1
|
Lin Y, Chen C, Chen W, Liu H, Xiao R, Ji H, Li X. A Comprehensive Transcriptome Atlas Reveals the Crucial Role of LncRNAs in Maintaining Nodulation Homeostasis in Soybean. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412104. [PMID: 39716953 PMCID: PMC11831499 DOI: 10.1002/advs.202412104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Symbiotic nitrogen fixation (SNF) provides nitrogen for soybean. A primary challenge in enhancing yield through efficient SNF lies in striking a balance between its high energy consumption and plant growth. However, the systemic transcriptional reprogramming during nodulation remains limited. Here, this work conducts a comprehensive RNA-seq of the roots, cotyledons and leaves of inoculated-soybean. This work finds 88,814 mRNAs and 6,156 noncoding RNAs (ncRNAs) across various organs. Notably, this work identifies 6,679 nodulation-regulated mRNAs (NR-mRNAs), 1,681 long noncoding RNAs (lncRNAs) (NR-lncRNAs), and 59 miRNAs (NR-miRNAs). The majority of these NR-RNAs are associated with plant-microbial interaction and exhibit high organ specificity. Roots display the highest abundance of NR-ncRNAs and the most dynamic crosstalk between NR-lncRNAs and NR-miRNAs in a GmNARK-dependent manner. This indicates that while each tissue responds uniquely, GmNARK serves as a primary regulator of the transcriptional control of nodulated-plants. Furthermore, this work proves that lnc-NNR6788 and lnc-NNR7059 promote nodulation by regulating their target genes. This work also shows that the nodulation- and GmNARK-regulated (NNR) lnc-NNR4481 negatively regulates nodulation through miR172c within a competing endogenous RNA (ceRNA) network. The spatial organ-type transcriptomic atlas establishes a benchmark and provides a valuable resource for integrative analyses of the mechanism underlying of nodulation and plant growth balance.
Collapse
Affiliation(s)
- Yanru Lin
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Chong Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Weizhen Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hangcheng Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xia Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| |
Collapse
|
2
|
Downs IL, David Ordonez Luna A, Kota KP, Rubin SK, Shirsekar SS, Ward MD, Panchal RG, Litosh VA. Modification of N-hydroxycytidine yields a novel lead compound exhibiting activity against the Venezuelan equine encephalitis virus. Bioorg Med Chem Lett 2023; 94:129432. [PMID: 37591319 DOI: 10.1016/j.bmcl.2023.129432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.
Collapse
Affiliation(s)
- Isaac L Downs
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - A David Ordonez Luna
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Krishna P Kota
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Sarah K Rubin
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Serena S Shirsekar
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Michael D Ward
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Rekha G Panchal
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA
| | - Vladislav A Litosh
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, MD 21702, USA.
| |
Collapse
|
3
|
Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28:740-746. [PMID: 34381216 DOI: 10.1101/2021.05.11.443555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 05/20/2023]
Abstract
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Collapse
Affiliation(s)
- Florian Kabinger
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Carina Stiller
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
4
|
Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28:740-746. [PMID: 34381216 PMCID: PMC8437801 DOI: 10.1038/s41594-021-00651-0] [Citation(s) in RCA: 466] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Collapse
Affiliation(s)
- Florian Kabinger
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Carina Stiller
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
5
|
Rosenke K, Hansen F, Schwarz B, Feldmann F, Haddock E, Rosenke R, Barbian K, Meade-White K, Okumura A, Leventhal S, Hawman DW, Ricotta E, Bosio CM, Martens C, Saturday G, Feldmann H, Jarvis MA. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nat Commun 2021; 12:2295. [PMID: 33863887 PMCID: PMC8052374 DOI: 10.1038/s41467-021-22580-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic progresses unabated in many regions of the world. An effective antiviral against SARS-CoV-2 that could be administered orally for use following high-risk exposure would be of substantial benefit in controlling the COVID-19 pandemic. Herein, we show that MK-4482, an orally administered nucleoside analog, inhibits SARS-CoV-2 replication in the Syrian hamster model. The inhibitory effect of MK-4482 on SARS-CoV-2 replication is observed in animals when the drug is administered either beginning 12 h before or 12 h following infection in a high-risk exposure model. These data support the potential utility of MK-4482 to control SARS-CoV-2 infection in humans following high-risk exposure as well as for treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frederick Hansen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shanna Leventhal
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David W Hawman
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emily Ricotta
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Michael A Jarvis
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA. .,University of Plymouth, Plymouth, Devon, UK. .,The Vaccine Group Ltd, Plymouth, Devon, UK.
| |
Collapse
|
6
|
Mao S, Sekula B, Ruszkowski M, Ranganathan SV, Haruehanroengra P, Wu Y, Shen F, Sheng J. Base pairing, structural and functional insights into N4-methylcytidine (m4C) and N4,N4-dimethylcytidine (m42C) modified RNA. Nucleic Acids Res 2020; 48:10087-10100. [PMID: 32941619 PMCID: PMC7544196 DOI: 10.1093/nar/gkaa737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The N4-methylation of cytidine (m4C and m42C) in RNA plays important roles in both bacterial and eukaryotic cells. In this work, we synthesized a series of m4C and m42C modified RNA oligonucleotides, conducted their base pairing and bioactivity studies, and solved three new crystal structures of the RNA duplexes containing these two modifications. Our thermostability and X-ray crystallography studies, together with the molecular dynamic simulation studies, demonstrated that m4C retains a regular C:G base pairing pattern in RNA duplex and has a relatively small effect on its base pairing stability and specificity. By contrast, the m42C modification disrupts the C:G pair and significantly decreases the duplex stability through a conformational shift of native Watson-Crick pair to a wobble-like pattern with the formation of two hydrogen bonds. This double-methylated m42C also results in the loss of base pairing discrimination between C:G and other mismatched pairs like C:A, C:T and C:C. The biochemical investigation of these two modified residues in the reverse transcription model shows that both mono- or di-methylated cytosine bases could specify the C:T pair and induce the G to T mutation using HIV-1 RT. In the presence of other reverse transcriptases with higher fidelity like AMV-RT, the methylation could either retain the normal nucleotide incorporation or completely inhibit the DNA synthesis. These results indicate the methylation at N4-position of cytidine is a molecular mechanism to fine tune base pairing specificity and affect the coding efficiency and fidelity during gene replication.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Bartosz Sekula
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Srivathsan V Ranganathan
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Phensinee Haruehanroengra
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Fusheng Shen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, USA
| |
Collapse
|
7
|
Rosenke K, Hansen F, Schwarz B, Feldmann F, Haddock E, Rosenke R, Meade-White K, Okumura A, Leventhal S, Hawman DW, Ricotta E, Bosio CM, Saturday G, Feldmann H, Jarvis MA. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. RESEARCH SQUARE 2020:rs.3.rs-86289. [PMID: 33052329 PMCID: PMC7553153 DOI: 10.21203/rs.3.rs-86289/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic progresses unabated in many regions of the world. An effective antiviral against SARS-CoV-2 that could be administered orally for use following high-risk exposure would be of substantial benefit in controlling the COVID-19 pandemic. Herein, we show that MK-4482, an orally administered nucleoside analog, inhibits SARS-CoV-2 replication in the Syrian hamster model. The inhibitory effect of MK-4482 on SARS-CoV-2 replication was observed in animals when the drug was administered either beginning 12 hours before or 12 hours following infection in a high-risk exposure model. These data support the potential utility of MK-4482 to control SARS-CoV-2 infection in humans following high-risk exposure as well as for treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frederick Hansen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emily Ricotta
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael A. Jarvis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- University of Plymouth, Plymouth, Devon, UK
- The Vaccine Group Ltd, Plymouth, Devon, UK
| |
Collapse
|
8
|
Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12:eabb5883. [PMID: 32253226 PMCID: PMC7164393 DOI: 10.1126/scitranslmed.abb5883] [Citation(s) in RCA: 787] [Impact Index Per Article: 157.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog β-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (β-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.
Collapse
Affiliation(s)
- Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria L Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tia M Hughes
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amelia S George
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Collin S Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory R Bluemling
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Manohar Saindane
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Alexander A Kolykhalov
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | - George Painter
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Jennifer Harcourt
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Azaibi Tamin
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Natalie J Thornburg
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
10
|
|
11
|
Abstract
This chapter describes a simple and straightforward way to obtain single-stranded circular RNA sequences in vitro. Linear RNA that is phosphorylated at the 5' end is first prepared by a chemical or enzymatic method, then circularized using ligase. The function of the prepared circular RNA molecule, such as an ability to induce translation, can then be investigated.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayumi Kodama
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
12
|
The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 2017; 8:1149. [PMID: 29074849 PMCID: PMC5658440 DOI: 10.1038/s41467-017-01216-w] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that circular RNAs (circRNAs) are abundant in the human transcriptome. However, their involvement in biological processes, including pluripotency, remains mostly undescribed. We identified a subset of circRNAs that are enriched in undifferentiated human embryonic stem cells (hESCs) and demonstrated that two, circBIRC6 and circCORO1C, are functionally associated with the pluripotent state. Mechanistically, we found that circBIRC6 is enriched in the AGO2 complex and directly interacts with microRNAs, miR-34a, and miR-145, which are known to modulate target genes that maintain pluripotency. Correspondingly, circBIRC6 attenuates the downregulation of these target genes and suppresses hESC differentiation. We further identified hESC-enriched splicing factors (SFs) and demonstrated that circBIRC6 biogenesis in hESCs is promoted by the SF ESRP1, whose expression is controlled by the core pluripotency-associated factors, OCT4 and NANOG. Collectively, our data suggest that circRNA serves as a microRNA “sponge” to regulate the molecular circuitry, which modulates human pluripotency and differentiation. Circular RNAs are abundant in the transcriptome and are implicated in the regulation of a range of biological processes. Here the authors identify circBIRC6 as a microRNA sponge that helps modulate human pluripotency and early lineage differentiation.
Collapse
|
13
|
Domingo E. Molecular Basis of Genetic Variation of Viruses. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149591 DOI: 10.1016/b978-0-12-800837-9.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation: mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physico-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents, or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate.
Collapse
|
14
|
Brovarets' OO, Zhurakivsky RO, Hovorun DM. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. J Comput Chem 2013; 35:451-66. [PMID: 24382756 DOI: 10.1002/jcc.23515] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/12/2013] [Accepted: 11/30/2013] [Indexed: 02/04/2023]
Abstract
Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680, Kyiv, Ukraine ; Research and Educational Center "State Key Laboratory of Molecular and Cell Biology", 150 Akademika Zabolotnoho Str., 03680, Kyiv, Ukraine; Department of Molecular Biology, Biotechnology and Biophysics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave., 03022, Kyiv, Ukraine
| | | | | |
Collapse
|
15
|
Bonnac LF, Mansky LM, Patterson SE. Structure–Activity Relationships and Design of Viral Mutagens and Application to Lethal Mutagenesis. J Med Chem 2013; 56:9403-14. [DOI: 10.1021/jm400653j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Laurent F. Bonnac
- Center for Drug Design, Academic
Health Center, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Louis M. Mansky
- Institute for Molecular Virology,
Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E. Patterson
- Center for Drug Design, Academic
Health Center, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Brovarets' OO, Hovorun DM. Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: quantum chemical study. ACTA ACUST UNITED AC 2011. [DOI: 10.7124/bc.0000bd] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. O. Brovarets'
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
| | - D. M. Hovorun
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
| |
Collapse
|
17
|
Jochmans D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res 2008; 134:171-85. [PMID: 18308412 DOI: 10.1016/j.virusres.2008.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
HIV-1 reverse transcriptase (RT) was the first viral enzyme to be targeted by anti-HIV drugs. Despite 20 years of experience with RT inhibitors, new ways to inhibit this target and address viral resistance continue to emerge. In both licensed RT inhibitor classes, nucleosides (NRTIs) and non-nucleosides (NNRTIs), compounds with better resistance, pharmacokinetic and toxicity profiles are being developed. Second-generation NNRTIs active against HIV-1 strains resistant to current NNRTIs are being clinically evaluated. Beyond the classical NRTIs, nucleoside analogs that are no longer obligate chain terminators but nevertheless impede reverse transcription or even lead to viral ablation after several replication cycles, are being studied. RT inhibitor research has also yielded additional mechanisms to block RT. Driven by new insights the RNase H field remains in evolution. In addition, the binding of both substrates (deoxynucleotide and primer/template) to RT is now subject to competition by novel inhibitors. Further development of aptamers bears promise for gene therapy but perhaps more importantly, reveals additional new platforms for the development of small-molecule RT inhibitors. This promising research provides much optimism that RT inhibitors will continue to evolve with subsequent clinical benefit.
Collapse
Affiliation(s)
- Dirk Jochmans
- Tibotec BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium.
| |
Collapse
|
18
|
Graci JD, Harki DA, Korneeva VS, Edathil JP, Too K, Franco D, Smidansky ED, Paul AV, Peterson BR, Brown DM, Loakes D, Cameron CE. Lethal mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol 2007; 81:11256-66. [PMID: 17686844 PMCID: PMC2045539 DOI: 10.1128/jvi.01028-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/26/2007] [Indexed: 12/30/2022] Open
Abstract
Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase-mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension, and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous base-pairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture, owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses.
Collapse
Affiliation(s)
- Jason D Graci
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kamiya H, Suzuki A, Kawai K, Kasai H, Harashima H. Effects of 8-hydroxy-GTP and 2-hydroxy-ATP on in vitro transcription. Free Radic Biol Med 2007; 43:837-43. [PMID: 17664147 DOI: 10.1016/j.freeradbiomed.2007.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/16/2007] [Accepted: 05/30/2007] [Indexed: 11/18/2022]
Abstract
Oxidation of RNA precursors may disturb genetic information. In this study, the effects of oxidized RNA precursors on in vitro transcription were examined. Two oxidized ribonucleoside triphosphates, 8-hydroxyguanosine 5'-triphosphate (8-OH-GTP) and 2-hydroxyadenosine 5'-triphosphate (2-OH-ATP), were added to in vitro transcription reactions. The addition of 8-OH-GTP and 2-OH-ATP reduced the amount of RNA synthesized in vitro. Moreover, to examine qualitative alteration of the mRNA, it was converted to cDNA by reverse transcriptase, and the cDNA was then amplified by PCR. The PCR product was subsequently cloned into plasmid DNA, and the DNA sequence was analyzed for each bacterial colony. The two oxidized ribonucleotides induced mutations in cDNA, suggesting the disturbance of genetic information during transcription and/or reverse transcription. 8-OH-GTP induced T-->G plus T-->C mutations, and 2-OH-ATP caused T-->C mutations. These results indicate that the formation of these oxidized RNA precursors in cells affects transcription quantitatively and qualitatively.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | |
Collapse
|