1
|
Oda AH, Yasukawa T, Tamura M, Sano A, Masuo N, Ohta K. Advantages of Mutant Generation by Genome Rearrangements of Non-Conventional Yeast via Direct Nuclease Transfection. Genes Cells 2025; 30:e70010. [PMID: 40065658 PMCID: PMC11894362 DOI: 10.1111/gtc.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
We previously developed a genome engineering method (TAQing2.0) based on the direct delivery of DNA endonucleases into living cells, which induces genome rearrangements even in non-sporulating nonconventional yeasts without introducing foreign DNA. Using TAQing2.0 and conventional mutagenesis (by nitrosoguanidine), we obtained mutant asexual Candida utilis strains capable of growing under highly acidic conditions (pH 1.8). Whole genome resequencing revealed that the genomic sequences of mutants generated by both methods contain a negligible small population of unmappable sequences, suggesting that both types of mutants can be regarded as equivalent to naturally occurring mutants. TAQing2.0 mutants exhibit multiple genome rearrangements with few point mutations, whereas conventional mutagenesis produces numerous point mutations. This feature enabled us to easily identify candidate genes (e.g., LYP1 homolog) responsible for acid resistance. TAQing2.0 is a powerful and versatile tool for mutant production and gene hunting without invasion of foreign DNA.
Collapse
Affiliation(s)
- Arisa H. Oda
- Department of Life SciencesGraduate School of Arts & Sciences, the University of TokyoTokyoJapan
- Collaborative Research Institute for Innovative MicrobiologyTokyoJapan
| | | | - Miki Tamura
- Department of Life SciencesGraduate School of Arts & Sciences, the University of TokyoTokyoJapan
| | - Ayumu Sano
- Mitsubishi Corporation Life Sciences LimitedTokyoJapan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences LimitedTokyoJapan
| | - Kunihiro Ohta
- Department of Life SciencesGraduate School of Arts & Sciences, the University of TokyoTokyoJapan
- Collaborative Research Institute for Innovative MicrobiologyTokyoJapan
- The Universal Biology Institute of the University of TokyoTokyoJapan
| |
Collapse
|
2
|
Gu Y, Yang Y, Kou C, Peng Y, Yang W, Zhang J, Jin H, Han X, Wang Y, Shen X. Classical and novel properties of Holliday junction resolvase SynRuvC from Synechocystis sp. PCC6803. Front Microbiol 2024; 15:1362880. [PMID: 38699476 PMCID: PMC11063404 DOI: 10.3389/fmicb.2024.1362880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cyanobacteria, which have a photoautotrophic lifestyle, are threatened by ultraviolet solar rays and the reactive oxygen species generated during photosynthesis. They can adapt to environmental conditions primarily because of their DNA damage response and repair mechanisms, notably an efficient homologous recombination repair system. However, research on double-strand break (DSB) repair pathways, including the Holliday junction (HJ) resolution process, in Synechocystis sp. PCC6803 is limited. Here, we report that SynRuvC from cyanobacteria Synechocystis sp. PCC6803 has classical HJ resolution activity. We investigated the structural specificity, sequence preference, and biochemical properties of SynRuvC. SynRuvC strongly preferred Mn2+ as a cofactor, and its cleavage site predominantly resides within the 5'-TG↓(G/A)-3' sequence. Interestingly, novel flap endonuclease and replication fork intermediate cleavage activities of SynRuvC were also determined, which distinguish it from other reported RuvCs. To explore the effect of SynRuvC on cell viability, we constructed a knockdown mutant and an overexpression strain of Synechocystis sp. PCC6803 (synruvCKD and synruvCOE) and assessed their survival under a variety of conditions. Knockdown of synruvC increased the sensitivity of cells to MMS, HU, and H2O2. The findings suggest that a novel RuvC family HJ resolvase SynRuvC is important in a variety of DNA repair processes and stress resistance in Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunhua Kou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenguang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Zhang
- Suzhou XinBio Co., Ltd., Suzhou, Jiangsu, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Bradley NP, Washburn LA, Christov PP, Watanabe CMH, Eichman BF. Escherichia coli YcaQ is a DNA glycosylase that unhooks DNA interstrand crosslinks. Nucleic Acids Res 2020; 48:7005-7017. [PMID: 32409837 PMCID: PMC7367128 DOI: 10.1093/nar/gkaa346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Interstrand DNA crosslinks (ICLs) are a toxic form of DNA damage that block DNA replication and transcription by tethering the opposing strands of DNA. ICL repair requires unhooking of the tethered strands by either nuclease incision of the DNA backbone or glycosylase cleavage of the crosslinked nucleotide. In bacteria, glycosylase-mediated ICL unhooking was described in Streptomyces as a means of self-resistance to the genotoxic natural product azinomycin B. The mechanistic details and general utility of glycosylase-mediated ICL repair in other bacteria are unknown. Here, we identify the uncharacterized Escherichia coli protein YcaQ as an ICL repair glycosylase that protects cells against the toxicity of crosslinking agents. YcaQ unhooks both sides of symmetric and asymmetric ICLs in vitro, and loss or overexpression of ycaQ sensitizes E. coli to the nitrogen mustard mechlorethamine. Comparison of YcaQ and UvrA-mediated ICL resistance mechanisms establishes base excision as an alternate ICL repair pathway in bacteria.
Collapse
Affiliation(s)
- Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren A Washburn
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Plamen P Christov
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Coran M H Watanabe
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Kumar A, Hosseinnia A, Gagarinova A, Phanse S, Kim S, Aly KA, Zilles S, Babu M. A Gaussian process-based definition reveals new and bona fide genetic interactions compared to a multiplicative model in the Gram-negative Escherichia coli. Bioinformatics 2019; 36:880-889. [PMID: 31504172 PMCID: PMC9883677 DOI: 10.1093/bioinformatics/btz673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION A digenic genetic interaction (GI) is observed when mutations in two genes within the same organism yield a phenotype that is different from the expected, given each mutation's individual effects. While multiplicative scoring is widely applied to define GIs, revealing underlying gene functions, it remains unclear if it is the most suitable choice for scoring GIs in Escherichia coli. Here, we assess many different definitions, including the multiplicative model, for mapping functional links between genes and pathways in E.coli. RESULTS Using our published E.coli GI datasets, we show computationally that a machine learning Gaussian process (GP)-based definition better identifies functional associations among genes than a multiplicative model, which we have experimentally confirmed on a set of gene pairs. Overall, the GP definition improves the detection of GIs, biological reasoning of epistatic connectivity, as well as the quality of GI maps in E.coli, and, potentially, other microbes. AVAILABILITY AND IMPLEMENTATION The source code and parameters used to generate the machine learning models in WEKA software were provided in the Supplementary information. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | | | - Mohan Babu
- To whom correspondence should be addressed. or
| |
Collapse
|
5
|
Coping with Reactive Oxygen Species to Ensure Genome Stability in Escherichia coli. Genes (Basel) 2018; 9:genes9110565. [PMID: 30469410 PMCID: PMC6267047 DOI: 10.3390/genes9110565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
The facultative aerobic bacterium Escherichia coli adjusts its cell cycle to environmental conditions. Because of its lifestyle, the bacterium has to balance the use of oxygen with the potential lethal effects of its poisonous derivatives. Oxidative damages perpetrated by molecules such as hydrogen peroxide and superoxide anions directly incapacitate metabolic activities relying on enzymes co-factored with iron and flavins. Consequently, growth is inhibited when the bacterium faces substantial reactive oxygen insults coming from environmental or cellular sources. Although hydrogen peroxide and superoxide anions do not oxidize DNA directly, these molecules feed directly or indirectly the generation of the highly reactive hydroxyl radical that damages the bacterial chromosome. Oxidized bases are normally excised and the single strand gap repaired by the base excision repair pathway (BER). This process is especially problematic in E. coli because replication forks do not sense the presence of damages or a stalled fork ahead of them. As consequence, single-strand breaks are turned into double-strand breaks (DSB) through replication. Since E. coli tolerates the presence of DSBs poorly, BER can become toxic during oxidative stress. Here we review the repair strategies that E. coli adopts to preserve genome integrity during oxidative stress and their relation to cell cycle control of DNA replication.
Collapse
|
6
|
Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells. Proc Natl Acad Sci U S A 2018; 115:E6516-E6525. [PMID: 29941584 DOI: 10.1073/pnas.1801101115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evolutionary processes are driven by diverse molecular mechanisms that act in the creation and prevention of mutations. It remains unclear how these mechanisms are regulated because limitations of existing mutation assays have precluded measuring how mutation rates vary over time in single cells. Toward this goal, I detected nascent DNA mismatches as a proxy for mutagenesis and simultaneously followed gene expression dynamics in single Escherichia coli cells using microfluidics. This general microscopy-based approach revealed the real-time dynamics of mutagenesis in response to DNA alkylation damage and antibiotic treatments. It also enabled relating the creation of DNA mismatches to the chronology of the underlying molecular processes. By avoiding population averaging, I discovered cell-to-cell variation in mutagenesis that correlated with heterogeneity in the expression of alternative responses to DNA damage. Pulses of mutagenesis are shown to arise from transient DNA repair deficiency. Constitutive expression of DNA repair pathways and induction of damage tolerance by the SOS response compensate for delays in the activation of inducible DNA repair mechanisms, together providing robustness against the toxic and mutagenic effects of DNA alkylation damage.
Collapse
|
7
|
Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage. Nat Commun 2017; 8:2170. [PMID: 29255195 PMCID: PMC5735139 DOI: 10.1038/s41467-017-02333-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
Unrepaired DNA lesions are a potent block to replication, leading to replication fork collapse, double-strand DNA breaks, and cell death. Error-prone polymerases overcome this blockade by synthesizing past DNA lesions in a process called translesion synthesis (TLS), but how TLS polymerases gain access to the DNA template remains poorly understood. In this study, we use particle-tracking PALM to image live Escherichia coli cells containing a functional fusion of the endogenous copy of Pol IV to the photoactivatable fluorescent protein PAmCherry. We find that Pol IV is strongly enriched near sites of replication only upon DNA damage. Surprisingly, we find that the mechanism of Pol IV recruitment is dependent on the type of DNA lesion, and that interactions with proteins other than the processivity factor β play a role under certain conditions. Collectively, these results suggest that multiple interactions, influenced by lesion identity, recruit Pol IV to sites of DNA damage. Translesion synthesis (TLS) enables cells to tolerate damaged DNA encountered during replication. Here the authors use super-resolution photoactivation localization microscopy to reveal a lesion type dependent mechanism of recruitment of the TLS polymerase Pol IV following DNA damage.
Collapse
|
8
|
Abstract
Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophilic life remain to be demonstrated. Here, we investigated the roles of TopR1 in genome stability maintenance in S. islandicus in response to the treatment of methyl methanesulfonate (MMS), a DNA alkylation agent. Lethal MMS treatment induced two successive events: massive chromosomal DNA backbone breakage and subsequent DNA degradation. The former occurred immediately after drug treatment, leading to chromosomal DNA degradation that concurred with TopR1 degradation, followed by chromatin protein degradation and DNA-less cell formation. To gain a further insight into TopR1 function, the expression of the enzyme was reduced in S. islandicus cells using a CRISPR-mediated mRNA interference approach (CRISPRi) in which topR1 mRNAs were targeted for degradation by endogenous III-B CRISPR-Cas systems. We found that the TopR1 level was reduced in the S. islandicus CRISPRi cells and that the cells underwent accelerated genomic DNA degradation during MMS treatment, accompanied by a higher rate of cell death. Taken together, these results indicate that TopR1 probably facilitates genome integrity maintenance by protecting DNA breaks from thermo-degradation in vivo.
Collapse
|
9
|
Inactivation of genes involved in base excision repair of Corynebacterium glutamicum and survival of the mutants in presence of various mutagens. Arch Microbiol 2017; 199:1043-1054. [PMID: 28391506 DOI: 10.1007/s00203-017-1377-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
Base Excision Repair (BER) is considered as the most active DNA repair pathway in vivo, which is initiated by recognition of the nucleotide lesions and excision of the damaged DNA base. The genome of Corynebacterium glutamicum ATCC 13032 contains various DNA glycosylases encoding genes (ung, fpg/mutM, tagI, alkA, mutY), two AP-endonuclease encoding genes (nei and nth) and an exonuclease encoding gene xth. To investigate the role of these genes during DNA repair in C. glutamicum, mutants with deletions of one or more genes in BER pathway were created. After treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), mitomycin C (MMC), zeocin and UV-light, we characterised the function of the different BER genes by determination of the survival capability. DNA lesions caused by MNNG strongly reduced survival of the tagI, mutY and alkA mutants but had a negligible effect on the ung and mutM mutants. The endonucleases Nth and Nei turned out to be essential for the repair of base modifications caused by MMC while UV-light and zeocin did not seem to address the BER. So far, BER in C. glutamicum appears to be very similar to that in E. coli.
Collapse
|
10
|
Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS One 2017; 12:e0170719. [PMID: 28118378 PMCID: PMC5261740 DOI: 10.1371/journal.pone.0170719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis.
Collapse
Affiliation(s)
- Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| | - Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| |
Collapse
|
11
|
Beyene GT, Balasingham SV, Frye SA, Namouchi A, Homberset H, Kalayou S, Riaz T, Tønjum T. Characterization of the Neisseria meningitidis Helicase RecG. PLoS One 2016; 11:e0164588. [PMID: 27736945 PMCID: PMC5063381 DOI: 10.1371/journal.pone.0164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.
Collapse
Affiliation(s)
| | | | - Stephan A. Frye
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Amine Namouchi
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | - Shewit Kalayou
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- * E-mail:
| |
Collapse
|
12
|
Booth JA, Thomassen GOS, Rowe AD, Weel-Sneve R, Lagesen K, Kristiansen KI, Bjørås M, Rognes T, Lindvall JM. Tiling array study of MNNG treated Escherichia coli reveals a widespread transcriptional response. Sci Rep 2013; 3:3053. [PMID: 24157950 PMCID: PMC6505713 DOI: 10.1038/srep03053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is known to trigger the adaptive response by inducing the ada-regulon – consisting of three DNA repair enzymes Ada, AlkB, AlkA and the enigmatic AidB. We have applied custom designed tiling arrays to study transcriptional changes in Escherichia coli following a MNNG challenge. Along with the expected upregulation of the adaptive response genes (ada, alkA and alkB), we identified a number of differentially expressed transcripts, both novel and annotated. This indicates a wider regulatory response than previously documented. There were 250 differentially-expressed and 2275 similarly-expressed unannotated transcripts. We found novel upregulation of several stress-induced transcripts, including the SOS inducible genes recN and tisAB, indicating a novel role for these genes in alkylation repair. Furthermore, the ada-regulon A and B boxes were found to be insufficient to explain the regulation of the adaptive response genes after MNNG exposure, suggesting that additional regulatory elements must be involved.
Collapse
Affiliation(s)
- James A Booth
- 1] Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, NO-0424 Oslo, Norway [2] Department of Microbiology, University of Oslo, PO Box 4950 Nydalen, NO-0424 Oslo, Norway [3]
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Noonan EM, Shah D, Yaffe MB, Lauffenburger DA, Samson LD. O6-Methylguanine DNA lesions induce an intra-S-phase arrest from which cells exit into apoptosis governed by early and late multi-pathway signaling network activation. Integr Biol (Camb) 2013; 4:1237-55. [PMID: 22892544 DOI: 10.1039/c2ib20091k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The O(6)-methylguanine (O(6)MeG) DNA lesion is well known for its mutagenic, carcinogenic, and cytotoxic properties, and understanding how a cell processes such damage is of critical importance for improving current cancer therapy. Here we use human cells differing only in their O(6)MeG DNA methyltransferase (MGMT) or mismatch repair (MMR) status to explore the O(6)MeG/MMR-dependent molecular and cellular responses to treatment with the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We find that O(6)MeG triggers MMR-dependent cell cycle perturbations in both the first and second cell cycle post treatment. At lower levels of damage, we show that a transient arrest in the second S-phase precedes survival and progression into subsequent cell cycles. However, at higher levels of damage, arrest in the second S-phase coincides with a cessation of DNA replication followed by initiation of apoptotic cell death. Further, we show that entry into apoptotic cell death is specifically from S-phase of the second cell cycle. Finally, we demonstrate the key role of an O(6)MeG/MMR-dependent multi-pathway, multi-time-scale signaling network activation, led by early ATM, H2AX, CHK1, and p53 phosphorylation and followed by greatly amplified late phosphorylation of the early pathway nodes along with activation of the CHK2 kinase and the stress-activated JNK kinase.
Collapse
Affiliation(s)
- Ericka M Noonan
- Biological Engineering Department, Biology Department, Center for Environmental Health Sciences, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
14
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
15
|
Abstract
DNA mismatch repair (MMR) corrects replication errors in newly synthesized DNA. It also has an antirecombination action on heteroduplexes that contain similar but not identical sequences. This review focuses on the genetics and development of MMR and not on the latest biochemical mechanisms. The main focus is on MMR in Escherichia coli, but examples from Streptococcuspneumoniae and Bacillussubtilis have also been included. In most organisms, only MutS (detects mismatches) and MutL (an endonuclease) and a single exonucleaseare present. How this system discriminates between newlysynthesized and parental DNA strands is not clear. In E. coli and its relatives, however, Dam methylation is an integral part of MMR and is the basis for strand discrimination. A dedicated site-specific endonuclease, MutH, is present, andMutL has no endonuclease activity; four exonucleases can participate in MMR. Although it might seem that the accumulated wealth of genetic and biochemical data has given us a detailed picture of the mechanism of MMR in E. coli, the existence of three competing models to explain the initiation phase indicates the complexity of the system. The mechanism of the antirecombination action of MMR is largely unknown, but only MutS and MutL appear to be necessary. A primary site of action appears to be on RecA, although subsequent steps of the recombination process can also be inhibited. In this review, the genetics of Very Short Patch (VSP) repair of T/G mismatches arising from deamination of 5-methylcytosineresidues is also discussed.
Collapse
|
16
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
17
|
Srinivasan A, Wang L, Cline CJ, Xie Z, Sobol RW, Xie XQ, Gold B. Identification and characterization of human apurinic/apyrimidinic endonuclease-1 inhibitors. Biochemistry 2012; 51:6246-59. [PMID: 22788932 DOI: 10.1021/bi300490r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The repair of abasic sites that arise in DNA from hydrolytic depurination/depyrimidination of the nitrogenous bases from the sugar-phosphate backbone and the action of DNA glycosylases on deaminated, oxidized, and alkylated bases are critical to cell survival. Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1; aka APE1/ref-1) is responsible for the initial removal of abasic lesions as part of the base excision repair pathway. Deletion of APE-1 activity is embryonic lethal in animals and is lethal in cells. Potential inhibitors of the repair function of APE-1 were identified based upon molecular modeling of the crystal structure of the APE-1 protein. We describe the characterization of several unique nanomolar inhibitors using two complementary biochemical screens. The most active molecules all contain a 2-methyl-4-amino-6,7-dioxolo-quinoline structure that is predicted from the modeling to anchor the compounds in the endonuclease site of the protein. The mechanism of action of the selected compounds was probed by fluorescence and competition studies, which indicate, in a specific case, direct interaction between the inhibitor and the active site of the protein. It is demonstrated that the inhibitors induce time-dependent increases in the accumulation of abasic sites in cells at levels that correlate with their potency to inhibit APE-1 endonuclease excision. The inhibitor molecules also potentiate by 5-fold the toxicity of a DNA methylating agent that creates abasic sites. The molecules represent a new class of APE-1 inhibitors that can be used to probe the biology of this critical enzyme and to sensitize resistant tumor cells to the cytotoxicity of clinically used DNA damaging anticancer drugs.
Collapse
Affiliation(s)
- Ajay Srinivasan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Madison KE, Abdelmeguid MR, Jones-Foster EN, Nakai H. A new role for translation initiation factor 2 in maintaining genome integrity. PLoS Genet 2012; 8:e1002648. [PMID: 22536160 PMCID: PMC3334882 DOI: 10.1371/journal.pgen.1002648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/24/2012] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA–damaging agent is present. Translation Initiation Factor 2 (IF2) is a bacterial protein that plays an essential role in the initiation of protein synthesis. As such, it not only has an important influence on cellular growth but also is subject to regulation in response to physiological conditions such as nutritional deprivation. Biochemical characterization of IF2's function in replicating movable genetic elements has suggested a new role in the maintenance of genome integrity, potentially regulating replication restart. The parasitic elements exploit the cellular replication restart system to duplicate themselves as they transpose to new positions of the chromosome. In this process, IF2 makes way for action of restart proteins, which assemble replication enzymes for initiation of DNA synthesis. For the bacterial cell, the restart system is the means by which it copes with accidents that result in arrest of chromosomal replication, promoting resumption of replication. We present evidence for an IF2 function associated with restart proteins, allowing chromosomal replication in the presence of DNA–damaging agents. As the IF2 function is a highly conserved one found in all organisms, the findings have implications for understanding the maintenance of genome integrity with respect to physiological status, which can be sensed by the translation apparatus.
Collapse
Affiliation(s)
| | | | | | - Hiroshi Nakai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C, United States of America
- * E-mail:
| |
Collapse
|
19
|
Xu T, Brown W, Marinus MG. Bleomycin sensitivity in Escherichia coli is medium-dependent. PLoS One 2012; 7:e33256. [PMID: 22438905 PMCID: PMC3305319 DOI: 10.1371/journal.pone.0033256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Bleomycin (BLM) is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP) endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.
Collapse
Affiliation(s)
| | | | - Martin G. Marinus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kanamitsu K, Ikeda S. Fission yeast homologs of human XPC and CSB, rhp41 and rhp26, are involved in transcription-coupled repair of methyl methanesulfonate-induced DNA damage. Genes Genet Syst 2011; 86:83-91. [PMID: 21670547 DOI: 10.1266/ggs.86.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methyl methanesulfonate (MMS) methylates nitrogen atoms in purines, and predominantly produces 7-methylguanine and 3-methyladenine (3-meA). Previously, we showed that base excision repair (BER) and nucleotide excision repair (NER) synergistically function to repair MMS-induced DNA damage in the fission yeast Schizosaccharomyces pombe. Here, we studied the roles of NER components in repair of 3-meA and BER intermediates such as the AP site and single strand breaks. Mutants of rhp41 (XPC homolog) and rhp26 (CSB homolog) exhibited moderate sensitivity to MMS. Transcription of the fbp1 gene, which is induced by glucose starvation, was strongly inhibited by MMS damage in rhp41Δ and rhp26Δ strains but not in wild type and 3-meA DNA glycosylase-deficient cells. The results indicate that Rhp41p and Rhp26p are involved in transcription-coupled repair (TCR) of MMS-induced DNA damage. In the BER pathway of S. pombe, AP lyase activity of Nth1p mainly incises the AP site to generate a 3'-blocked end, which is in turn converted to 3'-OH by Apn2p. Deletion of rad16 or rhp26 in the nth1Δ strain greatly enhanced MMS sensitivity, suggesting that the AP site could also be corrected by TCR. Double mutant apn2Δ/rad16Δ exhibited hypersensitivity to MMS, implying that Rad16p provides a backup pathway for removal of the 3'-blocked end. Moreover, an rhp51Δ strain was extremely sensitive to MMS and double mutants of nth1Δ/rhp51Δ and apn2Δ/rhp51Δ increased the sensitivity, suggesting that homologous recombination is necessary for repair of three different types of lesions, 3-meA, AP sites and 3'-blocked ends.
Collapse
Affiliation(s)
- Kyoichiro Kanamitsu
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | | |
Collapse
|
21
|
Persson Ö, Nyström T, Farewell A. UspB, a member of the sigma-S regulon, facilitates RuvC resolvase function. DNA Repair (Amst) 2010; 9:1162-9. [DOI: 10.1016/j.dnarep.2010.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
22
|
Rajesh P, Rajesh C, Wyatt MD, Pittman DL. RAD51D protects against MLH1-dependent cytotoxic responses to O(6)-methylguanine. DNA Repair (Amst) 2010; 9:458-67. [PMID: 20133210 DOI: 10.1016/j.dnarep.2010.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
S(N)1-type methylating agents generate O(6)-methyl guanine (O(6)-meG), which is a potently mutagenic, toxic, and recombinogenic DNA adduct. Recognition of O(6)-meG:T mismatches by mismatch repair (MMR) causes sister chromatid exchanges, which are representative of homologous recombination (HR) events. Although the MMR-dependent mutagenicity and toxicity caused by O(6)-meG has been studied, the mechanisms of recombination induced by O(6)-meG are poorly understood. To explore the HR and MMR genetic interactions in mammals, we used the Rad51d and Mlh1 mouse models. Ablation of Mlh1 did not appreciably influence the developmental phenotypes conferred by the absence of Rad51d. Mouse embryonic fibroblasts (MEFs) deficient in Rad51d can only proliferate in p53-deficient background. Therefore, Rad51d(-/-)Mlh1(-/-)Trp53(-/-) MEFs with a combined deficiency of HR and MMR were generated and comparisons between MLH1 and RAD51D status were made. To our knowledge, these MEFs are the first mammalian model system for combined HR and MMR defects. Rad51d-deficient MEFs were 5.3-fold sensitive to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) compared to the Rad51d-proficient MEFs. A pronounced G2/M arrest in Rad51d-deficient cells was accompanied by an accumulation of gamma-H2AX and apoptosis. Mlh1-deficient MEFs were resistant to MNNG and showed no G2/M arrest or apoptosis at the doses used. Importantly, loss of Mlh1 alleviated sensitivity of Rad51d-deficient cells to MNNG, in addition to reducing gamma-H2AX, G2/M arrest and apoptosis. Collectively, the data support the hypothesis that MMR-dependent sensitization of HR-deficient cells is specific for O(6)-meG and suggest that HR resolves DNA intermediates created by MMR recognition of O(6)-meG:T. This study provides insight into recombinogenic mechanisms of carcinogenesis and chemotherapy resulting from O(6)-meG adducts.
Collapse
Affiliation(s)
- Preeti Rajesh
- Department of Pharmaceutical and Biomedical Sciences, University of South Carolina, Columbia, 29208, United States
| | | | | | | |
Collapse
|
23
|
Sikora A, Mielecki D, Chojnacka A, Nieminuszczy J, Wrzesinski M, Grzesiuk E. Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair. Mutagenesis 2009; 25:139-47. [PMID: 19892776 DOI: 10.1093/mutage/gep052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylmethane sulphonate (MMS), an S(N)2-type alkylating agent, generates DNA methylated bases exhibiting cytotoxic and mutagenic properties. Such damaged bases can be removed by a system of base excision repair (BER) and by oxidative DNA demethylation catalysed by AlkB protein. Here, we have shown that the lack of the BER system and functional AlkB dioxygenase results in (i) increased sensitivity to MMS, (ii) elevated level of spontaneous and MMS-induced mutations (measured by argE3 --> Arg(+) reversion) and (iii) induction of the SOS response shown by visualization of filamentous growth of bacteria. In the xth nth nfo strain additionally mutated in alkB gene, all these effects were extreme and led to 'error catastrophe', resulting from the presence of unrepaired apurinic/apyrimidinic (AP) sites and 1-methyladenine (1meA)/3-methylcytosine (3meC) lesions caused by deficiency in, respectively, BER and AlkB dioxygenase. The decreased level of MMS-induced Arg(+) revertants in the strains deficient in polymerase V (PolV) (bearing the deletion of the umuDC operon), and the increased frequency of these revertants in bacteria overproducing PolV (harbouring the pRW134 plasmid) indicate the involvement of PolV in the error-prone repair of 1meA/3meC and AP sites. Comparison of the sensitivity to MMS and the induction of Arg(+) revertants in the double nfo alkB and xth alkB, and the quadruple xth nth nfo alkB mutants showed that the more AP sites there are in DNA, the stronger the effect of the lack of AlkB protein. Since the sum of MMS-induced Arg(+) revertants in xth, nfo and nth xth nfo and alkB mutants is smaller than the frequency of these revertants in the BER(-) alkB(-) strain, we consider two possibilities: (i) the presence of AP sites in DNA results in relaxation of its structure that facilitates methylation and (ii) additional AP sites are formed in the BER(-) alkB(-) mutants.
Collapse
Affiliation(s)
- Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572. DNA Repair (Amst) 2009; 8:612-9. [PMID: 19179120 DOI: 10.1016/j.dnarep.2008.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/09/2023]
Abstract
Deinococcus radiodurans survives extremely high doses of ionizing and ultraviolet radiation and treatment with various DNA-damaging chemicals. As an effort to identify and characterize proteins that function in DNA repair in this organism, we have studied the protein encoded by locus DR1572. This gene is predicted to encode a Superfamily I DNA helicase, except that genome sequencing indicated that it has a one-base frameshift and would not encode a complete helicase. We have cloned the gene from two different D. radiodurans strains and find that the frameshift mutation is not present. The corrected gene encodes a 755 residue protein that is similar to the Bacillus subtilis YvgS protein and to helicase IV of Escherichia coli. The purified protein (helicase IV(Dr)) has ATP hydrolysis and DNA helicase activity. A truncated protein that lacks 214 residues from the N-terminus, which precede the conserved helicase domain, has greater ATPase activity than the full-length protein but has no detectable helicase activity. Disruption of locus DR1572 in the D. radiodurans chromosome causes greater sensitivity to hydrogen peroxide and methyl-methanesulfonate compared to wild-type cells, but no change in resistance to gamma and ultraviolet radiation and to mitomycin C. The results indicate that locus DR1572 encodes a complete protein that contributes to DNA metabolism in D. radiodurans.
Collapse
|
25
|
Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y. Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens. THE PLANT CELL 2009; 21:1182-94. [PMID: 19357088 PMCID: PMC2685630 DOI: 10.1105/tpc.108.064709] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 01/31/2009] [Accepted: 03/23/2009] [Indexed: 05/23/2023]
Abstract
RecA and its ubiquitous homologs are crucial components in homologous recombination. Besides their eukaryotic nuclear counterparts, plants characteristically possess several bacterial-type RecA proteins localized to chloroplasts and/or mitochondria, but their roles are poorly understood. Here, we analyzed the role of the only mitochondrial RecA in the moss Physcomitrella patens. Disruption of the P. patens mitochondrial recA gene RECA1 caused serious defects in plant growth and development and abnormal mitochondrial morphology. Analyses of mitochondrial DNA in disruptants revealed that frequent DNA rearrangements occurred at multiple loci. Structural analysis suggests that the rearrangements, which in some cases were associated with partial deletions and amplifications of mitochondrial DNA, were due to aberrant recombination between short (<100 bp) direct and inverted repeats in which the sequences were not always identical. Such repeats are abundant in the mitochondrial genome, and interestingly many are located in group II introns. These results suggest that RECA1 does not promote but rather suppresses recombination among short repeats scattered throughout the mitochondrial genome, thereby maintaining mitochondrial genome stability. We propose that RecA-mediated homologous recombination plays a crucial role in suppression of short repeat-mediated genome rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
26
|
Bergeron KL, Murphy EL, Majofodun O, Muñoz LD, Williams JC, Almeida KH. Arylphosphonium salts interact with DNA to modulate cytotoxicity. Mutat Res 2009; 673:141-8. [PMID: 19429515 PMCID: PMC2712833 DOI: 10.1016/j.mrgentox.2009.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 04/12/2023]
Abstract
Arylphosphonium salts (APS) are compounds that have both lipophilic and cationic character, allowing them facile transport through plasma membranes or cell walls to accumulate in the cytoplasm or mitochondria of cells. APS molecules preferentially accumulate in tumor cells and are therefore under investigation as tumor imaging agents and mitochondrial targeting molecules. We have generated a systematic set of APS to study their ability to associate with DNA. The chemical structure of the APS determines the extent of its interaction with DNA and therefore its ability to aggregate the DNA. Also, APS compounds blocked DNA amplification in vitro at concentrations below the aggregation threshold, corroborating the structure/interaction relationship. Furthermore, the extent of APS:DNA interaction strongly correlates with bacterial toxicity, implying that APS molecules may deter cellular metabolic DNA pathways. Finally, DNA repair deficient and DNA bypass polymerase deficient bacterial strains were screened for sensitivity to APS. Interestingly, no single pathway for the repair or tolerance of these compounds was solely responsible for APS mediated toxicity. Taken together, these findings suggest that APS compounds may be capable of targeting and regulating unchecked cell growth and therefore show potential applications as a chemotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Karen H. Almeida
- Corresponding Author Footnote: To whom correspondence should be addressed at the Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave, Providence, RI 02908. Tel: (401) 456-9665. Fax: (401) 456-8396. E-mail:
| |
Collapse
|
27
|
Persky NS, Lovett ST. Mechanisms of Recombination: Lessons fromE. coli. Crit Rev Biochem Mol Biol 2009; 43:347-70. [DOI: 10.1080/10409230802485358] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo. Proc Natl Acad Sci U S A 2009; 106:576-81. [PMID: 19124772 DOI: 10.1073/pnas.0811991106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alkylation-induced O(6)-methylguanine (O(6)MeG) DNA lesions can be mutagenic or cytotoxic if unrepaired by the O(6)MeG-DNA methyltransferase (Mgmt) protein. O(6)MeG pairs with T during DNA replication, and if the O(6)MeG:T mismatch persists, a G:C to A:T transition mutation is fixed at the next replication cycle. O(6)MeG:T mismatch detection by MutSalpha and MutLalpha leads to apoptotic cell death, but the mechanism by which this occurs has been elusive. To explore how mismatch repair mediates O(6)MeG-dependent apoptosis, we used an Mgmt-null mouse model combined with either the Msh6-null mutant (defective in mismatch recognition) or the Exo1-null mutant (impaired in the excision step of mismatch repair). Mouse embryonic fibroblasts and bone marrow cells derived from Mgmt-null mice were much more alkylation-sensitive than wild type, as expected. However, ablation of either Msh6 or Exo1 function rendered these Mgmt-null cells just as resistant to alkylation-induced cytotoxicity as wild-type cells. Rapidly proliferating tissues in Mgmt-null mice (bone marrow, thymus, and spleen) are extremely sensitive to apoptosis induced by O(6)MeG-producing agents. Here, we show that ablation of either Msh6 or Exo1 function in the Mgmt-null mouse renders these rapidly proliferating tissues alkylation-resistant. However, whereas the Msh6 defect confers total alkylation resistance, the Exo1 defect leads to a variable tissue-specific alkylation resistance phenotype. Our results indicate that Exo1 plays an important role in the induction of apoptosis by unrepaired O(6)MeGs.
Collapse
|
29
|
Güthlein C, Wanner RM, Sander P, Davis EO, Bosshard M, Jiricny J, Böttger EC, Springer B. Characterization of the mycobacterial NER system reveals novel functions of the uvrD1 helicase. J Bacteriol 2009; 191:555-62. [PMID: 19011038 PMCID: PMC2620815 DOI: 10.1128/jb.00216-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 10/26/2008] [Indexed: 01/03/2023] Open
Abstract
In this study, we investigated the role of the nucleotide excision repair (NER) pathway in mycobacterial DNA repair. Mycobacterium smegmatis lacking the NER excinuclease component uvrB or the helicase uvrD1 gene and a double knockout lacking both genes were constructed, and their sensitivities to a series of DNA-damaging agents were analyzed. As anticipated, the mycobacterial NER system was shown to be involved in the processing of bulky DNA adducts and interstrand cross-links. In addition, it could be shown to exert a protective effect against oxidizing and nitrosating agents. Interestingly, inactivation of uvrB and uvrD1 significantly increased marker integration frequencies in gene conversion assays. This implies that in mycobacteria (which lack the postreplicative mismatch repair system) NER, and particularly the UvrD1 helicase, is involved in the processing of a subset of recombination-associated mismatches.
Collapse
Affiliation(s)
- Carolin Güthlein
- Institut für Medizinische Mikrobiologie, University of Zurich, Gloriastrasse 30/32, CH-8006, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, Kaina B. Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst) 2009; 8:72-86. [DOI: 10.1016/j.dnarep.2008.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/18/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
31
|
Interplay of DNA repair pathways controls methylation damage toxicity in Saccharomyces cerevisiae. Genetics 2008; 179:1835-44. [PMID: 18579505 DOI: 10.1534/genetics.108.089979] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Methylating agents of S(N)1 type are widely used in cancer chemotherapy, but their mode of action is poorly understood. In particular, it is unclear how the primary cytotoxic lesion, O(6)-methylguanine ((Me)G), causes cell death. One hypothesis stipulates that binding of mismatch repair (MMR) proteins to (Me)G/T mispairs arising during DNA replication triggers cell-cycle arrest and cell death. An alternative hypothesis posits that (Me)G cytotoxicity is linked to futile processing of (Me)G-containing base pairs by the MMR system. In this study, we provide compelling genetic evidence in support of the latter hypothesis. Treatment of 4644 deletion mutants of Saccharomyces cerevisiae with the prototypic S(N)1-type methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) identified MMR as the only pathway that sensitizes cells to MNNG. In contrast, homologous recombination (HR), postreplicative repair, DNA helicases, and chromatin maintenance factors protect yeast cells against the cytotoxicity of this chemical. Notably, DNA damage signaling proteins played a protective rather than sensitizing role in the MNNG response. Taken together, this evidence demonstrates that (Me)G-containing lesions in yeast must be processed to be cytotoxic.
Collapse
|
32
|
Mojas N, Lopes M, Jiricny J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 2008; 21:3342-55. [PMID: 18079180 DOI: 10.1101/gad.455407] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
O(6)-Methylguanine ((Me)G) is a highly cytotoxic DNA modification generated by S(N)1-type methylating agents. Despite numerous studies implicating DNA replication, mismatch repair (MMR), and homologous recombination (HR) in (Me)G toxicity, its mode of action has remained elusive. We studied the molecular transactions in the DNA of yeast and mammalian cells treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Although replication fork progression was unaffected in the first cell cycle after treatment, electron microscopic analysis revealed an accumulation of (Me)G- and MMR-dependent single-stranded DNA (ssDNA) gaps in newly replicated DNA. Progression into the second cell cycle required HR, while the following G(2) arrest required the continued presence of (Me)G. Yeast cells overcame this block, while mammalian cells generally failed to recover, and those that did contained multiple sister chromatid exchanges. Notably, the arrest could be abolished by removal of (Me)G after the first S phase. These new data provide compelling support for the hypothesis that MMR attempts to correct (Me)G/C or (Me)G/T mispairs arising during replication. Due to the persistence of (Me)G in the exposed template strand, repair synthesis cannot take place, which leaves single-stranded gaps behind the replication fork. During the subsequent S phase, these gaps cause replication fork collapse and elicit recombination and cell cycle arrest.
Collapse
Affiliation(s)
- Nina Mojas
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Nowosielska A, Marinus MG. DNA mismatch repair-induced double-strand breaks. DNA Repair (Amst) 2008; 7:48-56. [PMID: 17827074 PMCID: PMC2175267 DOI: 10.1016/j.dnarep.2007.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 11/26/2022]
Abstract
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly.
Collapse
Affiliation(s)
- Anetta Nowosielska
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
34
|
Davidsen T, Tuven HK, Bjørås M, Rødland EA, Tønjum T. Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J Bacteriol 2007; 189:5728-37. [PMID: 17513474 PMCID: PMC1951836 DOI: 10.1128/jb.00161-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The current increase in the incidence and severity of infectious diseases mandates improved understanding of the basic biology and DNA repair profiles of virulent microbes. In our studies of the major pathogen and model organism Neisseria meningitidis, we constructed a panel of mutants inactivating genes involved in base excision repair, mismatch repair, nucleotide excision repair (NER), translesion synthesis, and recombinational repair pathways. The highest spontaneous mutation frequency among the N. meningitidis single mutants was found in the MutY-deficient strain as opposed to mutS mutants in Escherichia coli, indicating a role for meningococcal MutY in antibiotic resistance development. Recombinational repair was recognized as a major pathway counteracting methyl methanesulfonate-induced alkylation damage in the N. meningitidis. In contrast to what has been shown in other species, meningococcal NER did not contribute significantly to repair of alkylation-induced DNA damage, and meningococcal recombinational repair may thus be one of the main pathways for removal of abasic (apurinic/apyrimidinic) sites and strand breaks in DNA. Conversely, NER was identified as the main meningococcal defense pathway against UV-induced DNA damage. N. meningitidis RecA single mutants exhibited only a moderate decrease in survival after UV exposure as opposed to E. coli recA strains, which are extremely UV sensitive, possibly reflecting the lack of a meningococcal SOS response. In conclusion, distinct differences between N. meningitidis and established DNA repair characteristics in E. coli and other species were identified.
Collapse
Affiliation(s)
- Tonje Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
35
|
Yokoyama M, Inoue H, Ishii C, Murakami Y. The novel gene mus7(+) is involved in the repair of replication-associated DNA damage in fission yeast. DNA Repair (Amst) 2007; 6:770-80. [PMID: 17307401 DOI: 10.1016/j.dnarep.2007.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/22/2006] [Indexed: 11/17/2022]
Abstract
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.
Collapse
Affiliation(s)
- Mika Yokoyama
- Institute for Virus Research, Kyoto University, Shogoinkawahara-cho, Kyoto, Japan
| | | | | | | |
Collapse
|
36
|
Odahara M, Inouye T, Fujita T, Hasebe M, Sekine Y. Involvement of mitochondrial-targeted RecA in the repair of mitochondrial DNA in the moss, Physcomitrella patens. Genes Genet Syst 2007; 82:43-51. [PMID: 17396019 DOI: 10.1266/ggs.82.43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is a universal process that contributes to genetic diversity and genomic integrity. Bacterial-type RecA generally exists in all bacteria and plays a crucial role in homologous recombination. Although RecA homologues also exist in plant mitochondria, there have been few reports about the in vivo functions of these homologues. We identified a recA gene orthologue (named PprecA1) in a cDNA library of the moss, Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA1 to GFP caused a targeting of PpRecA1 to mitochondria. PprecA1 partially complemented the effects of a DNA damaging agent in an Escherichia coli recA deficient strain. Additionally, the expression of PprecA1 was induced by treating the plants with DNA damaging agents. Disruption of PprecA1 by targeted replacement resulted lower rate of the recovery of the mitochondrial DNA from methyl methan sulfonate damage. This is the first report about the characteristics of a null mutant of bacterial-type recA gene in plant. The data suggest that PprecA1 participates in the repair of mitochondrial DNA in P. patens.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo, St. Paul's University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
37
|
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2006; 19:1580-94. [PMID: 17173371 PMCID: PMC2542901 DOI: 10.1021/tx060164e] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER, thus, counteract the toxic, mutagenic, and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate the elucidation of the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type-specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a radiomimetic, that is, capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if the damage is not repaired.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Basic Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
38
|
Donaldson JR, Courcelle CT, Courcelle J. RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli. J Biol Chem 2006; 281:28811-21. [PMID: 16895921 DOI: 10.1074/jbc.m603933200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RuvABC is a complex that promotes branch migration and resolution of Holliday junctions. Although ruv mutants are hypersensitive to UV irradiation, the molecular event(s) that necessitate RuvABC processing in vivo are not known. Here, we used a combination of two-dimensional gel analysis and electron microscopy to reveal that although ruvAB and ruvC mutants are able to resume replication following arrest at UV-induced lesions, molecules that replicate in the presence of DNA damage accumulate unresolved Holliday junctions. The failure to resolve the Holliday junctions on the fully replicated molecules correlates with a delayed loss of genomic integrity that is likely to account for the loss of viability in these cells. The strand exchange intermediates that accumulate in ruv mutants are distinct from those observed at arrested replication forks and are not subject to resolution by RecG. These results indicate that the Holliday junctions observed in ruv mutants are intermediates of a repair pathway that is distinct from that of the recovery of arrested replication forks. A model is proposed in which RuvABC is required to resolve junctions that arise during the repair of a subset of nonarresting lesions after replication has passed through the template.
Collapse
Affiliation(s)
- Janet R Donaldson
- Department of Biology, Portland State University, Portland, Oregon 97207, USA.
| | | | | |
Collapse
|