymerase II.
Collapse
|
35
|
Fletcher JC. State of the Art: trxG Factor Regulation of Post-embryonic Plant Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1925. [PMID: 29184559 PMCID: PMC5694493 DOI: 10.3389/fpls.2017.01925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2017] [Indexed: 05/07/2023]
Abstract
Multicellular organisms rely on the precise and consistent regulation of gene expression to direct their development in tissue- and cell-type specific patterns. This regulatory activity involves arrays of DNA-binding transcription factors and epigenetic factors that modify chromatin structure. Among the chromatin modifiers, trithorax (trxG) and Polycomb (PcG) group proteins play important roles in orchestrating the stable activation and repression of gene expression, respectively. These proteins have generally antagonistic functions in maintaining cell and tissue homeostasis as well as in mediating widespread transcriptional reprogramming during developmental transitions. Plants utilize multiple trxG factors to regulate gene transcription as they modulate their development in response to both endogenous and environmental cues. Here, I will discuss the roles of trxG factors and their associated proteins in post-embryonic plant development.
Collapse
Affiliation(s)
- Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture – Agricultural Research Service, Albany, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Jennifer C. Fletcher,
| |
Collapse
|
36
|
Martínez-Aguilar K, Ramírez-Carrasco G, Hernández-Chávez JL, Barraza A, Alvarez-Venegas R. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2016; 7:653. [PMID: 27242854 PMCID: PMC4870254 DOI: 10.3389/fpls.2016.00653] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/28/2016] [Indexed: 05/10/2023]
Abstract
To survive in adverse conditions, plants have evolved complex mechanisms that "prime" their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms.
Collapse
Affiliation(s)
- Keren Martínez-Aguilar
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad IrapuatoGuanajuato, Mexico
| | | | | | - Aarón Barraza
- Centro de Investigaciones Biológicas del NoroesteLa Paz, Mexico
| | - Raúl Alvarez-Venegas
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad IrapuatoGuanajuato, Mexico
| |
Collapse
|
37
|
Yolcu S, Ozdemir F, Güler A, Bor M. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:37-46. [PMID: 26773543 DOI: 10.1016/j.plaphy.2015.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 05/10/2023]
Abstract
Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Filiz Ozdemir
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Aybüke Güler
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Melike Bor
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
38
|
Li S, Liu L, Li S, Gao L, Zhao Y, Kim YJ, Chen X. SUVH1, a Su(var)3-9 family member, promotes the expression of genes targeted by DNA methylation. Nucleic Acids Res 2015; 44:608-20. [PMID: 26400170 PMCID: PMC4737185 DOI: 10.1093/nar/gkv958] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3–9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3–9 family that has previously been associated with silencing through H3K9 methylation.
Collapse
Affiliation(s)
- Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lin Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA
| |
Collapse
|
39
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
40
|
Hussey SG, Mizrachi E, Groover A, Berger DK, Myburg AA. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem. BMC PLANT BIOLOGY 2015; 15:117. [PMID: 25957781 PMCID: PMC4425858 DOI: 10.1186/s12870-015-0499-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/21/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Histone modifications play an integral role in plant development, but have been poorly studied in woody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood formation) and identify novel functional regions in plant genomes. However, woody tissue poses unique challenges for using high-throughput chromatin immunoprecipitation (ChIP) techniques for studying genome-wide histone modifications in vivo. We investigated the role of the modified histone H3K4me3 (trimethylated lysine 4 of histone H3) in gene expression during the early stages of wood formation using ChIP-seq in Eucalyptus grandis, a woody biomass model. RESULTS Plant chromatin fixation and isolation protocols were optimized for developing xylem tissue collected from field-grown E. grandis trees. A "nano-ChIP-seq" procedure was employed for ChIP DNA amplification. Over 9 million H3K4me3 ChIP-seq and 18 million control paired-end reads were mapped to the E. grandis reference genome for peak-calling using Model-based Analysis of ChIP-Seq. The 12,177 significant H3K4me3 peaks identified covered ~1.5% of the genome and overlapped some 9,623 protein-coding genes and 38 noncoding RNAs. H3K4me3 library coverage, peaking ~600 - 700 bp downstream of the transcription start site, was highly correlated with gene expression levels measured with RNA-seq. Overall, H3K4me3-enriched genes tended to be less tissue-specific than unenriched genes and were overrepresented for general cellular metabolism and development gene ontology terms. Relative expression of H3K4me3-enriched genes in developing secondary xylem was higher than unenriched genes, however, and highly expressed secondary cell wall-related genes were enriched for H3K4me3 as validated using ChIP-qPCR. CONCLUSIONS In this first genome-wide analysis of a modified histone in a woody tissue, we optimized a ChIP-seq procedure suitable for field-collected samples. In developing E. grandis xylem, H3K4me3 enrichment is an indicator of active transcription, consistent with its known role in sustaining pre-initiation complex formation in yeast. The H3K4me3 ChIP-seq data from this study paves the way to understanding the chromatin landscape and epigenomic architecture of xylogenesis in plants, and complements RNA-seq evidence of gene expression for the future improvement of the E. grandis genome annotation.
Collapse
Affiliation(s)
- Steven G Hussey
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| | - Andrew Groover
- US Forest Service, Pacific Southwest Research Station, Davis, CA, USA.
- Department of Plant Biology, University of California, Davis, USA.
| | - Dave K Berger
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| |
Collapse
|
41
|
PcG and trxG in plants - friends or foes. Trends Genet 2015; 31:252-62. [PMID: 25858128 DOI: 10.1016/j.tig.2015.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
The highly-conserved Polycomb group (PcG) and trithorax group (trxG) proteins play major roles in regulating gene expression and maintaining developmental states in many organisms. However, neither the recruitment of Polycomb repressive complexes (PRC) nor the mechanisms of PcG and trxG-mediated gene silencing and activation are well understood. Recent progress in Arabidopsis research challenges the dominant model of PRC2-dependent recruitment of PRC1 to target genes. Moreover, evidence indicates that diverse forms of PRC1, with shared components, are a common theme in plants and mammals. Although trxG is known to antagonize PcG, emerging data reveal that trxG can also repress gene expression, acting cooperatively with PcG. We discuss these recent findings and highlight the employment of diverse epigenetic mechanisms during development in plants and animals.
Collapse
|
42
|
Berr A, Shafiq S, Pinon V, Dong A, Shen WH. The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:316-28. [PMID: 25409787 DOI: 10.1111/tpj.12729] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/21/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Histone methylation is a major component in numerous processes such as determination of flowering time, which is fine-tuned by multiple genetic pathways that integrate both endogenous and environmental signals. Previous studies identified SET DOMAIN GROUP 26 (SDG26) as a histone methyltransferase involved in the activation of flowering, as loss of function of SDG26 caused a late-flowering phenotype in Arabidopsis thaliana. However, the SDG26 function and the underlying molecular mechanism remain largely unknown. In this study, we undertook a genetic analysis by combining the sdg26 mutant with mutants of other histone methylation enzymes, including the methyltransferase mutants Arabidopsis trithorax1 (atx1), sdg25 and curly leaf (clf), as well as the demethylase double mutant lsd1-like1 lsd1-like2 (ldl1 ldl2). We found that the early-flowering mutants sdg25, atx1 and clf interact antagonistically with the late-flowering mutant sdg26, whereas the late-flowering mutant ldl1 ldl2 interacts synergistically with sdg26. Based on microarray analysis, we observed weak overlaps in the genes that were differentially expressed between sdg26 and the other mutants. Our analyses of the chromatin of flowering genes revealed that the SDG26 protein binds at the key flowering integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1/AGAMOUS-LIKE 20 (SOC1/AGL20), and is required for histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at this locus. Together, our results indicate that SDG26 promotes flowering time through a distinctive genetic pathway, and that loss of function of SDG26 causes a decrease in H3K4me3 and H3K36me3 at its target gene SOC1, leading to repression of this gene and the late-flowering phenotype.
Collapse
Affiliation(s)
- Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg, 67084, France
| | | | | | | | | |
Collapse
|
43
|
Napsucialy-Mendivil S, Alvarez-Venegas R, Shishkova S, Dubrovsky JG. Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6373-84. [PMID: 25205583 PMCID: PMC4246177 DOI: 10.1093/jxb/eru355] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture.
Collapse
Affiliation(s)
- Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Raúl Alvarez-Venegas
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., CP 36821, México
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| |
Collapse
|
44
|
Fromm M, Avramova Z. ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? CURRENT OPINION IN PLANT BIOLOGY 2014; 21:75-82. [PMID: 25047977 DOI: 10.1016/j.pbi.2014.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Despite the proven correlation between gene transcriptional activity and the levels of tri-methyl marks on histone 3 lysine4 (H3K4me3) of their nucleosomes, whether H3K4me3 contributes to, or 'registers', activated transcription is still controversial. Other questions of broad relevance are whether histone-modifying proteins are involved in the recruitment of Pol II and the general transcription machinery and whether they have roles other than their enzyme activities. We address these questions as well as the roles of the ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), of the COMPASS-related (AtCOMPASS) protein complex, and of their product, H3K4me3, at ATX1-dependent genes. We suggest that the ambiguity about the role of H3K4me3 as an activating mark is due to the unknown duality of the ATX1/AtCOMPASS to facilitate PIC assembly and to generate H3K4me3, which is essential for activating transcriptional elongation.
Collapse
Affiliation(s)
- Michael Fromm
- Department of Agronomy and Plant Science Innovation, UNL, Lincoln, NE 68588-6008, USA
| | - Zoya Avramova
- School of Biological Science, UNL, Lincoln, NE 68588-6008, USA.
| |
Collapse
|
45
|
Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y, Li H, Tan J, Hu A, Gao F, Zhang Q, Li Y, Zhou H, Zhang W, Li L. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS One 2014; 9:e106070. [PMID: 25171199 PMCID: PMC4149478 DOI: 10.1371/journal.pone.0106070] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/22/2022] Open
Abstract
The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yapei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junjun Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Zhang
- Renmin Hospital, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LL); (WZ)
| |
Collapse
|
46
|
Zou B, Yang DL, Shi Z, Dong H, Hua J. Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:309-18. [PMID: 24664204 PMCID: PMC4012590 DOI: 10.1104/pp.113.227801] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/22/2014] [Indexed: 05/17/2023]
Abstract
Disease resistance (R) genes are key components in plant immunity. Here, we show that Arabidopsis (Arabidopsis thaliana) E3 ubiquitin ligase genes HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 regulate the expression of R genes SUPPRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1) and RESISTANCE TO PERONOSPORA PARASITICA4. An increase of SNC1 expression induces constitutive immune responses in the bonzai1 (bon1) mutant, and the loss of HUB1 or HUB2 function reduces SNC1 up-regulation and suppresses the bon1 autoimmune phenotypes. HUB1 and HUB2 mediate histone 2B (H2B) monoubiquitination directly at the SNC1 R gene locus to regulate its expression. In addition, SNC1 and HUB1 transcripts are moderately up-regulated by pathogen infection, and H2B monoubiquitination at SNC1 is enhanced by pathogen infection. Together, this study indicates that H2B monoubiquitination at the R gene locus regulates its expression and that this histone modification at the R gene locus has an impact on immune responses in plants.
Collapse
|
47
|
Qian Y, Xi Y, Cheng B, Zhu S, Kan X. Identification and characterization of the SET domain gene family in maize. Mol Biol Rep 2014; 41:1341-54. [PMID: 24390243 DOI: 10.1007/s11033-013-2980-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/24/2013] [Indexed: 12/17/2022]
Abstract
Histone lysine methylation plays a pivotal role in a variety of developmental and physiological processes through modifying chromatin structure and thereby regulating eukaryotic gene transcription. The SET domain proteins represent putative candidates for lysine methyltransferases containing the evolutionarily-conserved SET domain, and important epigenetic regulators present in eukaryotes. In recent years, increasing evidence reveals that SET domain proteins are encoded by a large multigene family in plants and investigation of the SET domain gene family will serve to elucidate the epigenetic mechanism diversity in plants. Although the SET domain gene family has been thoroughly characterized in multiple plant species including two model plant systems, Arabidopsis and rice, through their sequenced genomes, analysis of the entire SET domain gene family in maize was not completed following maize (B73) genome sequencing project. Here, we performed a genome-wide structural and evolutionary analysis of maize SET domain genes from the latest version of the maize (B73) genome. A complete set of 43 SET domain genes (Zmset1-43) were identified in the maize genome using Blast search tools and categorized into seven classes (Class I-VII) based on phylogeny. Chromosomal location of these genes revealed that they are unevenly distributed on all ten chromosomes with seven segmental duplication events, suggesting that segmental duplication played a key role in expansion of the maize SET domain gene family. EST expression data mining revealed that these newly identified genes had temporal and spatial expression pattern and suggested that many maize SET domain genes play functional developmental roles in multiple tissues. Furthermore, the transcripts of the 18 genes (the Class V subfamily) were detected in the leaves by two different abiotic stress treatments using semi-quantitative RT-PCR. The data demonstrated that these genes exhibited different expression levels in stress treatments. Overall, our study will serve to better understand the complexity of the maize SET domain gene family and also be beneficial for future experimental research to further unravel the mechanisms of epigenetic regulation in plants.
Collapse
Affiliation(s)
- Yexiong Qian
- Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China,
| | | | | | | | | |
Collapse
|
48
|
Shen Y, Conde e Silva N, Audonnet L, Servet C, Wei W, Zhou DX. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:290. [PMID: 25009544 PMCID: PMC4068201 DOI: 10.3389/fpls.2014.00290] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/04/2014] [Indexed: 05/20/2023]
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.
Collapse
Affiliation(s)
- Yuan Shen
- Saclay Plant Science, Institut de Biologie des Plantes, Université Paris-Sud 11Orsay, France
| | - Natalia Conde e Silva
- Saclay Plant Science, Institut de Biologie des Plantes, Université Paris-Sud 11Orsay, France
- UMR 8618, CNRSOrsay, France
| | - Laure Audonnet
- Saclay Plant Science, Institut de Biologie des Plantes, Université Paris-Sud 11Orsay, France
| | | | - Wei Wei
- Interdisciplinary Scientific Research Institute, Jianghan UniversityWuhan, China
| | - Dao-Xiu Zhou
- Saclay Plant Science, Institut de Biologie des Plantes, Université Paris-Sud 11Orsay, France
- UMR 8618, CNRSOrsay, France
- *Correspondence: Dao-Xiu Zhou, Institut de Biologie des Plantes, Université Paris-Sud 11, B630, 91405 Orsay, France e-mail:
| |
Collapse
|
49
|
Li T, Chen X, Zhong X, Zhao Y, Liu X, Zhou S, Cheng S, Zhou DX. Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice. THE PLANT CELL 2013; 25:4725-36. [PMID: 24280387 PMCID: PMC3875746 DOI: 10.1105/tpc.113.118802] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 05/17/2023]
Abstract
Histone methylation is an important epigenetic modification in chromatin function, genome activity, and gene regulation. Dimethylated or trimethylated histone H3 lysine 27 (H3K27me2/3) marks silent or repressed genes involved in developmental processes and stress responses in plants. However, the role and the mechanism of the dynamic removal of H3K27me2/3 during gene activation remain unclear. Here, we show that the rice (Oryza sativa) Jumonji C (jmjC) protein gene JMJ705 encodes a histone lysine demethylase that specifically reverses H3K27me2/3. The expression of JMJ705 is induced by stress signals and during pathogen infection. Overexpression of the gene reduces the resting level of H3K27me2/3 resulting in preferential activation of H3K27me3-marked biotic stress-responsive genes and enhances rice resistance to the bacterial blight disease pathogen Xanthomonas oryzae pathovar oryzae. Mutation of the gene reduces plant resistance to the pathogen. Further analysis revealed that JMJ705 is involved in methyl jasmonate-induced dynamic removal of H3K27me3 and gene activation. The results suggest that JMJ705 is a biotic stress-responsive H3K27me2/3 demethylase that may remove H3K27me3 from marked defense-related genes and increase their basal and induced expression during pathogen infection.
Collapse
Affiliation(s)
- Tiantian Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiangsong Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaochao Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaoyun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
- Institut de Biologie des Plantes Unité Mixte de Recherche 8618 Université Paris-sud 11, 91405 Orsay, France
- Address correspondence to
| |
Collapse
|
50
|
Ding Y, Ndamukong I, Xu Z, Lapko H, Fromm M, Avramova Z. ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1-regulated genes. PLoS Genet 2012; 8:e1003111. [PMID: 23284292 PMCID: PMC3527332 DOI: 10.1371/journal.pgen.1003111] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/08/2012] [Indexed: 01/26/2023] Open
Abstract
Tri-methylated H3 lysine 4 (H3K4me3) is associated with transcriptionally active genes, but its function in the transcription process is still unclear. Point mutations in the catalytic domain of ATX1 (ARABIDOPSIS TRITHORAX1), a H3K4 methyltransferase, and RNAi knockdowns of subunits of the AtCOMPASS–like (Arabidopsis Complex Proteins Associated with Set) were used to address this question. We demonstrate that both ATX1 and AtCOMPASS–like are required for high level accumulation of TBP (TATA-binding protein) and Pol II at promoters and that this requirement is independent of the catalytic histone modifying activity. However, the catalytic function is critically required for transcription as H3K4me3 levels determine the efficiency of transcription elongation. The roles of H3K4me3, ATX1, and AtCOMPASS–like may be of a general relevance for transcription of Trithorax-activated eukaryotic genes. We provide a definitive answer to the question regarding the role of histone H3 lysine 4 tri-methylation marks in the transcription of two ATX1-regulated genes. Despite the proven correlation between the gene transcriptional activity and the level of H3K4me3 modification on the nucleosomes, whether H3K4me3 contributes to, or simply “registers,” active transcription has remained unclear. Another broader-relevance question is whether histone-modifying proteins are required for recruitment of the general transcription machinery, thus playing roles beyond their catalytic activity. Using a combination of gene deletion and specific point mutation analyses, we untangle overlapping effects and reveal that H3K4me3 is not required for TBP/Pol II recruitment to promoters but is critical as an activating mark for transcription elongation. The existing hitherto ambiguity about the role of H3K4me3 as an activating mark has been largely due to the unknown duality of the ATX1/AtCOMPASS functions: facilitating PIC assembly and producing H3K4me3 as an activating mark for transcription elongation.
Collapse
Affiliation(s)
- Yong Ding
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
| | - Ivan Ndamukong
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Zaoshi Xu
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
| | - Hanna Lapko
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
| | - Michael Fromm
- University of Nebraska Center for Biotechnology, Lincoln, Nebraska, United States of America
- Center for Plant Science Innovation, Lincoln, Nebraska, United States of America
- * E-mail: (MF); (ZA)
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (MF); (ZA)
| |
Collapse
|