1
|
Huang Y, Zhang Z, Zou Z, Zhang L, Chen Y, Wan J, Zhu Z, Yu S, Zuo H, Lin YCD, Huang HY, Huang HD. RegRNA 3.0: expanding regulatory RNA analysis with new features for motif, interaction, and annotation. Nucleic Acids Res 2025:gkaf405. [PMID: 40396374 DOI: 10.1093/nar/gkaf405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 05/19/2025] [Indexed: 05/22/2025] Open
Abstract
Functional RNA molecules are crucial for biological processes from gene regulation to protein synthesis, and analyzing functional motifs and elements is essential for understanding RNA regulation. Building on RegRNA 1.0 and 2.0, we present RegRNA 3.0, a sophisticated meta-workflow that integrates 26 computational tools and 28 databases for annotation, enabling one-step and customizable RNA motif predictions. RegRNA streamlines multi-step analysis and enhances result interpretation with interactive visualizations and comprehensive reporting tools. When provided with an RNA sequence, RegRNA 3.0 generates predictions for RNA functional motifs, RNA interaction motifs, and comprehensive RNA annotations. Specifically, RNA functional motifs include core promoter elements, RNA decay, G-quadruplex, and 14 previous types. RNA interaction motifs include newly added RNA-ligand interactions and RNA-binding protein predictions, along with three previous types. RNA annotation includes RNA family classification, blood exosomes RNA, subcellular localizations, A-to-I editing events, modifications, and 3D structures, along with four previously supported features. RegRNA 3.0 accelerates gene regulation and RNA biology discoveries by offering a user-friendly platform for identifying and analyzing RNA motifs and interactions. The web interface has been improved for intuitive visualizations of predicted motifs and structures, with flexible download options in multiple formats. It is available at http://awi.cuhk.edu.cn/∼RegRNA/.
Collapse
Affiliation(s)
- Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Zhiyong Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Zhengkai Zou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Lingquan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yigang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Jingting Wan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Zihao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Sicong Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
2
|
RNA-As-Graphs Motif Atlas—Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications. Int J Mol Sci 2022; 23:ijms23169249. [PMID: 36012512 PMCID: PMC9408923 DOI: 10.3390/ijms23169249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
RNA motif classification is important for understanding structure/function connections and building phylogenetic relationships. Using our coarse-grained RNA-As-Graphs (RAG) representations, we identify recurrent dual graph motifs in experimentally solved RNA structures based on an improved search algorithm that finds and ranks independent RNA substructures. Our expanded list of 183 existing dual graph motifs reveals five common motifs found in transfer RNA, riboswitch, and ribosomal 5S RNA components. Moreover, we identify three motifs for available viral frameshifting RNA elements, suggesting a correlation between viral structural complexity and frameshifting efficiency. We further partition the RNA substructures into 1844 distinct submotifs, with pseudoknots and junctions retained intact. Common modules are internal loops and three-way junctions, and three submotifs are associated with riboswitches that bind nucleotides, ions, and signaling molecules. Together, our library of existing RNA motifs and submotifs adds to the growing universe of RNA modules, and provides a resource of structures and substructures for novel RNA design.
Collapse
|
3
|
Fu XG, Yan AZ, Xu YJ, Liao J, Guo XY, Zhang D, Yang WJ, Zheng DZ, Lan FH. Splicing of exon 9a in FMR1 transcripts results in a truncated FMRP with altered subcellular distribution. Gene 2020; 731:144359. [PMID: 31935509 DOI: 10.1016/j.gene.2020.144359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
FMRP is an RNA-binding protein, loss of which causes fragile X syndrome (FXS). FMRP has several isoforms resulted from alternative splicing (AS) of fragile X mental retardation 1 (FMR1) gene, but their biological functions are still poorly understood. In the analysis of alternatively spliced FMR1 transcripts in the blood cells from a patient with FXS-like phenotypes (normal CGG repeats and no mutation in coding sequence of FMR1), we identified three novel FMR1 transcripts that include a previously unidentified microexon (46 bp), terming the exon 9a. This microexon exists widely in unaffected individuals, inclusion of which introduces an in-frame termination codon. To address whether these exon 9a-containing transcripts could produce protein by evading nonsense-mediated decay (NMD), Western blot was used to analysis blood cell lysate from unaffected individuals and a 34 kDa protein that consistent in size with the molecular weight of the predicted truncated protein produced from mRNA with this microexon was found. Meanwhile, treatment of peripheral blood mononuclear cells with an inhibitor of NMD (Cycloheximide) did not result in significant increase in exon 9a-containing transcripts. Using confocal immunofluorescence, we found the truncated protein displayed both nuclear and cytoplasmic localization in HEK293T and HeLa cells due to lacking C-terminal domains including KH2, NES, and RGG, while the full-length FMRP protein mainly localized in the cytoplasm. Therefore, we hypothesize that the inclusion of this microexon to generate exon 9a-containing transcripts may regulate the normal functionality of FMRP, and the dysregulation of normal FMRP due to increased exon 9a-containing alternatively spliced transcripts in that patient may be associated with the manifestation of FXS phenotype.
Collapse
Affiliation(s)
- Xian-Guo Fu
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Ai-Zhen Yan
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Yong-Jun Xu
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Juan Liao
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Xiao-Yan Guo
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Duo Zhang
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Wen-Jing Yang
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - De-Zhu Zheng
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China
| | - Feng-Hua Lan
- Department of Clinical Genetics and Experimental Medicine, 900th Hospital of the Joint Logistics Force, Fujian Medical University, Fuzhou, Fujian 350025, China.
| |
Collapse
|
4
|
Rani J, Mittal I, Pramanik A, Singh N, Dube N, Sharma S, Puniya BL, Raghunandanan MV, Mobeen A, Ramachandran S. T2DiACoD: A Gene Atlas of Type 2 Diabetes Mellitus Associated Complex Disorders. Sci Rep 2017; 7:6892. [PMID: 28761062 PMCID: PMC5537262 DOI: 10.1038/s41598-017-07238-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
We performed integrative analysis of genes associated with type 2 Diabetes Mellitus (T2DM) associated complications by automated text mining with manual curation and also gene expression analysis from Gene Expression Omnibus. They were analysed for pathogenic or protective role, trends, interaction with risk factors, Gene Ontology enrichment and tissue wise differential expression. The database T2DiACoD houses 650 genes, and 34 microRNAs associated with T2DM complications. Seven genes AGER, TNFRSF11B, CRK, PON1, ADIPOQ, CRP and NOS3 are associated with all 5 complications. Several genes are studied in multiple years in all complications with high proportion in cardiovascular (75.8%) and atherosclerosis (51.3%). T2DM Patients' skeletal muscle tissues showed high fold change in differentially expressed genes. Among the differentially expressed genes, VEGFA is associated with several complications of T2DM. A few genes ACE2, ADCYAP1, HDAC4, NCF1, NFE2L2, OSM, SMAD1, TGFB1, BDNF, SYVN1, TXNIP, CD36, CYP2J2, NLRP3 with details of protective role are catalogued. Obesity is clearly a dominant risk factor interacting with the genes of T2DM complications followed by inflammation, diet and stress to variable extents. This information emerging from the integrative approach used in this work could benefit further therapeutic approaches. The T2DiACoD is available at www.http://t2diacod.igib.res.in/ .
Collapse
Affiliation(s)
- Jyoti Rani
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Inna Mittal
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Atreyi Pramanik
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Namita Singh
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Namita Dube
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Smriti Sharma
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Bhanwar Lal Puniya
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Muthukurussi Varieth Raghunandanan
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Ahmed Mobeen
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, 110025, India
| | - Srinivasan Ramachandran
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, 110025, India.
| |
Collapse
|
5
|
RNA splicing in human disease and in the clinic. Clin Sci (Lond) 2017; 131:355-368. [PMID: 28202748 DOI: 10.1042/cs20160211] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023]
Abstract
Defects at the level of the pre-mRNA splicing process represent a major cause of human disease. Approximately 15-50% of all human disease mutations have been shown to alter functioning of basic and auxiliary splicing elements. These elements are required to ensure proper processing of pre-mRNA splicing molecules, with their disruption leading to misprocessing of the pre-mRNA molecule and disease. The splicing process is a complex process, with much still to be uncovered before we are able to accurately predict whether a reported genomic sequence variant (GV) represents a splicing-associated disease mutation or a harmless polymorphism. Furthermore, even when a mutation is correctly identified as affecting the splicing process, there still remains the difficulty of providing an exact evaluation of the potential impact on disease onset, severity and duration. In this review, we provide a brief overview of splicing diagnostic methodologies, from in silico bioinformatics approaches to wet lab in vitro and in vivo systems to evaluate splicing efficiencies. In particular, we provide an overview of how the latest developments in high-throughput sequencing can be applied to the clinic, and are already changing clinical approaches.
Collapse
|
6
|
|
7
|
Badr E, ElHefnawi M, Heath LS. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data. PLoS One 2016; 11:e0166978. [PMID: 27861625 PMCID: PMC5115852 DOI: 10.1371/journal.pone.0166978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.
Collapse
Affiliation(s)
- Eman Badr
- Department of Information Technology, Faculty of Computers and Information, Cairo University, Giza, Egypt
- * E-mail:
| | - Mahmoud ElHefnawi
- Center of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Center, Cairo, Egypt
- Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
8
|
Xing Y, Zhao X, Yu T, Liang D, Li J, Wei G, Liu G, Cui X, Zhao H, Cai L. MiasDB: A Database of Molecular Interactions Associated with Alternative Splicing of Human Pre-mRNAs. PLoS One 2016; 11:e0155443. [PMID: 27167218 PMCID: PMC4864242 DOI: 10.1371/journal.pone.0155443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) is pervasive in human multi-exon genes and is a major contributor to expansion of the transcriptome and proteome diversity. The accurate recognition of alternative splice sites is regulated by information contained in networks of protein-protein and protein-RNA interactions. However, the mechanisms leading to splice site selection are not fully understood. Although numerous databases have been built to describe AS, molecular interaction databases associated with AS have only recently emerged. In this study, we present a new database, MiasDB, that provides a description of molecular interactions associated with human AS events. This database covers 938 interactions between human splicing factors, RNA elements, transcription factors, kinases and modified histones for 173 human AS events. Every entry includes the interaction partners, interaction type, experimental methods, AS type, tissue specificity or disease-relevant information, a simple description of the functionally tested interaction in the AS event and references. The database can be queried easily using a web server (http://47.88.84.236/Miasdb). We display some interaction figures for several genes. With this database, users can view the regulation network describing AS events for 12 given genes.
Collapse
Affiliation(s)
- Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Tao Yu
- School of Science, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Dong Liang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jun Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Guanyun Wei
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xiangjun Cui
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- * E-mail:
| |
Collapse
|
9
|
Gruszka D, Gorniak M, Glodowska E, Wierus E, Oklestkova J, Janeczko A, Maluszynski M, Szarejko I. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process. Int J Mol Sci 2016; 17:ijms17040600. [PMID: 27110778 PMCID: PMC4849053 DOI: 10.3390/ijms17040600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the “reverse genetics” approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants’ phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Malgorzata Gorniak
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Ewelina Glodowska
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Ewa Wierus
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Janeczko
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
10
|
Giudice G, Sánchez-Cabo F, Torroja C, Lara-Pezzi E. ATtRACT-a database of RNA-binding proteins and associated motifs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw035. [PMID: 27055826 PMCID: PMC4823821 DOI: 10.1093/database/baw035] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es.
Collapse
Affiliation(s)
- Girolamo Giudice
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | | | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro 3, Madrid 28029, Spain National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Sharma S, Toledo O, Hedden M, Lyon KF, Brooks SB, David RP, Limtong J, Newsome JM, Novakovic N, Rajasekaran S, Thapar V, Williams SR, Schiller MR. The Functional Human C-Terminome. PLoS One 2016; 11:e0152731. [PMID: 27050421 PMCID: PMC4822787 DOI: 10.1371/journal.pone.0152731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022] Open
Abstract
All translated proteins end with a carboxylic acid commonly called the C-terminus. Many short functional sequences (minimotifs) are located on or immediately proximal to the C-terminus. However, information about the function of protein C-termini has not been consolidated into a single source. Here, we built a new "C-terminome" database and web system focused on human proteins. Approximately 3,600 C-termini in the human proteome have a minimotif with an established molecular function. To help evaluate the function of the remaining C-termini in the human proteome, we inferred minimotifs identified by experimentation in rodent cells, predicted minimotifs based upon consensus sequence matches, and predicted novel highly repetitive sequences in C-termini. Predictions can be ranked by enrichment scores or Gene Evolutionary Rate Profiling (GERP) scores, a measurement of evolutionary constraint. By searching for new anchored sequences on the last 10 amino acids of proteins in the human proteome with lengths between 3-10 residues and up to 5 degenerate positions in the consensus sequences, we have identified new consensus sequences that predict instances in the majority of human genes. All of this information is consolidated into a database that can be accessed through a C-terminome web system with search and browse functions for minimotifs and human proteins. A known consensus sequence-based predicted function is assigned to nearly half the proteins in the human proteome. Weblink: http://cterminome.bio-toolkit.com.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Oniel Toledo
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Michael Hedden
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Kenneth F. Lyon
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Steven B. Brooks
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Roxanne P. David
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Justin Limtong
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Jacklyn M. Newsome
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Nemanja Novakovic
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut 06269–2155, United States of America
| | - Vishal Thapar
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
| | - Sean R. Williams
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| |
Collapse
|
12
|
Matos L, Gonçalves V, Pinto E, Laranjeira F, Prata MJ, Jordan P, Desviat LR, Pérez B, Alves S. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II. Data Brief 2015; 5:810-7. [PMID: 26693516 PMCID: PMC4660375 DOI: 10.1016/j.dib.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/12/2015] [Indexed: 12/04/2022] Open
Abstract
This data article contains insights into the methodology used for the analysis of three exonic mutations altering the splicing of the IDS gene: c.241C>T, c.257C>T and c.1122C>T. We have performed splicing assays for the wild-type and mutant minigenes corresponding to these substitutions. In addition, bioinformatic predictions of splicing regulatory sequence elements as well as RNA interference and overexpression experiments were conducted. The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in “Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II” Matos et al. (2015) [1].
Collapse
Affiliation(s)
- Liliana Matos
- Research and Development Unit, Department of Human Genetics, INSA, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vânia Gonçalves
- Research and Development Unit, Department of Human Genetics, INSA, Lisbon, Portugal
| | - Eugénia Pinto
- Biochemical Genetics Unit, Center for Medical Genetics Jacinto Magalhães, Porto Hospital Center, Porto, Portugal
| | - Francisco Laranjeira
- Biochemical Genetics Unit, Center for Medical Genetics Jacinto Magalhães, Porto Hospital Center, Porto, Portugal
| | - Maria João Prata
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- i3S - Instituto de Investigação em Saúde/IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Peter Jordan
- Research and Development Unit, Department of Human Genetics, INSA, Lisbon, Portugal
| | - Lourdes R. Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- IDIPaz, Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- IDIPaz, Madrid, Spain
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, INSA, Porto, Portugal
- Corresponding author.
| |
Collapse
|
13
|
Matos L, Gonçalves V, Pinto E, Laranjeira F, Prata MJ, Jordan P, Desviat LR, Pérez B, Alves S. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2712-21. [PMID: 26407519 DOI: 10.1016/j.bbadis.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation.
Collapse
Affiliation(s)
- Liliana Matos
- Research and Development Unit, Department of Human Genetics, INSA, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Vânia Gonçalves
- Research and Development Unit, Department of Human Genetics, INSA, Lisbon, Portugal.
| | - Eugénia Pinto
- Biochemical Genetics Unit, Center for Medical Genetics Jacinto Magalhães, Porto Hospital Center, Porto, Portugal.
| | - Francisco Laranjeira
- Biochemical Genetics Unit, Center for Medical Genetics Jacinto Magalhães, Porto Hospital Center, Porto, Portugal.
| | - Maria João Prata
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde/IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | - Peter Jordan
- Research and Development Unit, Department of Human Genetics, INSA, Lisbon, Portugal.
| | - Lourdes R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; IDIPaz, Madrid, Spain.
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; IDIPaz, Madrid, Spain.
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, INSA, Porto, Portugal.
| |
Collapse
|
14
|
Badr E, Heath LS. CoSREM: a graph mining algorithm for the discovery of combinatorial splicing regulatory elements. BMC Bioinformatics 2015; 16:285. [PMID: 26337677 PMCID: PMC4559876 DOI: 10.1186/s12859-015-0698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional regulatory mechanism for gene expression regulation. Splicing decisions are affected by the combinatorial behavior of different splicing factors that bind to multiple binding sites in exons and introns. These binding sites are called splicing regulatory elements (SREs). Here we develop CoSREM (Combinatorial SRE Miner), a graph mining algorithm to discover combinatorial SREs in human exons. Our model does not assume a fixed length of SREs and incorporates experimental evidence as well to increase accuracy. CoSREM is able to identify sets of SREs and is not limited to SRE pairs as are current approaches. RESULTS We identified 37 SRE sets that include both enhancer and silencer elements. We show that our results intersect with previous results, including some that are experimental. We also show that the SRE set GGGAGG and GAGGAC identified by CoSREM may play a role in exon skipping events in several tumor samples. We applied CoSREM to RNA-Seq data for multiple tissues to identify combinatorial SREs which may be responsible for exon inclusion or exclusion across tissues. CONCLUSION The new algorithm can identify different combinations of splicing enhancers and silencers without assuming a predefined size or limiting the algorithm to find only pairs of SREs. Our approach opens new directions to study SREs and the roles that AS may play in diseases and tissue specificity.
Collapse
Affiliation(s)
- Eman Badr
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
15
|
Survey of Programs Used to Detect Alternative Splicing Isoforms from Deep Sequencing Data In Silico. BIOMED RESEARCH INTERNATIONAL 2015; 2015:831352. [PMID: 26421304 PMCID: PMC4573434 DOI: 10.1155/2015/831352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
Next-generation sequencing techniques have been rapidly emerging. However, the massive sequencing reads hide a great deal of unknown important information. Advances have enabled researchers to discover alternative splicing (AS) sites and isoforms using computational approaches instead of molecular experiments. Given the importance of AS for gene expression and protein diversity in eukaryotes, detecting alternative splicing and isoforms represents a hot topic in systems biology and epigenetics research. The computational methods applied to AS prediction have improved since the emergence of next-generation sequencing. In this study, we introduce state-of-the-art research on AS and then compare the research methods and software tools available for AS based on next-generation sequencing reads. Finally, we discuss the prospects of computational methods related to AS.
Collapse
|
16
|
Badr E, Heath LS. Identifying splicing regulatory elements with de Bruijn graphs. J Comput Biol 2015; 21:880-97. [PMID: 25393830 DOI: 10.1089/cmb.2014.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. Here, we propose a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In our approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. Our model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation.
Collapse
Affiliation(s)
- Eman Badr
- Department of Computer Science, Virginia Tech , Blacksburg, Virginia
| | | |
Collapse
|
17
|
D'Antonio M, Castrgnanò T, Pallocca M, D'Erchia AM, Picardi E, Pesole G. ASPicDB: a database web tool for alternative splicing analysis. Methods Mol Biol 2015; 1269:365-78. [PMID: 25577391 DOI: 10.1007/978-1-4939-2291-8_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing (AS) is a basic molecular phenomenon that increases the functional complexity of higher eukaryotic transcriptomes. Indeed, through AS individual gene loci can generate multiple RNAs from the same pre-mRNA. AS has been investigated in a variety of clinical and pathological studies, such as the transcriptome regulation in cancer. In human, recent works based on massive RNA sequencing indicate that >95 % of pre-mRNAs are processed to yield multiple transcripts. Given the biological relevance of AS, several computational efforts have been done leading to the implementation of novel algorithms and specific specialized databases. Here we describe the web application ASPicDB that allows the recovery of detailed biological information about the splicing mechanism. ASPicDB provides powerful querying systems to interrogate AS events at gene, transcript, and protein levels. Finally, ASPicDB includes web visualization instruments to browse and export results for further off-line analyses.
Collapse
|
18
|
Coutinho MF, Lacerda L, Pinto E, Ribeiro H, Macedo-Ribeiro S, Castro L, Prata MJ, Alves S. Molecular and computational analyses of genes involved in mannose 6-phosphate independent trafficking. Clin Genet 2014; 88:190-4. [PMID: 25088547 DOI: 10.1111/cge.12469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
Abstract
The newly-synthesized lysosomal enzymes travel to the trans-Golgi network (TGN) and are then driven to the acidic organelle. While the best-known pathway for TGN-to-endosome transport is the delivery of soluble hydrolases by the M6P receptors (MPRs), additional pathways do exist, as showed by the identification of two alternative receptors: LIMP-2, implicated in the delivery of β-glucocerebrosidase; and sortilin, involved in the transport of the sphingolipid activator proteins prosaposin and GM2AP, acid sphingomyelinase and cathepsins D and H. Disruption of the intracellular transport and delivery pathways to the lysosomes may result in lysosomal dysfunction, predictably leading to a range of clinical manifestations of lysosomal storage diseases. However, for a great percentage of patients presenting such manifestations, no condition is successfully diagnosed. To analyse if, in this group, phenotypes could be determined by impairments in the known M6P-independent receptors, we screened the genes that encode for LIMP-2 and sortilin. No pathogenic mutations were identified. Other approaches will be needed to clarify whether sortilin dysfunction may cause disease.
Collapse
Affiliation(s)
- M F Coutinho
- INSA, Research and Development Unit, Department of Human Genetics, Porto, Portugal.,IPATIMUP, Porto, Portugal.,Department of Biology, Faculty of Sciences, Porto, Portugal
| | - L Lacerda
- Biochemical Genetics Unit, CGMJM, Porto, Portugal
| | - E Pinto
- Biochemical Genetics Unit, CGMJM, Porto, Portugal
| | - H Ribeiro
- Biochemical Genetics Unit, CGMJM, Porto, Portugal
| | - S Macedo-Ribeiro
- IBMC, Instituto de Biologia Celular e Molecular, Porto, Portugal
| | - L Castro
- INSA, Research and Development Unit, Department of Human Genetics, Porto, Portugal
| | - M J Prata
- IPATIMUP, Porto, Portugal.,Department of Biology, Faculty of Sciences, Porto, Portugal
| | - S Alves
- INSA, Research and Development Unit, Department of Human Genetics, Porto, Portugal
| |
Collapse
|
19
|
Kamtchueng C, Stébenne MÉ, Delannoy A, Wilhelm E, Léger H, Benecke AG, Bell B. Alternative splicing of TAF6: downstream transcriptome impacts and upstream RNA splice control elements. PLoS One 2014; 9:e102399. [PMID: 25025302 PMCID: PMC4099370 DOI: 10.1371/journal.pone.0102399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/19/2014] [Indexed: 01/07/2023] Open
Abstract
The TAF6δ pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6δ is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6δ has been shown to be a pivotal event in triggering death via the TAF6δ pathway, yet nothing is currently known about the mechanisms that promote TAF6δ splicing. Furthermore the transcriptome impact of the gain of function of TAF6δ versus the loss of function of the major TAF6α splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6δ drives a transcriptome profile distinct from that resulting from depletion of TAF6α. To define the cis-acting RNA elements responsible for TAF6δ alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6δ and also reveal a role for RNA secondary structure in the selection of TAF6δ.
Collapse
Affiliation(s)
- Catherine Kamtchueng
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Marie-Éve Stébenne
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Aurélie Delannoy
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Emmanuelle Wilhelm
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Hélène Léger
- Institut des Hautes Etudes Scientifiques, Centre National de la Recherche Scientifique, 35 route de Chartres, Bures sur Yvette, France
| | - Arndt G. Benecke
- Institut des Hautes Etudes Scientifiques, Centre National de la Recherche Scientifique, 35 route de Chartres, Bures sur Yvette, France
- Université Pierre et Marie Curie, UMR8246 CNRS, 7 quai Saint Bernard, Paris, France
| | - Brendan Bell
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
20
|
Lo C, Kakaradov B, Lokshtanov D, Boucher C. SeeSite: Characterizing Relationships between Splice Junctions and Splicing Enhancers. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:648-656. [PMID: 26356335 DOI: 10.1109/tcbb.2014.2304294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA splicing is a cellular process driven by the interaction between numerous regulatory sequences and binding sites, however, such interactions have been primarily explored by laboratory methods since computational tools largely ignore the relationship between different splicing elements. Current computational methods identify either splice sites or other regulatory sequences, such as enhancers and silencers. We present a novel approach for characterizing co-occurring relationships between splice site motifs and splicing enhancers. Our approach relies on an efficient algorithm for approximately solving Consensus Sequence with Outliers , an NP-complete string clustering problem. In particular, we give an algorithm for this problem that outputs near-optimal solutions in polynomial time. To our knowledge, this is the first formulation and computational attempt for detecting co-occurring sequence elements in RNA sequence data. Further, we demonstrate that SeeSite is capable of showing that certain ESEs are preferentially associated with weaker splice sites, and that there exists a co-occurrence relationship with splice site motifs.
Collapse
|
21
|
Zuo Y, Zhang P, Liu L, Li T, Peng Y, Li G, Li Q. Sequence-specific flexibility organization of splicing flanking sequence and prediction of splice sites in the human genome. Chromosome Res 2014; 22:321-34. [PMID: 24728765 DOI: 10.1007/s10577-014-9414-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 12/15/2022]
Abstract
More and more reported results of nucleosome positioning and histone modifications showed that DNA structure play a well-established role in splicing. In this study, a set of DNA geometric flexibility parameters originated from molecular dynamics (MD) simulations were introduced to discuss the structure organization around splice sites at the DNA level. The obtained profiles of specific flexibility/stiffness around splice sites indicated that the DNA physical-geometry deformation could be used as an alternative way to describe the splicing junction region. In combination with structural flexibility as discriminatory parameter, we developed a hybrid computational model for predicting potential splicing sites. And the better prediction performance was achieved when the benchmark dataset evaluated. Our results showed that the mechanical deformability character of a splice junction is closely correlated with both the splice site strength and structural information in its flanking sequences.
Collapse
Affiliation(s)
- Yongchun Zuo
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, 010021, China,
| | | | | | | | | | | | | |
Collapse
|
22
|
Kadam US, Schulz B, lrudayaraj J. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes. FEBS Lett 2014; 588:1637-43. [DOI: 10.1016/j.febslet.2014.02.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 11/30/2022]
|
23
|
Roy B, Haupt LM, Griffiths LR. Review: Alternative Splicing (AS) of Genes As An Approach for Generating Protein Complexity. Curr Genomics 2013; 14:182-94. [PMID: 24179441 PMCID: PMC3664468 DOI: 10.2174/1389202911314030004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022] Open
Abstract
Prior to the completion of the human genome project, the human genome was thought to have a greater number of genes as it seemed structurally and functionally more complex than other simpler organisms. This along with the belief of “one gene, one protein”, were demonstrated to be incorrect. The inequality in the ratio of gene to protein formation gave rise to the theory of alternative splicing (AS). AS is a mechanism by which one gene gives rise to multiple protein products. Numerous databases and online bioinformatic tools are available for the detection and analysis of AS. Bioinformatics provides an important approach to study mRNA and protein diversity by various tools such as expressed sequence tag (EST) sequences obtained from completely processed mRNA. Microarrays and deep sequencing approaches also aid in the detection of splicing events. Initially it was postulated that AS occurred only in about 5% of all genes but was later found to be more abundant. Using bioinformatic approaches, the level of AS in human genes was found to be fairly high with 35-59% of genes having at least one AS form. Our ability to determine and predict AS is important as disorders in splicing patterns may lead to abnormal splice variants resulting in genetic diseases. In addition, the diversity of proteins produced by AS poses a challenge for successful drug discovery and therefore a greater understanding of AS would be beneficial.
Collapse
Affiliation(s)
- Bishakha Roy
- Genomics Research Centre, Griffith Health Institute, Griffith University Gold Coast, Queensland 4222, Australia
| | | | | |
Collapse
|
24
|
Novel GUCA1A mutations suggesting possible mechanisms of pathogenesis in cone, cone-rod, and macular dystrophy patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:517570. [PMID: 24024198 PMCID: PMC3759255 DOI: 10.1155/2013/517570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/19/2013] [Indexed: 01/06/2023]
Abstract
Here, we report two novel GUCA1A (the gene for guanylate cyclase activating protein 1) mutations identified in unrelated Spanish families affected by autosomal dominant retinal degeneration (adRD) with cone and rod involvement. All patients from a three-generation adRD pedigree underwent detailed ophthalmic evaluation. Total genome scan using single-nucleotide polymorphisms and then the linkage analysis were undertaken on the pedigree. Haplotype analysis revealed a 55.37 Mb genomic interval cosegregating with the disease phenotype on chromosome 6p21.31-q15. Mutation screening of positional candidate genes found a heterozygous transition c.250C>T in exon 4 of GUCA1A, corresponding to a novel mutation p.L84F. A second missense mutation, c.320T>C (p.I107T), was detected by screening of the gene in a Spanish patients cohort. Using bioinformatics approach, we predicted that either haploinsufficiency or dominant-negative effect accompanied by creation of a novel function for the mutant protein is a possible mechanism of the disease due to c.250C>T and c.320T>C. Although additional functional studies are required, our data in relation to the c.250C>T mutation open the possibility that transacting factors binding to de novo created recognition site resulting in formation of aberrant splicing variant is a disease model which may be more widespread than previously recognized as a mechanism causing inherited RD.
Collapse
|
25
|
Blázquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, García L, Valcárcel J, Fortes P, López de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat 2013; 34:1387-95. [PMID: 23864287 DOI: 10.1002/humu.22379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.
Collapse
Affiliation(s)
- Lorea Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Neuroscience Area, Health Research Institute Biodonostia, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 2013; 33:3140-50. [PMID: 23851510 DOI: 10.1038/onc.2013.284] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/25/2022]
Abstract
Prostate tumors develop resistance to androgen deprivation therapy (ADT) by multiple mechanisms, one of which is to express constitutively active androgen receptor (AR) splice variants lacking the ligand-binding domain. AR splice variant 7 (AR-V7, also termed AR3) is the most abundantly expressed variant that drives prostate tumor progression under ADT conditions. However, the molecular mechanism by which AR-V7 is generated remains unclear. In this manuscript, we demonstrated that RNA splicing of AR-V7 in response to ADT was closely associated with AR gene transcription initiation and elongation rates. Enhanced AR gene transcription by ADT provides a prerequisite condition that further increases the interactions between AR pre-mRNA and splicing factors. Under ADT conditions, recruitment of several RNA splicing factors to the 3' splicing site for AR-V7 was increased. We identified two RNA splicing enhancers and their binding proteins (U2AF65 and ASF/SF2) that had critical roles in splicing AR pre-mRNA into AR-V7. These data indicate that ADT-induced AR gene transcription rate and splicing factor recruitment to AR pre-mRNA contribute to the enhanced AR-V7 levels in prostate cancer cells.
Collapse
|
27
|
Liu B, Anderson SL, Qiu J, Rubin BY. Cardiac glycosides correct aberrant splicing of IKBKAP-encoded mRNA in familial dysautonomia derived cells by suppressing expression of SRSF3. FEBS J 2013; 280:3632-46. [PMID: 23711097 DOI: 10.1111/febs.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/30/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD) causing mutation in the IKBKAP gene prompted a study of the impact of a panel of pharmaceuticals on the splicing of this transcript, which revealed the ability of the cardiac glycoside digoxin to increase the production of the wild-type, exon-20-containing, IKBKAP-encoded transcript and the full-length IκB-kinase-complex-associated protein in FD-derived cells. Characterization of the cis elements and trans factors involved in the digoxin-mediated effect on splicing reveals that this response is dependent on an SRSF3 binding site(s) located in the intron 5' of the alternatively spliced exon and that digoxin mediates its effect by suppressing the level of the SRSF3 protein. Characterization of the digoxin-mediated effect on the RNA splicing process was facilitated by the identification of several RNA splicing events in which digoxin treatment mediates the enhanced inclusion of exonic sequence. Moreover, we demonstrate the ability of digoxin to impact the splicing process in neuronal cells, a cell type profoundly impacted by FD. This study represents the first demonstration that digoxin possesses splice-altering capabilities that are capable of reversing the impact of the FD-causing mutation. These findings support the clinical evaluation of the impact of digoxin on the FD patient population.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | | | | |
Collapse
|
28
|
Hirschfeld M, Zhang B, Jaeger M, Stamm S, Erbes T, Mayer S, Tong X, Stickeler E. Hypoxia-dependent mRNA expression pattern of splicing factor YT521 and its impact on oncological important target gene expression. Mol Carcinog 2013; 53:883-92. [PMID: 23765422 DOI: 10.1002/mc.22045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 11/06/2022]
Abstract
The ubiquitously expressed splicing factor YT521 (YTHDC1) is characterized by alternatively spliced isoforms with regulatory impact on cancer-associated gene expression. Our recent findings account for the prognostic significance of YT521 in endometrial cancer. In this study, we investigated the hypoxia-dependency of YT521 expression as well as its differential isoform activities on oncological important target genes. YT521's potential regulatory influence on splicing was investigated by a minigene assay for the specific target gene CD44. Functional splicing analysis was performed by YT521 knock-down or overexpression, respectively. In addition, YT521 expression was determined under hypoxia. The two protein-generating YT521 mRNA isoforms 1 and 2 caused a comparable, specific induction of CD44v alternative splicing (P < 0.01). In a number of oncological target genes, YT521 upregulation significantly altered BRCA2 expression pattern, while YT521 knock-down created a significant regulatory impact on PGR expression, respectively. Hypoxia induced a specific switch towards the processing of two non-protein-coding mRNA variants, of which one is described for the first time in this study. The presented study underlines the comparable regulatory potential of both YT521 isoforms 1 and 2, on the investigated target genes in vivo and in vitro. Hypoxia induces a specific switch in YT521 expression pattern towards the two non-protein coding mRNA variants, the already characterized isoform 3 and the newly discovered exon 8-skipping isoform. The altered YT521 alternative splicing is functionally coupled with nonsense-mediated decay and can be interpreted as regulated unproductive splicing and transcription with consecutive impact on the processing of specific cancer-associated genes, such as BRCA2 and PGR.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Gynecological Hospital, University Medical Center Freiburg, Freiburg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zheng S, Damoiseaux R, Chen L, Black DL. A broadly applicable high-throughput screening strategy identifies new regulators of Dlg4 (Psd-95) alternative splicing. Genome Res 2013; 23:998-1007. [PMID: 23636947 PMCID: PMC3668367 DOI: 10.1101/gr.147546.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/21/2013] [Indexed: 01/17/2023]
Abstract
Most mammalian genes produce multiple mRNA isoforms derived from alternative pre-mRNA splicing, with each alternative exon controlled by a complex network of regulatory factors. The identification of these regulators can be laborious and is usually carried out one factor at a time. We have developed a broadly applicable high-throughput screening method that simultaneously identifies multiple positive and negative regulators of a particular exon. Two minigene reporters were constructed: One produces green fluorescent protein (GFP) from the mRNA including an exon, and red fluorescent protein (RFP) from the mRNA lacking the exon; the other switches these fluorescent products of exon inclusion and exclusion. Combining results from these two reporters eliminates many false positives and greatly enriches for true splicing regulators. After extensive optimization of this method, we performed a gain-of-function screen of 15,779 cDNA clones and identified 40 genes affecting exon 18 of Discs large homolog 4 (Dlg4; also known as post-synaptic density protein 95 [Psd-95]). We confirmed that 28 of the 34 recoverable clones alter reporter splicing in RT-PCR assays. Remarkably, 18 of the identified genes encode splicing factors or RNA binding proteins, including PTBP1, a previously identified regulator of this exon. Loss-of-function experiments examining endogenous Dlg4 transcripts validated the effects of five of eight genes tested in independent cell lines, and two genes were further confirmed to regulate Dlg4 splicing in primary neurons. These results identify multiple new regulators of Dlg4 splicing, and validate an approach to isolating splicing regulators for almost any cassette exon from libraries of cDNAs, shRNAs, or small molecules.
Collapse
Affiliation(s)
- Sika Zheng
- Howard Hughes Medical Institute, University of California at Los Angeles, California 90095, USA
| | - Robert Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, California 90095, USA
| | - Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Douglas L. Black
- Howard Hughes Medical Institute, University of California at Los Angeles, California 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, California 90095, USA
| |
Collapse
|
30
|
Tang JY, Lee JC, Hou MF, Wang CL, Chen CC, Huang HW, Chang HW. Alternative splicing for diseases, cancers, drugs, and databases. ScientificWorldJournal 2013; 2013:703568. [PMID: 23766705 PMCID: PMC3674688 DOI: 10.1155/2013/703568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including cancers, have been associated with dysregulation of alternative splicing. Thus, correcting alternative splicing may restore normal cell physiology in patients with these diseases. This paper summarizes several alternative splicing-related diseases, including cancers and their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are also summarized.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
31
|
Mucaki EJ, Shirley BC, Rogan PK. Prediction of mutant mRNA splice isoforms by information theory-based exon definition. Hum Mutat 2013; 34:557-65. [PMID: 23348723 DOI: 10.1002/humu.22277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/04/2013] [Indexed: 11/09/2022]
Abstract
Mutations that affect mRNA splicing often produce multiple mRNA isoforms, resulting in complex molecular phenotypes. Definition of an exon and its inclusion in mature mRNA relies on joint recognition of both acceptor and donor splice sites. This study predicts cryptic and exon-skipping isoforms in mRNA produced by splicing mutations from the combined information contents (R(i), which measures binding-site strength, in bits) and distribution of the splice sites defining these exons. The total information content of an exon (R(i),total) is the sum of the R(i) values of its acceptor and donor splice sites, adjusted for the self-information of the distance separating these sites, that is, the gap surprisal. Differences between total information contents of an exon (ΔR(i,total)) are predictive of the relative abundance of these exons in distinct processed mRNAs. Constraints on splice site and exon selection are used to eliminate nonconforming and poorly expressed isoforms. Molecular phenotypes are computed by the Automated Splice Site and Exon Definition Analysis (http://splice.uwo.ca) server. Predictions of splicing mutations were highly concordant (85.2%; n = 61) with published expression data. In silico exon definition analysis will contribute to streamlining assessment of abnormal and normal splice isoforms resulting from mutations.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, Canada
| | | | | |
Collapse
|
32
|
A novel computational method for the identification of plant alternative splice sites. Biochem Biophys Res Commun 2013; 431:221-4. [DOI: 10.1016/j.bbrc.2012.12.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 11/23/2022]
|
33
|
Chang TH, Huang HY, Hsu JBK, Weng SL, Horng JT, Huang HD. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 2013; 14 Suppl 2:S4. [PMID: 23369107 PMCID: PMC3549854 DOI: 10.1186/1471-2105-14-s2-s4] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform. Methods and results An integrated web-based system, RegRNA 2.0, has been developed for comprehensively identifying the functional RNA motifs and sites in an input RNA sequence. Numerous data sources and analytical approaches are integrated, and several types of functional RNA motifs and sites can be identified by RegRNA 2.0: (i) splicing donor/acceptor sites; (ii) splicing regulatory motifs; (iii) polyadenylation sites; (iv) ribosome binding sites; (v) rho-independent terminator; (vi) motifs in mRNA 5'-untranslated region (5'UTR) and 3'UTR; (vii) AU-rich elements; (viii) C-to-U editing sites; (ix) riboswitches; (x) RNA cis-regulatory elements; (xi) transcriptional regulatory motifs; (xii) user-defined motifs; (xiii) similar functional RNA sequences; (xiv) microRNA target sites; (xv) non-coding RNA hybridization sites; (xvi) long stems; (xvii) open reading frames; (xviii) related information of an RNA sequence. User can submit an RNA sequence and obtain the predictive results through RegRNA 2.0 web page. Conclusions RegRNA 2.0 is an easy to use web server for identifying regulatory RNA motifs and functional sites. Through its integrated user-friendly interface, user is capable of using various analytical approaches and observing results with graphical visualization conveniently. RegRNA 2.0 is now available at http://regrna2.mbc.nctu.edu.tw.
Collapse
Affiliation(s)
- Tzu-Hao Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Zhang M, Liu Y, Sun S, Zhang H, Wang W, Ning G, Li X. A prevalent and three novel mutations in CYP11B1 gene identified in Chinese patients with 11-beta hydroxylase deficiency. J Steroid Biochem Mol Biol 2013; 133:25-9. [PMID: 22964742 DOI: 10.1016/j.jsbmb.2012.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/25/2012] [Accepted: 08/28/2012] [Indexed: 01/28/2023]
Abstract
UNLABELLED 11β-Hydroxylase deficiency (11β-OHD), caused by CYP11B1 mutations, is characterized by hyporeninemic, hypokalemic hypertension and hyperandrogenism. We identified a prevalent and three novel mutations of CYP11B1 gene in nine patients with classic 11β-OHD. SUBJECTS AND METHODS Nine patients with 11β-OHD from unrelated families were recruited. The complications of 11β-OHD occurred in three patients who never received glucocorticoid treatment. CYP11B1 gene was sequenced and 11β-hydroxylase enzymatic activities were assessed in vitro. A haplotype analysis was performed to determine a common ancestor for those subjects who carried the same p.R454C mutation. RESULTS CYP11B1 gene mutations were identified in all patients, with a prevalent (p.R454C) and three novel mutations (p.V148G, IVS7-9C>A, c.1359_1360insG). The p.R141X, p.V148G, c.1359_1360insG and p.R454C mutations retained 4.9%, 3.9%, 3.7%, 4.5% of residual enzymatic activity, respectively. Five of nine patients carried p.R454C mutation, which was only reported in Chinese 11OHD patients. Haplotype analysis showed that this mutation might be inherited from a common ancestor. CONCLUSION The enzymatic activities for p.R141X, p.V148G, c.1359_1360insG and p.R454C mutants were almost completely abolished, which corresponds to classic form of 11β-OHD. The observations of a prevalent mutation and three novel mutations might have potential clinical utility for genetic counseling and prenatal diagnosis in Chinese 11β-OHD patients.
Collapse
Affiliation(s)
- Manna Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory of Endocrine Tumor, Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin 2nd Road, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Cohen B, Chervinsky E, Jabaly-Habib H, Shalev SA, Briscoe D, Ben-Yosef T. A novel splice site mutation of CDHR1 in a consanguineous Israeli Christian Arab family segregating autosomal recessive cone-rod dystrophy. Mol Vis 2012; 18:2915-21. [PMID: 23233793 PMCID: PMC3519373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/29/2012] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To investigate the genetic basis for autosomal recessive cone-rod dystrophy in a consanguineous Israeli Christian Arab family. METHODS Patients underwent a detailed ophthalmic examination, including funduscopy, electroretinography (ERG), visual field testing, and optical coherence tomography. Genome-wide homozygosity mapping using a single nucleotide polymorphism array was performed to identify homozygous regions shared between the two affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico analysis was used to predict the effect of the mutation on splicing. RESULTS The family included two affected individuals. Clinical findings included progressive deterioration of visual acuity, photophobia, defective color vision, loss of central visual fields, pigmentary deposits localized mainly in the peripheral retina, a thinned and atrophic macular region, retinal vessel attenuation, absent ERG cone responses, and reduced ERG rod responses. Homozygosity mapping revealed several homozygous intervals shared among the affected individuals. One, a 12Mb interval on chromosome 10, included the CDHR1 gene. Direct sequencing revealed a single base transversion, c.1485+2T>G, located in the conserved donor splice site of Intron 13. This mutation cosegregated with the disease in the family, and was not detected in 208 Israeli Christian Arab control chromosomes. In silico analysis predicted that this mutation eliminates the Intron 13 donor splice site. CONCLUSIONS Only three distinct pathogenic mutations of CDHR1 have been reported to date in patients with autosomal recessive retinal degeneration. Here we report a novel splice site mutation of CDHR1, c.1485+2T>G, underlying autosomal recessive cone-rod dystrophy in a consanguineous Israeli Christian Arab family. This report expands the spectrum of pathogenic mutations of the CDHR1 gene.
Collapse
Affiliation(s)
- Ben Cohen
- The Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel,The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | - Stavit A. Shalev
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel,Genetics Institute, Ha’Emek Medical Center, Afula, Israel
| | - Daniel Briscoe
- Department of Ophthalmology, Ha’Emek Medical Center, Afula, Israel
| | - Tamar Ben-Yosef
- The Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel,The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Ragu Varman D, Marimuthu G, Rajan KE. Environmental enrichment upregulates micro-RNA-183 and alters acetylcholinesterase splice variants to reduce anxiety-like behavior in the little Indian field mouse (Mus booduga). J Neurosci Res 2012. [PMID: 23184316 DOI: 10.1002/jnr.23165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Environmental enrichment (EE) has an influential role in reducing behavioral reactivity to stress. We previously observed that EE reduces the anxiety-like behavior in the field mouse Mus booduga accompanied by a reduction in the expression of molecules involved in the stress pathway. In this study, we demonstrate the effect of different housing condition on regulation of micro-RNA-183-SC35-mediated splicing of acetylcholinesterase (AChE). Adult male M. booduga were captured from an agricultural field and housed under nonenriched standard conditions (SC) for 7 days and considered as directly from the wild (DW). On day 8, individuals were randomly assigned to three groups; DW, SC, and EE. The DW group's anxiety-like behavior was assessed in the elevated plus maze (EPM) and open field test (OFT). The SC and EE groups were transferred to their respective conditions and housed for another 30 days. The mice housed in EE showed less anxiety-like behavior on EPM and in OFT compared with DW and SC mice. Interestingly, miR-183 expression was increased following exposure to EPM in EE mice but not in SC mice. Subsequently, the upregulated miR-183 expression suppresses the SC35 expression and shifting of splicing from AChE-S (synaptic) to AChE-R (read-through) form, whereas standard housing condition downregulate miR-183 and induces the splicing of AChE. The upregulated AChE-R form possibly terminates ACh transmission, which is reflected in the level of anxiety-like behavior. Overall, the present study suggests that EE effectively regulates the miR-183 pathway to reduce anxiety-like behavior.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli, India
| | | | | |
Collapse
|
37
|
Giulietti M, Piva F, D'Antonio M, D'Onorio De Meo P, Paoletti D, Castrignanò T, D'Erchia AM, Picardi E, Zambelli F, Principato G, Pavesi G, Pesole G. SpliceAid-F: a database of human splicing factors and their RNA-binding sites. Nucleic Acids Res 2012; 41:D125-31. [PMID: 23118479 PMCID: PMC3531144 DOI: 10.1093/nar/gks997] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A comprehensive knowledge of all the factors involved in splicing, both proteins and RNAs, and of their interaction network is crucial for reaching a better understanding of this process and its functions. A large part of relevant information is buried in the literature or collected in various different databases. By hand-curated screenings of literature and databases, we retrieved experimentally validated data on 71 human RNA-binding splicing regulatory proteins and organized them into a database called ‘SpliceAid-F’ (http://www.caspur.it/SpliceAidF/). For each splicing factor (SF), the database reports its functional domains, its protein and chemical interactors and its expression data. Furthermore, we collected experimentally validated RNA–SF interactions, including relevant information on the RNA-binding sites, such as the genes where these sites lie, their genomic coordinates, the splicing effects, the experimental procedures used, as well as the corresponding bibliographic references. We also collected information from experiments showing no RNA–SF binding, at least in the assayed conditions. In total, SpliceAid-F contains 4227 interactions, 2590 RNA-binding sites and 1141 ‘no-binding’ sites, including information on cellular contexts and conditions where binding was tested. The data collected in SpliceAid-F can provide significant information to explain an observed splicing pattern as well as the effect of mutations in functional regulatory elements.
Collapse
|
38
|
Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH, Li JB. RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 2012; 23:201-16. [PMID: 22960373 PMCID: PMC3530680 DOI: 10.1101/gr.141424.112] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Xenopus embryo has provided key insights into fate specification, the cell cycle, and other fundamental developmental and cellular processes, yet a comprehensive understanding of its transcriptome is lacking. Here, we used paired end RNA sequencing (RNA-seq) to explore the transcriptome of Xenopus tropicalis in 23 distinct developmental stages. We determined expression levels of all genes annotated in RefSeq and Ensembl and showed for the first time on a genome-wide scale that, despite a general state of transcriptional silence in the earliest stages of development, approximately 150 genes are transcribed prior to the midblastula transition. In addition, our splicing analysis uncovered more than 10,000 novel splice junctions at each stage and revealed that many known genes have additional unannotated isoforms. Furthermore, we used Cufflinks to reconstruct transcripts from our RNA-seq data and found that ∼13.5% of the final contigs are derived from novel transcribed regions, both within introns and in intergenic regions. We then developed a filtering pipeline to separate protein-coding transcripts from noncoding RNAs and identified a confident set of 6686 noncoding transcripts in 3859 genomic loci. Since the current reference genome, XenTro3, consists of hundreds of scaffolds instead of full chromosomes, we also performed de novo reconstruction of the transcriptome using Trinity and uncovered hundreds of transcripts that are missing from the genome. Collectively, our data will not only aid in completing the assembly of the Xenopus tropicalis genome but will also serve as a valuable resource for gene discovery and for unraveling the fundamental mechanisms of vertebrate embryogenesis.
Collapse
Affiliation(s)
- Meng How Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gavvovidis I, Rost I, Trimborn M, Kaiser FJ, Purps J, Wiek C, Hanenberg H, Neitzel H, Schindler D. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells. PLoS One 2012; 7:e40387. [PMID: 22952573 PMCID: PMC3431399 DOI: 10.1371/journal.pone.0040387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 3′ exons (MCPH1Δe9–14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9–14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.
Collapse
Affiliation(s)
- Ioannis Gavvovidis
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA. The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis 2012; 7 Suppl 1:S5. [PMID: 22640988 PMCID: PMC3359958 DOI: 10.1186/1750-1172-7-s1-s5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cherubism is a rare bone dysplasia that is characterized by symmetrical bone resorption limited to the jaws. Bone lesions are filled with soft fibrous giant cell-rich tissue that can expand and cause severe facial deformity. The disorder typically begins in children at ages of 2-5 years and the bone resorption and facial swelling continues until puberty; in most cases the lesions regress spontaneously thereafter. Most patients with cherubism have germline mutations in the gene encoding SH3BP2, an adapter protein involved in adaptive and innate immune response signaling. A mouse model carrying a Pro416Arg mutation in SH3BP2 develops osteopenia and expansile lytic lesions in bone and some soft tissue organs. In this review we discuss the genetics of cherubism, the biological functions of SH3BP2 and the analysis of the mouse model. The data suggest that the underlying cause for cherubism is a systemic autoinflammatory response to physiologic challenges despite the localized appearance of bone resorption and fibrous expansion to the jaws in humans.
Collapse
Affiliation(s)
- Ernst J Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | | | | | |
Collapse
|
41
|
Chen L. Statistical and Computational Methods for High-Throughput Sequencing Data Analysis of Alternative Splicing. STATISTICS IN BIOSCIENCES 2012; 5:138-155. [PMID: 24058384 DOI: 10.1007/s12561-012-9064-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The burgeoning field of high-throughput sequencing significantly improves our ability to understand the complexity of transcriptomes. Alternative splicing, as one of the most important driving forces for transcriptome diversity, can now be studied at an unprecedent resolution. Efficient and powerful computational and statistical methods are in urgent need to facilitate the characterization and quantification of alternative splicing events. Here we discuss methods in splice junction read mapping, and methods in exon-centric or isoform-centric quantification of alternative splicing. In addition, we discuss HITS-CLIP and splicing QTL analyses which are novel high-throughput sequencing based approaches in the dissection of splicing regulation.
Collapse
Affiliation(s)
- Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
42
|
Banday AR, Azim S, Rehman SU, Tabish M. Two novel N-terminal coding exons of Prkar1b gene of mouse: Identified using a novel approach of in silico and molecular biology techniques. Gene 2012; 500:73-9. [DOI: 10.1016/j.gene.2012.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 11/25/2022]
|
43
|
Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, Honda T, Suzuki H, Suenaga T, Takeuchi T, Yoshikawa N, Suzuki Y, Yasukawa K, Ebata R, Higashi K, Saji T, Kemmotsu Y, Takatsuki S, Ouchi K, Kishi F, Yoshikawa T, Nagai T, Hamamoto K, Sato Y, Honda A, Kobayashi H, Sato J, Shibuta S, Miyawaki M, Oishi K, Yamaga H, Aoyagi N, Iwahashi S, Miyashita R, Murata Y, Sasago K, Takahashi A, Kamatani N, Kubo M, Tsunoda T, Hata A, Nakamura Y, Tanaka T. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 2012; 44:517-21. [PMID: 22446962 DOI: 10.1038/ng.2220] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/24/2012] [Indexed: 12/18/2022]
|
44
|
Liu Q, Chen C, Shen E, Zhao F, Sun Z, Wu J. Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer. Genomics 2011; 99:178-82. [PMID: 22226708 DOI: 10.1016/j.ygeno.2011.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/20/2011] [Accepted: 12/16/2011] [Indexed: 11/26/2022]
Abstract
Alternative splicing is a crucial mechanism by which diverse gene products can be generated from a limited number of genes, and is thought to be involved in complex orchestration of eukaryotic gene expression. Next-generation sequencing technologies, with reduced time and cost, provide unprecedented opportunities for deep interrogation of alternative splicing at the genome-wide scale. In this study, an integrated software SplicingViewer has been developed for unambiguous detection, annotation and visualization of splice junctions and alternative splicing events from RNA-Seq data. Specifically, it allows easy identification and characterization of splice junctions, and holds a versatile computational pipeline for in-depth annotation and classification of alternative splicing with different patterns. Moreover, it provides a user-friendly environment in which an alternative splicing landscape can be displayed in a straightforward and flexible manner. In conclusion, SplicingViewer can be widely used for studying alternative splicing easily and efficiently. SplicingViewer can be freely accessed at http://bioinformatics.zj.cn/splicingviewer.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
45
|
Lou SK, Li JW, Qin H, Yim AKY, Lo LY, Ni B, Leung KS, Tsui SKW, Chan TF. Detection of splicing events and multiread locations from RNA-seq data based on a geometric-tail (GT) distribution of intron length. BMC Bioinformatics 2011; 12 Suppl 5:S2. [PMID: 21988959 PMCID: PMC3226252 DOI: 10.1186/1471-2105-12-s5-s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background RNA sequencing (RNA-seq) measures gene expression levels and permits splicing analysis. Many existing aligners are capable of mapping millions of sequencing reads onto a reference genome. For reads that can be mapped to multiple positions along the reference genome (multireads), these aligners may either randomly assign them to a location, or discard them altogether. Either way could bias downstream analyses. Meanwhile, challenges remain in the alignment of reads spanning across splice junctions. Existing splicing-aware aligners that rely on the read-count method in identifying junction sites are inevitably affected by sequencing depths. Results The distance between aligned positions of paired-end (PE) reads or two parts of a spliced read is dependent on the experiment protocol and gene structures. We here proposed a new method that employs an empirical geometric-tail (GT) distribution of intron lengths to make a rational choice in multireads selection and splice-sites detection, according to the aligned distances from PE and sliced reads. Conclusions GT models that combine sequence similarity from alignment, and together with the probability of length distribution, could accurately determine the location of both multireads and spliced reads.
Collapse
|
46
|
Passoni M, De Conti L, Baralle M, Buratti E. UG repeats/TDP-43 interactions near 5' splice sites exert unpredictable effects on splicing modulation. J Mol Biol 2011; 415:46-60. [PMID: 22100394 DOI: 10.1016/j.jmb.2011.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/18/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
Abstract
TDP-43 is a nuclear protein implicated in the pathogenesis of several neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration, with broad involvement in numerous stages of RNA processing ranging from transcription to translation. In diseased neurons, TDP-43 mostly aggregates in the cytoplasm, suggesting that a loss of protein function in the nucleus may play an important role in neurodegeneration. A better understanding of TDP-43 general nuclear functions is therefore an essential step to evaluate this possibility. Presently, the TDP-43 best-characterized functional property is its ability to modulate pre-mRNA splicing when binding in proximity of 3'SS acceptor sequences. In this work, using a variety of artificial and natural splicing substrates, we have investigated the effects of TDP-43 binding to UG repeats in the vicinity of 5'SS donor sequences. In general, our results show that UG repeats are not powerful splicing regulatory elements when located near to exonic 5'SS sequences. However, in cases like the BRCA1, ETF1, and RXRG genes, TDP-43 binding to natural UG-repeated sequences can act as either an activator or a suppressor of 5'SS recognition, depending on splice site strength and on the presence of additional splicing regulatory sequences. The results of this analysis suggest that a role of UG repeats/TDP-43 in 5'SS recognition may exists and may become critical in the presence of mutations that weaken the 5'SS. The general rule that can be drawn at the moment is that the importance of UG repeats near 5' splice sites should always be experimentally validated on a case-by-case basis.
Collapse
Affiliation(s)
- Monica Passoni
- International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
47
|
Joehanes R, Johnson AD, Barb JJ, Raghavachari N, Liu P, Woodhouse KA, O'Donnell CJ, Munson PJ, Levy D. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study. Physiol Genomics 2011; 44:59-75. [PMID: 22045913 DOI: 10.1152/physiolgenomics.00130.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL.
Collapse
Affiliation(s)
- Roby Joehanes
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M. TILLING: a shortcut in functional genomics. J Appl Genet 2011; 52:371-90. [PMID: 21912935 PMCID: PMC3189332 DOI: 10.1007/s13353-011-0061-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/01/2022]
Abstract
Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200-500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING.
Collapse
Affiliation(s)
- Marzena Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miriam Szurman
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
49
|
Reardon HT, Park WJ, Zhang J, Lawrence P, Kothapalli KSD, Brenna JT. The polypyrimidine tract binding protein regulates desaturase alternative splicing and PUFA composition. J Lipid Res 2011; 52:2279-2286. [PMID: 21980057 DOI: 10.1194/jlr.m019653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Δ6 desaturase, encoded by FADS2, plays a crucial role in omega-3 and omega-6 fatty acid synthesis. These fatty acids are essential components of the central nervous system, and they act as precursors for eicosanoid signaling molecules and as direct modulators of gene expression. The polypyrimidine tract binding protein (PTB or hnRNP I) is a splicing factor that regulates alternative pre-mRNA splicing. Here, PTB is shown to bind an exonic splicing silencer element and repress alternative splicing of FADS2 into FADS2 AT1. PTB and FADS2AT1 were inversely correlated in neonatal baboon tissues, implicating PTB as a major regulator of tissue-specific FADS2 splicing. In HepG2 cells, PTB knockdown modulated alternative splicing of FADS2, as well as FADS3, a putative desaturase of unknown function. Omega-3 fatty acids decreased by nearly one half relative to omega-6 fatty acids in PTB knockdown cells compared with controls, with a particularly strong decrease in eicosapentaenoic acid (EPA) concentration and its ratio to arachidonic acid (ARA). This is a rare demonstration of a mechanism specifically altering the cellular omega-3 to omega-6 fatty acid ratio without any change in diet/media. These findings reveal a novel role for PTB, regulating availability of membrane components and eicosanoid precursors for cell signaling.
Collapse
Affiliation(s)
- Holly T Reardon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Jimmy Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
50
|
Crist RC, Roth JJ, Waldman SA, Buchberg AM. A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer. PLoS One 2011; 6:e23665. [PMID: 21858198 PMCID: PMC3157405 DOI: 10.1371/journal.pone.0023665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/22/2011] [Indexed: 01/16/2023] Open
Abstract
Colorectal cancer is one of the most common cancers in developed nations and is the result of both environmental and genetic factors. Many of the genetic lesions observed in colorectal cancer alter expression of homeobox genes, which encode homeodomain transcription factors. The MEIS1 homeobox gene is known to be involved in several hematological malignancies and solid tumors and recent evidence suggests that expression of the MEIS1 transcript is altered in colorectal cancer. Despite this potential connection, little is known about the role of the gene in the intestines. We probed murine gastrointestinal tissue samples with an N-terminal Meis1 antibody, revealing expression of two previously described isoforms, as well as two novel Meis1 products. A 32 kD Meis1 product was expressed in the nuclei of non-epithelial cells in the stomach and colon, while a 27 kD product was expressed in the cytoplasm of epithelial cells in the proximal colon. Our data suggest that the 27 kD and 32 kD Meis1 proteins are both forms of the Meis1d protein, a homeodomain-less isoform whose transcript was previously identified in cDNA screens. Both the MEIS1D transcript and protein were expressed in human colon mucosa. Expression of the MEIS1D protein was downregulated in 83% (10/12) of primary colorectal cancer samples compared to matched normal mucosa, indicating that MEIS1D is a biomarker of colorectal tumorigenesis. The decreased expression of MEIS1D in colon tumors also suggests that this conserved homeodomain-less isoform may act as a tumor suppressor in human colorectal cancer.
Collapse
Affiliation(s)
- Richard C. Crist
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jacquelyn J. Roth
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Arthur M. Buchberg
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|