1
|
Bayliss CD, Clark JL, van der Woude MW. 100+ years of phase variation: the premier bacterial bet-hedging phenomenon. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001537. [PMID: 40014379 PMCID: PMC11868660 DOI: 10.1099/mic.0.001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Stochastic, reversible switches in the expression of Salmonella flagella variants were first described by Andrewes in 1922. Termed phase variation (PV), subsequent research found that this phenomenon was widespread among bacterial species and controlled expression of major determinants of bacterial-host interactions. Underlying mechanisms were not discovered until the 1970s/1980s but were found to encompass intrinsic aspects of DNA processes (i.e. DNA slippage and recombination) and DNA modifications (i.e. DNA methylation). Despite this long history, discoveries are ongoing with expansions of the phase-variable repertoire into new organisms and novel insights into the functions of known loci and switching mechanisms. Some of these discoveries are somewhat controversial as the term 'PV' is being applied without addressing key aspects of the phenomenon such as whether mutations or epigenetic changes are reversible and generated prior to selection. Another 'missing' aspect of PV research is the impact of these adaptive switches in real-world situations. This review provides a perspective on the historical timeline of the discovery of PV, the current state-of-the-art, controversial aspects of classifying phase-variable loci and possible 'missing' real-world effects of this phenomenon.
Collapse
Affiliation(s)
- Christopher D. Bayliss
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jack L. Clark
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Marjan W. van der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
2
|
DNA Methylation in Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:21-43. [DOI: 10.1007/978-3-031-11454-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Predation strategies of the bacterium Bdellovibrio bacteriovorus result in overexploitation and bottlenecks. Appl Environ Microbiol 2021; 88:e0108221. [PMID: 34669451 DOI: 10.1128/aem.01082-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With increasing antimicrobial resistance, alternatives for treating infections or removing resistant bacteria are urgently needed, such as the bacterial predator Bdellovibrio bacteriovorus or bacteriophage. Therefore, we need to better understand microbial predator-prey dynamics. We developed mass-action mathematical models of predation for chemostats, which capture the low substrate concentration and slow growth typical for intended application areas of the predators such as wastewater treatment, aquaculture or the gut. Our model predicted that predator survival required a minimal prey cell size, explaining why Bdellovibrio is much smaller than its prey. A too good predator (attack rate too high, mortality too low) overexploited its prey leading to extinction (tragedy of the commons). Surprisingly, a predator taking longer to produce more offspring outcompeted a predator producing fewer offspring more rapidly (rate versus yield trade-off). Predation was only efficient in a narrow region around optimal parameters. Moreover, extreme oscillations under a wide range of conditions led to severe bottlenecks. These could be avoided when two prey species became available in alternating seasons. A bacteriophage outcompeted Bdellovibrio due to its higher burst size and faster life cycle. Together, results suggest that Bdellovibrio would struggle to survive on a single prey, explaining why it must be a generalist predator and suggesting it is better suited than phage to environments with multiple prey. Importance The discovery of antibiotics led to a dramatic drop in deaths due to infectious disease. Increasing levels of antimicrobial resistance, however, threaten to reverse this progress. There is thus a need for alternatives, such as therapies based on phage and predatory bacteria that kill bacteria regardless of whether they are pathogens or resistant to antibiotics. To best exploit them, we need to better understand what determines their effectiveness. By using a mathematical model to study bacterial predation in realistic slow growth conditions, we found that the generalist predator Bdellovibrio is most effective within a narrow range of conditions for each prey. For example, a minimum prey cell size is required, and the predator should not be too good as this would result in over-exploitation risking extinction. Together these findings give insights into the ecology of microbial predation and help explain why Bdellovibrio needs to be a generalist predator.
Collapse
|
4
|
Dimitriu T, Szczelkun MD, Westra ER. Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Curr Biol 2021; 30:R1189-R1202. [PMID: 33022264 DOI: 10.1016/j.cub.2020.08.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Like many organisms, bacteria and archaea have both innate and adaptive immune systems to defend against infection by viruses and other parasites. Innate immunity most commonly relies on the endonuclease-mediated cleavage of any incoming DNA that lacks a specific epigenetic modification, through a system known as restriction-modification. CRISPR-Cas-mediated adaptive immunity relies on the insertion of short DNA sequences from parasite genomes into CRISPR arrays on the host genome to provide sequence-specific protection. The discovery of each of these systems has revolutionised our ability to carry out genetic manipulations, and, as a consequence, the enzymes involved have been characterised in exquisite detail. In comparison, much less is known about the importance of these two arms of the defence for the ecology and evolution of prokaryotes and their parasites. Here, we review our current ecological and evolutionary understanding of these systems in isolation, and discuss the need to study how innate and adaptive immune responses are integrated when they coexist in the same cell.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
5
|
Moraxella catarrhalis phase-variable loci show differences in expression during conditions relevant to disease. PLoS One 2020; 15:e0234306. [PMID: 32555615 PMCID: PMC7302503 DOI: 10.1371/journal.pone.0234306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/22/2020] [Indexed: 11/29/2022] Open
Abstract
Moraxella catarrhalis is a human-adapted, opportunistic bacterial pathogen of the respiratory mucosa. Although asymptomatic colonization of the nasopharynx is common, M. catarrhalis can ascend into the middle ear, where it is a prevalent causative agent of otitis media in children, or enter the lower respiratory tract, where it is associated with acute exacerbations of chronic obstructive pulmonary disease in adults. Phase variation is the high frequency, random, reversible switching of gene expression that allows bacteria to adapt to different host microenvironments and evade host defences, and is most commonly mediated by simple DNA sequence repeats. Bioinformatic analysis of five closed M. catarrhalis genomes identified 17 unique simple DNA sequence repeat tracts that were variable between strains, indicating the potential to mediate phase variable expression of the associated genes. Assays designed to assess simple sequence repeat variation under conditions mimicking host infection demonstrated that phase variation of uspA1 (ubiquitous surface protein A1) from high to low expression occurs over 72 hours of biofilm passage, while phase variation of uspA2 (ubiquitous surface protein A2) to high expression variants occurs during repeated exposure to human serum, as measured by mRNA levels. We also identify and confirm the variable expression of two novel phase variable genes encoding a Type III DNA methyltransferase (modO), and a conserved hypothetical permease (MC25239_RS00020). These data reveal the repertoire of phase variable genes mediated by simple sequence repeats in M. catarrhalis and demonstrate that modulation of expression under conditions mimicking human infection is attributed to changes in simple sequence repeat length.
Collapse
|
6
|
Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y. The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol 2019; 40:119-137. [PMID: 31793351 DOI: 10.1080/07388551.2019.1674774] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the dawn of life, bacteria and phages are locked in a constant battle and both are perpetually changing their tactics to overcome each other. Bacteria use various strategies to overcome the invading phages, including adsorption inhibition, restriction-modification (R/E) systems, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, abortive infection (Abi), etc. To counteract, phages employ intelligent tactics for the nullification of bacterial defense systems, such as accessing host receptors, evading R/E systems, and anti-CRISPR proteins. Intense knowledge about the details of these defense pathways is the basis for their broad utilities in various fields of research from microbiology to biotechnology. Hence, in this review, we discuss some strategies used by bacteria to inhibit phage infections as well as phage tactics to circumvent bacterial defense systems. In addition, the application of these strategies will be described as a lesson learned from bacteria and phage combats. The ecological factors that affect the evolution of bacterial immune systems is the other issue represented in this review.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Development of a shuttle plasmid without host restriction sites for efficient transformation and heterologous gene expression in Clostridium cellulovorans. Appl Microbiol Biotechnol 2019; 103:5391-5400. [DOI: 10.1007/s00253-019-09882-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
8
|
Aidley J, Wanford JJ, Green LR, Sheppard SK, Bayliss CD. PhasomeIt: an 'omics' approach to cataloguing the potential breadth of phase variation in the genus Campylobacter. Microb Genom 2018; 4:e000228. [PMID: 30351264 PMCID: PMC6321876 DOI: 10.1099/mgen.0.000228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
Hypermutable simple sequence repeats (SSRs) are drivers of phase variation (PV) whose stochastic, high-frequency, reversible switches in gene expression are a common feature of several pathogenic bacterial species, including the human pathogen Campylobacter jejuni. Here we examine the distribution and conservation of known and putative SSR-driven phase variable genes - the phasome - in the genus Campylobacter. PhasomeIt, a new program, was specifically designed for rapid identification of SSR-mediated PV. This program detects the location, type and repeat number of every SSR. Each SSR is linked to a specific gene and its putative expression state. Other outputs include conservation of SSR-driven phase-variable genes and the 'core phasome' - the minimal set of PV genes in a phylogenetic grouping. Analysis of 77 complete Campylobacter genome sequences detected a 'core phasome' of conserved PV genes in each species and a large number of rare PV genes with few, or no, homologues in other genome sequences. Analysis of a set of partial genome sequences, with food-chain-associated metadata, detected evidence of a weak link between phasome and source host for disease-causing isolates of sequence type (ST)-828 but not the ST-21 or ST-45 complexes. Investigation of the phasomes in the genus Campylobacter provided evidence of overlapping but distinctive mechanisms of PV-mediated adaptation to specific niches. This suggests that the phasome could be involved in host adaptation and spread of campylobacters. Finally, this tool is malleable and will have utility for studying the distribution and genic effects of other repetitive elements in diverse bacterial species.
Collapse
Affiliation(s)
- Jack Aidley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J. Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Samuel K. Sheppard
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
9
|
Tan A, Atack JM, Jennings MP, Seib KL. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development. Front Immunol 2016; 7:586. [PMID: 28018352 PMCID: PMC5149525 DOI: 10.3389/fimmu.2016.00586] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression), are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase-variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - John M Atack
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| |
Collapse
|
10
|
van Houte S, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev 2016; 80:745-63. [PMID: 27412881 PMCID: PMC4981670 DOI: 10.1128/mmbr.00011-16] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.
Collapse
Affiliation(s)
- Stineke van Houte
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Angus Buckling
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Edze R Westra
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME JOURNAL 2016; 11:152-165. [PMID: 27482924 DOI: 10.1038/ismej.2016.98] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/30/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023]
Abstract
The environmental stimulants and inhibitors of conjugal plasmid transfer in microbial communities are poorly understood. Specifically, it is not known whether exposure to stressors may cause a community to alter its plasmid uptake ability. We assessed whether metals (Cu, Cd, Ni, Zn) and one metalloid (As), at concentrations causing partial growth inhibition, modulate community permissiveness (that is, uptake ability) against a broad-host-range IncP-type plasmid (pKJK5). Cells were extracted from an agricultural soil as recipient community and a cultivation-minimal filter mating assay was conducted with an exogenous E. coli donor strain. The donor hosted a gfp-tagged pKJK5 derivative from which conjugation events could be microscopically quantified and transconjugants isolated and phylogenetically described at high resolution via FACS and 16S rRNA amplicon sequencing. Metal stress consistently decreased plasmid transfer frequencies to the community, while the transconjugal pool richness remained unaffected with OTUs belonging to 12 bacterial phyla. The taxonomic composition of the transconjugal pools was distinct from their respective recipient communities and clustered dependent on the stress type and dose. However, for certain OTUs, stress increased or decreased permissiveness by more than 1000-fold and this response was typically correlated across different metals and doses. The response to some stresses was, in addition, phylogenetically conserved. This is the first demonstration that community permissiveness is sensitive to metal(loid) stress in a manner that is both partially consistent across stressors and phylogenetically conserved.
Collapse
|
12
|
Anjum A, Brathwaite KJ, Aidley J, Connerton PL, Cummings NJ, Parkhill J, Connerton I, Bayliss CD. Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res 2016; 44:4581-94. [PMID: 26786317 PMCID: PMC4889913 DOI: 10.1093/nar/gkw019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/26/2015] [Indexed: 01/17/2023] Open
Abstract
Phase-variable restriction-modification systems are a feature of a diverse range of bacterial species. Stochastic, reversible switches in expression of the methyltransferase produces variation in methylation of specific sequences. Phase-variable methylation by both Type I and Type III methyltransferases is associated with altered gene expression and phenotypic variation. One phase-variable gene of Campylobacter jejuni encodes a homologue of an unusual Type IIG restriction-modification system in which the endonuclease and methyltransferase are encoded by a single gene. Using both inhibition of restriction and PacBio-derived methylome analyses of mutants and phase-variants, the cj0031c allele in C. jejuni strain NCTC11168 was demonstrated to specifically methylate adenine in 5'CCCGA and 5'CCTGA sequences. Alterations in the levels of specific transcripts were detected using RNA-Seq in phase-variants and mutants of cj0031c but these changes did not correlate with observed differences in phenotypic behaviour. Alterations in restriction of phage growth were also associated with phase variation (PV) of cj0031c and correlated with presence of sites in the genomes of these phages. We conclude that PV of a Type IIG restriction-modification system causes changes in site-specific methylation patterns and gene expression patterns that may indirectly change adaptive traits.
Collapse
Affiliation(s)
- Awais Anjum
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Kelly J Brathwaite
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Jack Aidley
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Phillippa L Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Nicola J Cummings
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Julian Parkhill
- The Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ian Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | |
Collapse
|
13
|
Kwiatek A, Mrozek A, Bacal P, Piekarowicz A, Adamczyk-Popławska M. Type III Methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 Regulates Biofilm Formation and Interactions with Human Cells. Front Microbiol 2015; 6:1426. [PMID: 26733970 PMCID: PMC4685087 DOI: 10.3389/fmicb.2015.01426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many restriction modification (RM) systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngoAXmod gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a twofold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wild-type (wt) strain under standard grow conditions. Genes with changed expression levels encoded mostly proteins involved in cell metabolism, DNA replication and repair or regulating cellular processes and signaling (such as cell wall/envelop biogenesis). As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain. Live biofilm observations showed that the biofilm formed by the gonococcal ngoAXmod gene mutant is more relaxed, dispersed and thicker than the one formed by the wt strain. This more relaxed feature of the biofilm, in respect to adhesion and bacterial interactions, can be involved in pathogenesis. Moreover, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci [adhesion index = 0.672 (±0.2) and 2.15 (±1.53), respectively]; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells [invasion index = 3.38 (±0.93) × 105 for mutant and 4.67 (±3.09) × 104 for the wt strain]. These results indicate that NgoAX knock-out cells have lower ability to attach to human cells, but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.
Collapse
Affiliation(s)
- Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Agnieszka Mrozek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel Bacal
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw Warsaw, Poland
| | - Andrzej Piekarowicz
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | |
Collapse
|
14
|
Hoskisson PA, Sumby P, Smith MCM. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity. Virology 2015; 477:100-109. [PMID: 25592393 PMCID: PMC4365076 DOI: 10.1016/j.virol.2014.12.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022]
Abstract
The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence mechanism. Progeny ϕC31 phage from an initial infection are thought to be modified such that subsequent infections are attenuated in a Pgl(+) host but normal in a Pgl(-) strain. Earlier work identified four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel phage restriction system that, in part, comprises a toxin/antitoxin system where PglX, a DNA methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY and a protein kinase activity in PglW are shown to be essential for phage resistance by Pgl. We conclude that on infection of a Pgl(+) cell by bacteriophage ϕC31, PglW transduces a signal, probably via phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PglX and this leads to phage restriction.
Collapse
Affiliation(s)
- Paul A Hoskisson
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Science, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Paul Sumby
- Department of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Margaret C M Smith
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Science, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
15
|
Tang F, Bossers A, Harders F, Lu C, Smith H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics 2013; 101:336-44. [PMID: 23587535 DOI: 10.1016/j.ygeno.2013.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
Abstract
Streptococcus suis (S. suis) is an important pathogen that can carry prophages. Here we present a comparative genomic analysis of twelve (pro)phages identified in the genomes of S. suis isolates. According to the putative functions of the open reading frames predicted, all genomes could be organized into five major functionally gene clusters involved in lysogeny, replication, packaging, morphogenesis and lysis. Phylogenetic analyses of the prophage sequences revealed that the prophages could be divided into five main groups. Whereas the genome content of the prophages in groups 1, 2 and 3 showed quite some similarity, the genome structures of prophages in groups 4 and 5 were quite distinct. Interestingly, several genes homologous to known virulence factors, including virulence associated protein E, a toxin-antitoxin system, a Clp protease and a DNA methyltransferase were found to be associated with various (pro)phages. This clearly indicates that these (pro)phages can contribute to the virulence of their hosts.
Collapse
Affiliation(s)
- Fang Tang
- Key Lab Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | |
Collapse
|
16
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
17
|
Bayliss CD, Palmer ME. Evolution of simple sequence repeat-mediated phase variation in bacterial genomes. Ann N Y Acad Sci 2012; 1267:39-44. [PMID: 22954215 DOI: 10.1111/j.1749-6632.2012.06584.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutability as mechanism for rapid adaptation to environmental challenge is an alluringly simple concept whose apotheosis is realized in simple sequence repeats (SSR). Bacterial genomes of several species contain SSRs with a proven role in adaptation to environmental fluctuations. SSRs are hypermutable and generate reversible mutations in localized regions of bacterial genomes, leading to phase variable ON/OFF switches in gene expression. The application of genetic, bioinformatic, and mathematical/computational modeling approaches are revolutionizing our current understanding of how genomic molecular forces and environmental factors influence SSR-mediated adaptation and led to evolution of this mechanism of localized hypermutation in bacterial genomes.
Collapse
|
18
|
Gawthorne JA, Beatson SA, Srikhanta YN, Fox KL, Jennings MP. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae. PLoS One 2012; 7:e32337. [PMID: 22457715 PMCID: PMC3311624 DOI: 10.1371/journal.pone.0032337] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/26/2012] [Indexed: 02/06/2023] Open
Abstract
Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles.
Collapse
Affiliation(s)
- Jayde A. Gawthorne
- Institute for Glycomics, Griffith University Gold Coast, Queensland, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
| | | | - Kate L. Fox
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
19
|
Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS One 2011; 6:e27569. [PMID: 22162751 PMCID: PMC3230613 DOI: 10.1371/journal.pone.0027569] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/19/2011] [Indexed: 01/23/2023] Open
Abstract
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.
Collapse
|
20
|
Bikard D, Marraffini LA. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol 2011; 24:15-20. [PMID: 22079134 DOI: 10.1016/j.coi.2011.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/21/2011] [Indexed: 12/26/2022]
Abstract
Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.
Collapse
Affiliation(s)
- David Bikard
- Laboratory of Bacteriology, The Rockefeller University, 10065 New York, NY, USA
| | | |
Collapse
|
21
|
Deletion of one nucleotide within the homonucleotide tract present in the hsdS gene alters the DNA sequence specificity of type I restriction-modification system NgoAV. J Bacteriol 2011; 193:6750-9. [PMID: 21984785 DOI: 10.1128/jb.05672-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a result of a frameshift mutation, the hsdS locus of the NgoAV type IC restriction and modification (RM) system comprises two genes, hsdS(NgoAV1) and hsdS(NgoAV2). The specificity subunit, HsdS(NgoAV), the product of the hsdS(NgoAV1) gene, is a naturally truncated form of an archetypal specificity subunit (208 N-terminal amino acids instead of 410). The presence of a homonucleotide tract of seven guanines (poly[G]) at the 3' end of the hsdS(NgoAV1) gene makes the NgoAV system a strong candidate for phase variation, i.e., stochastic addition or reduction in the guanine number. We have constructed mutants with 6 guanines instead of 7 and demonstrated that the deletion of a single nucleotide within the 3' end of the hsdS(NgoAV1) gene restored the fusion between the hsdS(NgoAV1) and hsdS(NgoAV2) genes. We have demonstrated that such a contraction of the homonucleotide tract may occur in vivo: in a Neisseria gonorrhoeae population, a minor subpopulation of cells appeared to have only 6 guanines at the 3' end of the hsdS(NgoAV1) gene. Escherichia coli cells carrying the fused gene and expressing the NgoAVΔ RM system were able to restrict λ phage at a level comparable to that for the wild-type NgoAV system. NgoAV recognizes the quasipalindromic interrupted sequence 5'-GCA(N(8))TGC-3' and methylates both strands. NgoAVΔ recognizes DNA sequences 5'-GCA(N(7))GTCA-3' and 5'-GCA(N(7))CTCA-3', although the latter sequence is methylated only on the complementary strand within the 5'-CTCA-3' region of the second recognition target sequence.
Collapse
|
22
|
Tesfazgi Mebrhatu M, Wywial E, Ghosh A, Michiels CW, Lindner AB, Taddei F, Bujnicki JM, Van Melderen L, Aertsen A. Evidence for an evolutionary antagonism between Mrr and Type III modification systems. Nucleic Acids Res 2011; 39:5991-6001. [PMID: 21504983 PMCID: PMC3152355 DOI: 10.1093/nar/gkr219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.
Collapse
Affiliation(s)
- Mehari Tesfazgi Mebrhatu
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010; 45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Collapse
|
24
|
Hotomi M, Kono M, Togawa A, Arai J, Takei S, Ikeda Y, Ogami M, Murphy TF, Yamanaka N. Haemophilus influenzae and Haemophilus haemolyticus in tonsillar cultures of adults with acute pharyngotonsillitis. Auris Nasus Larynx 2010; 37:594-600. [PMID: 20392581 DOI: 10.1016/j.anl.2010.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 02/06/2010] [Accepted: 02/12/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the clinical implication of Haemophilus haemolyticus, one of the closest relative of Haemophilus influenzae, on acute pharyngotonsillitis. METHODS We applied polymerase chain reaction (PCR) for 16S ribosomal DNA (rDNA) and IgA protease gene (iga) to distinguish H. haemolyticus and H. influenzae. RESULTS Among the 199 Haemophilus spp. isolated from 214 patients with acute pharyngotonsillitis, 52 (24.3%) H. influenzae strains and 23 (10.7%) H. haemolyticus strains were identified by polymerase chain reaction (PCR) for 16S rDNA and IgA protease gene (iga). All H. haemolyticus strains showed hemolysis on horse blood agar and there were no other Haemophilus spp., nonhemolytic H. haemolyticus and H. influenzae variant strains that had absent iga gene. H. hemolyticus showed close genetic relationship with H. influenzae evaluated by pulsed field gel electrophoresis (PFGE). The cases of acute pharyngotonsillitis showing WBC=7000/mm(3) or CRP=8 mg/dl were frequently found among cases with H. influenzae rather than cases with H. haemolyticus. CONCLUSION H. haemolyticus is a pharyngeal commensal that is isolated frequently from adults with acute pharyngotonsillitis.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, Wakayama, 640-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Andres S, Skoglund A, Nilsson C, Krabbe M, Björkholm B, Engstrand L. Type I restriction-modification loci reveal high allelic diversity in clinical Helicobacter pylori isolates. Helicobacter 2010; 15:114-25. [PMID: 20402814 DOI: 10.1111/j.1523-5378.2010.00745.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND A remarkable variety of restriction-modification (R-M) systems is found in Helicobacter pylori. Since they encompass a large portion of the strain-specific H. pylori genes and therefore contribute to genetic variability, they are suggested to have an impact on disease outcome. Type I R-M systems comprise three different subunits and are the most complex of the three types of R-M systems. AIMS We investigated the genetic diversity and distribution of type I R-M systems in clinical isolates of H. pylori. MATERIAL AND METHODS Sixty-one H. pylori isolates from a Swedish hospital based case-control study and 6 H. pylori isolates of a Swedish population-based study were analyzed using polymerase chain reaction for the presence of the three R-M systems' subunits. Representative gene variants were sequenced. RESULTS Although the hsdM and hsdR genes appeared conserved in our clinical H. pylori isolates, the sequences of the hsdS loci were highly variable. Despite their sequence diversity, the genes per se were present at high frequencies. We identified a number of novel allelic hsdS variants, which are distinct from corresponding hsdS loci in the sequenced H. pylori strains 26695, J99 and HPAG1. In analyses of paired H. pylori isolates, obtained from the same individuals with a 4-year interval, we observed genetic modifications of hsdS genes in patients with atrophic gastric mucosa. DISCUSSION We propose that the genetic variability of hsdS genes in a bacterial population will give rise to new specificities of these enzymes, which might lead to adaptation to an ever-changing gastric environment.
Collapse
Affiliation(s)
- Sönke Andres
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Dong H, Zhang Y, Dai Z, Li Y. Engineering clostridium strain to accept unmethylated DNA. PLoS One 2010; 5:e9038. [PMID: 20161730 PMCID: PMC2817722 DOI: 10.1371/journal.pone.0009038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively encoding the type II restriction endonuclease Cac824I was identified from the genome of C. acetobutylicum DSM1731, and disrupted using the ClosTron system based on group II intron insertion. The resulting strain SMB009 lost the type II restriction endonuclease activity, and can be transformed with unmethylated DNA as efficiently as with methylated DNA. The strategy reported here makes it easy to genetically modify the clostridial species using unmethylated DNA, which will help to advance the understanding of the clostridial physiology from the molecular level.
Collapse
Affiliation(s)
- Hongjun Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zongjie Dai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 2010; 8:196-206. [PMID: 20140025 DOI: 10.1038/nrmicro2283] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In several host-adapted pathogens, phase variation has been found to occur in genes that encode methyltransferases associated with type III restriction-modification systems. It was recently shown that in the human pathogens Haemophilus influenzae, Neisseria gonorrhoeae and Neisseria meningitidis phase variation of a type III DNA methyltransferase, encoded by members of the mod gene family, regulates the expression of multiple genes. This novel genetic system has been termed the 'phasevarion' (phase-variable regulon). The wide distribution of phase-variable mod family genes indicates that this may be a common strategy used by host-adapted bacterial pathogens to randomly switch between distinct cell types.
Collapse
|
28
|
Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 2009; 191:4854-62. [PMID: 19502408 PMCID: PMC2715734 DOI: 10.1128/jb.01272-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.
Collapse
|
29
|
Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 2009; 5:e1000400. [PMID: 19390608 PMCID: PMC2667262 DOI: 10.1371/journal.ppat.1000400] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/26/2009] [Indexed: 11/23/2022] Open
Abstract
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5′-AGAAA-3′. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between “differentiated” cell types. The pathogenic Neisseria are bacterial pathogens that cause meningitis and gonorrhoea. They have adapted to life exclusively in humans and have developed unique strategies to colonize the host and to evade the immune response. Central among these strategies are genetic switches that randomly turn genes on and off. In most cases, the genes controlled by these switches, contingency genes, are required for making bacterial surface structures. Recently we described a new class of contingency gene that methylates DNA. Rather than affecting the synthesis of a single surface structure, on/off switching of this DNA-methyltransferase gene leads to random switching of multiple genes. In this study, we have shown that this mechanism exists in all pathogenic Neisseria, and alters expression of multiple genes in all cases we examined. The two distinct populations of bacteria generated by this process had different behavior in model systems of colonization and infection. Understanding this process is key to understanding these human pathogens, and to developing strategies for treatment and prevention of the diseases they cause.
Collapse
|
30
|
Erwin AL, Sandstedt SA, Bonthuis PJ, Geelhood JL, Nelson KL, Unrath WCT, Diggle MA, Theodore MJ, Pleatman CR, Mothershed EA, Sacchi CT, Mayer LW, Gilsdorf JR, Smith AL. Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol 2008; 190:1473-83. [PMID: 18065541 PMCID: PMC2238191 DOI: 10.1128/jb.01207-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/26/2007] [Indexed: 12/13/2022] Open
Abstract
The gram-negative bacterium Haemophilus influenzae is a human-restricted commensal of the nasopharynx that can also be associated with disease. The majority of H. influenzae respiratory isolates lack the genes for capsule production and are nontypeable (NTHI). Whereas encapsulated strains are known to belong to serotype-specific phylogenetic groups, the structure of the NTHI population has not been previously described. A total of 656 H. influenzae strains, including 322 NTHI strains, have been typed by multilocus sequence typing and found to have 359 sequence types (ST). We performed maximum-parsimony analysis of the 359 sequences and calculated the majority-rule consensus of 4,545 resulting equally most parsimonious trees. Eleven clades were identified, consisting of six or more ST on a branch that was present in 100% of trees. Two additional clades were defined by branches present in 91% and 82% of trees, respectively. Of these 13 clades, 8 consisted predominantly of NTHI strains, three were serotype specific, and 2 contained distinct NTHI-specific and serotype-specific clusters of strains. Sixty percent of NTHI strains have ST within one of the 13 clades, and eBURST analysis identified an additional phylogenetic group that contained 20% of NTHI strains. There was concordant clustering of certain metabolic reactions and putative virulence loci but not of disease source or geographic origin. We conclude that well-defined phylogenetic groups of NTHI strains exist and that these groups differ in genetic content. These observations will provide a framework for further study of the effect of genetic diversity on the interaction of NTHI with the host.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fox KL, Srikhanta YN, Jennings MP. Phase variable type III restriction-modification systems of host-adapted bacterial pathogens. Mol Microbiol 2007; 65:1375-9. [PMID: 17714447 DOI: 10.1111/j.1365-2958.2007.05873.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection. Despite this, numerous type III R-M systems in bacterial pathogens contain repetitive DNA motifs that suggest the potential for phase variation. Several roles have been proposed for phase variable R-M systems based on DNA restriction function. However, there is now evidence in several important human pathogens, including Haemophilus influenzae, Neisseria meningitidis and Neisseria gonorrhoeae, that these systems are 'phasevarions' (phase variable regulons) controlling expression of multiple genes via a novel epigenetic mechanism.
Collapse
Affiliation(s)
- Kate L Fox
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
32
|
Fox KL, Dowideit SJ, Erwin AL, Srikhanta YN, Smith AL, Jennings MP. Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res 2007; 35:5242-52. [PMID: 17675301 PMCID: PMC1976455 DOI: 10.1093/nar/gkm571] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon—‘phasevarion’. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5′-CGAAT-3′. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra- and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R-M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function.
Collapse
Affiliation(s)
- Kate L. Fox
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109 and Department of Pathobiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Stefanie J. Dowideit
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109 and Department of Pathobiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alice L. Erwin
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109 and Department of Pathobiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Yogitha N. Srikhanta
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109 and Department of Pathobiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Arnold L. Smith
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109 and Department of Pathobiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Michael P. Jennings
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, Microbial Pathogens Program, Seattle Biomedical Research Institute, Seattle, WA 98109 and Department of Pathobiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- *To whom correspondence should be addressed.+61 733654639+61 733654620
| |
Collapse
|
33
|
Hoskisson PA, Smith MCM. Hypervariation and phase variation in the bacteriophage 'resistome'. Curr Opin Microbiol 2007; 10:396-400. [PMID: 17719266 DOI: 10.1016/j.mib.2007.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/17/2007] [Indexed: 11/20/2022]
Abstract
Most bacteria encode proteins for defence against infection by bacteriophages. The mechanisms that bring about phage defence are extremely diverse, suggesting frequent independent evolution of novel processes. Phage defence determinants are often plasmid or phage-encoded and many that are chromosomal show evidence of lateral transfer. Recent studies on restriction-modification (R-M) systems show that these genes are amongst the most rapidly evolving. Some bacteria have contingency genes that encode alternative target specificity determinants for Type I or Type III R-M systems, thus expanding the range of phages against which the host population is immune. The most counter-intuitive observation, however, is the prevalence of phase variation in many restriction systems, but recent arguments suggest that switching off expression of R-M systems can aid phage defence.
Collapse
Affiliation(s)
- Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biological Science, University of Strathclyde, Royal College Building, George Street, Glasgow, United Kingdom
| | | |
Collapse
|
34
|
Dybvig K, Cao Z, French CT, Yu H. Evidence for type III restriction and modification systems in Mycoplasma pulmonis. J Bacteriol 2007; 189:2197-202. [PMID: 17209015 PMCID: PMC1899405 DOI: 10.1128/jb.01669-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 12/26/2006] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pulmonis possesses a cassette of genes that are predicted to code for type III restriction and modification (R-M) enzymes. Transposon disruption of a gene predicted to code for the endonuclease subunit of the enzyme resulted in loss of R-M activity. Genomic data indicate that the cassette was acquired by horizontal gene transfer and possibly located on a mobile element.
Collapse
Affiliation(s)
- Kevin Dybvig
- Department of Genetics, 720 S. 20th St., KAUL 720, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | | | | | | |
Collapse
|
35
|
Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 2006; 40:307-33. [PMID: 17094739 DOI: 10.1146/annurev.genet.40.110405.090442] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens face stringent challenges to their survival because of the many unpredictable, often precipitate, and dynamic changes that occur in the host environment or in the process of transmission from one host to another. Bacterial adaptation to their hosts involves either a mechanism for sensing and responding to external changes or the selection of variants that arise through mutation. Here we review how bacterial pathogens exploit localized hypermutation, through polymerase slippage of simple sequence repeats (SSRs), to generate phenotypic variation and enhanced fitness. These SSRs are located within the reading frame or in the promoter of a subset of genes, often termed contingency loci, whose functions are usually involved in direct interactions with host structures.
Collapse
Affiliation(s)
- Richard Moxon
- Oxford University Department of Paediatrics, Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine Oxford, United Kingdom.
| | | | | |
Collapse
|