1
|
Rostami A, Palomer X, Pizarro-Delgado J, Peña L, Zamora M, Montori-Grau M, Barroso E, Valenzuela-Alcaraz B, Crispi F, Salvador JM, García R, Hurlé MA, Nistal F, Vázquez-Carrera M. GADD45A suppression contributes to cardiac remodeling by promoting inflammation, fibrosis and hypertrophy. Cell Mol Life Sci 2025; 82:189. [PMID: 40301189 PMCID: PMC12040809 DOI: 10.1007/s00018-025-05704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
The growth arrest and DNA damage inducible 45A (GADD45A) is a multifaceted protein associated with stress signaling and cellular injury. Aside its well-established tumor suppressor activity, recent studies point to additional roles for GADD45A, including the regulation of catabolic and anabolic pathways, or the prevention of inflammation, fibrosis, and oxidative stress in some tissues and organs. However, little is known about its function in cardiac disease. In this study, we aimed to evaluate the role of GADD45A in the heart by using mice with constitutive and systemic deletion of Gadd45a, and cardiac cells of human origin. Gadd45a suppression in knockout mice triggered cardiac fibrosis, inflammation, and apoptosis, and these changes correlated with an hyperactivation of the pro-inflammatory and pro-fibrotic transcription factors activator protein-1 (AP-1), nuclear factor-κB (NF-κB), and signal transducer and activator of transcription 3 (STAT3). Deletion of Gadd45a also resulted in substantial cardiac hypertrophy, which negatively impacted cardiac morphology and function in knockout mice. Consistent with this, GADD45A overexpression in human AC16 cardiomyocytes partially prevented the inflammatory and fibrotic responses induced by tumor necrosis factor-α (TNF-α). Overall, data presented in this study highlight an important role for GADD45A in the heart, since it may prevent inflammation, fibrosis, and apoptosis, and, by this means, preserve cardiac function and performance. Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy and subsequent heart failure, these results suggest that promoting the activity of this protein might be a promising therapeutic strategy to slow down the progression of these deleterious diseases.
Collapse
Affiliation(s)
- Adel Rostami
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Mònica Zamora
- BCNatal - Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, 08028, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, 08036, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Brenda Valenzuela-Alcaraz
- BCNatal - Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, 08028, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, 08036, Spain
| | - Fàtima Crispi
- BCNatal - Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, 08028, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, 08036, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, National Center for Biotechnology/CSIC, Madrid, 28049, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Francisco Nistal
- Servicio de Cirugía Cardiovascular, Departamento de Ciencias Médicas y Quirúrgicas, Facultad de Medicina, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
- Spanish Biomedical Research Center in Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Santander, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| |
Collapse
|
2
|
Wei L, Lao Y, Fu T, Xie Z, Wang Y, Yang T, Huang L, Liu J, Shu M, Tian T, Li S, He Q, Zhou J, Zhang X, Wang H, Du J, Wang X, Yang Z, Bai L, Ke Z. Distinct Role of TP53 Co-mutations in Different EGFR Subtypes Mediating the Response to EGFR Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Clin Lung Cancer 2025:S1525-7304(25)00078-6. [PMID: 40382269 DOI: 10.1016/j.cllc.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND TP53 co-mutations are closely associated with poor outcomes in patients with EGFR-mutant non-small cell lung cancer (NSCLC). Our study aimed to explore whether TP53 co-mutations affect survival and response to EGFR tyrosine kinase inhibitors (TKIs) in patients with different EGFR subtypes. PATIENTS AND METHODS We retrospectively analyzed 240 NSCLC with EGFR mutation (MT) from the First Affiliated Hospital of Sun Yat-sen University. The effects of TP53 co-mutations on the response to EGFR TKIs were evaluated in EGFR-mutant patients. RESULTS Among various EGFR-mutant subtypes, patients with EGFRL858R/TP53MT exhibited significantly worse progression-free survival (PFS) than those without TP53 co-mutations (7.9 months vs. 19.8 months, HR = 1.53, 95% CI: 1.03-2.28, P = .032), whereas a similar trend did not reappear in subgroups of EGFR19del (P = .730) and EGFRothers (P = .495). Specifically, patients with EGFRL858R/TP53MT who were treated with second-generation TKIs exhibited worse PFS than those without TP53 co-mutations. TP53 co-mutations were identified as the only independent risk factor for PFS by multivariate analysis. Moreover, TP53 co-mutations mediated the acquisition of resistance in patients harboring EGFRL858R, and concomitant mutations in additional tumor suppressor genes (TSGs) (RB1, NF1, ARID1A, and BRCA1) represented a subgroup characterized by an aggressive disease phenotype with worse PFS. CONCLUSION TP53 co-mutations are associated with poor survival and may cooperate with other genomic events to facilitate resistance in NSCLC harboring EGFRL858R. Sequential therapeutic interventions beyond EGFR-TKIs monotherapy may extend the survival of patients with EGFRL858R/TP53MT.
Collapse
Affiliation(s)
- Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Lao
- Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxia Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tiantian Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Leilei Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahua Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tian Tian
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China
| | - Huipin Wang
- Department of Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Juan Du
- Department of Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Xinwei Wang
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Lihong Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Jaber S, Eldawra E, Rakotopare J, Simeonova I, Lejour V, Gabriel M, Cañeque T, Volochtchouk V, Licaj M, Fajac A, Rodriguez R, Morillon A, Bardot B, Toledo F. Oncogenic and teratogenic effects of Trp53Y217C, an inflammation-prone mouse model of the human hotspot mutant TP53Y220C. eLife 2025; 13:RP102434. [PMID: 40223808 PMCID: PMC11996178 DOI: 10.7554/elife.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Missense 'hotspot' mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.
Collapse
Affiliation(s)
- Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Iva Simeonova
- Chromatin Dynamics, Institut Curie, CNRS UMR3664, Sorbonne University, PSL UniversityParisFrance
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Marc Gabriel
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Tatiana Cañeque
- Chemical Biology, Institut Curie, CNRS UMR3666, INSERM U1143, PSL UniversityParisFrance
| | - Vitalina Volochtchouk
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Monika Licaj
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Anne Fajac
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Raphaël Rodriguez
- Chemical Biology, Institut Curie, CNRS UMR3666, INSERM U1143, PSL UniversityParisFrance
| | - Antonin Morillon
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
- Signaling and Neural Crest Development, Institut Curie, CNRS UMR3347, INSERM U1021, Université Paris-Saclay, PSL UniversityOrsayFrance
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
- Hematopoietic and Leukemic Development, Centre de Recherche Saint-Antoine, INSERM UMRS938, Sorbonne UniversityParisFrance
| |
Collapse
|
4
|
Agrawal R, Sengupta S. p53 regulates DREAM complex-mediated repression in a p21-independent manner. EMBO J 2025; 44:2279-2297. [PMID: 40038454 PMCID: PMC12000331 DOI: 10.1038/s44318-025-00402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The DREAM repressor complex regulates genes involved in the cell cycle and DNA repair, vital for maintaining genome stability. Although it mediates p53-driven repression through the canonical p53-p21-Rb axis, the potential for p53 to directly regulate DREAM targets independently of its transcriptional activity has not been explored. Here, we demonstrate that in asynchronously growing cells, p53 loss leads to greater de-repression of DREAM targets compared to p21 loss alone. Both wild-type and transactivation-deficient p53 mutants are capable of repressing DREAM targets, suggesting a transactivation-independent "non-canonical" repression mechanism. These p53 variants bind p130/p107, irrespective of their phosphorylation status, while cancer-associated p53 mutants disrupt DREAM complex function by sequestering E2F4. Re-ChIP analysis shows co-recruitment of p53 and E2F4 to known and newly identified DREAM target promoters, indicating direct repression of these targets by p53. These findings reveal a novel, transactivation-independent mechanism of p53-mediated repression, expanding our understanding of p53's tumor-suppressive functions and suggesting DREAM complex targeting as potential future avenues in cancer therapy.
Collapse
Affiliation(s)
- Ritu Agrawal
- Biotechnology Research and Innovation Council-National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- Biotechnology Research and Innovation Council-National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), PO: NSS, Kalyani, 741251, India.
| |
Collapse
|
5
|
Spiegelberg D, Hwang LA, Pua KH, Kumar SC, Koh XY, Koh XH, Selvaraju RK, Sabapathy K, Nestor M, Lane D. Targeting mutant p53: Evaluation of novel anti-p53 R175H monoclonal antibodies as diagnostic tools. Sci Rep 2025; 15:1000. [PMID: 39762369 PMCID: PMC11704002 DOI: 10.1038/s41598-024-83871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
About 50% of all cancers carry a mutation in p53 that impairs its tumor suppressor function. The p53 missense mutation p53R175H (p53R172H in mice) is a hotspot mutation in various cancer types. Therefore, monoclonal antibodies selectively targeting clinically relevant mutations like p53R175H could prove immensely value. We aimed to evaluate the in vitro and in vivo binding properties of two novel anti-p53R175H monoclonal antibodies and to assess their performance as agents for molecular imaging. In vitro, 125I-4H5 and 125I-7B9 demonstrated long shelf life and antigen-specific binding. Our in vivo study design allowed head-to-head comparison of the antibodies in a double tumor model using repeated SPECT/CT imaging, followed by biodistribution and autoradiography. Both tracers performed similarly, with marginally faster blood clearance for 125I-7B9. Repeated molecular imaging demonstrated suitable imaging characteristics for both antibodies, with the best contrast images occurring at 48 h post-injection. Significantly higher uptake was detected in the mut-p53-expressing tumors, confirmed by ex vivo autoradiography. We conclude that molecular imaging with an anti-p53R175H tracer could be a promising approach for cancer diagnostics and could be further applied for patient stratification and treatment response monitoring of mutant p53-targeted therapeutics.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics, Pathology, Uppsala University, Uppsala, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Le-Ann Hwang
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Khian Hong Pua
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Sashwini Chandra Kumar
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xin Yu Koh
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Xiao Hui Koh
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Ram Kumar Selvaraju
- Preclinical PET-MRI Platform, Part of Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Kanaga Sabapathy
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Marika Nestor
- Department of Immunology, Genetics, Pathology, Uppsala University, Uppsala, Sweden
| | - David Lane
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Patil MR, Bihari A. Role of artificial intelligence in cancer detection using protein p53: A Review. Mol Biol Rep 2024; 52:46. [PMID: 39658610 DOI: 10.1007/s11033-024-10051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Normal cell development and prevention of tumor formation rely on the tumor-suppressor protein p53. This crucial protein is produced from the Tp53 gene, which encodes the p53 protein. The p53 protein plays a vital role in regulating cell growth, DNA repair, and apoptosis (programmed cell death), thereby maintaining the integrity of the genome and preventing the formation of tumors. Since p53 was discovered 43 years ago, many researchers have clarified its functions in the development of tumors. With the support of the protein p53 and targeted artificial intelligence modeling, it will be possible to detect cancer and tumor activity at an early stage. This will open up new research opportunities. In this review article, a comprehensive analysis was conducted on different machine learning techniques utilized in conjunction with the protein p53 to predict and speculate cancer. The study examined the types of data incorporated and evaluated the performance of these techniques. The aim was to provide a thorough understanding of the effectiveness of machine learning in predicting and speculating cancer using the protein p53.
Collapse
Affiliation(s)
- Manisha R Patil
- School of Computer Science Engineering and Information System, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S, Liu H. Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell 2024; 90:102510. [PMID: 39126833 DOI: 10.1016/j.tice.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The epithelial-mesenchymal transition (EMT) plays a crucial role in lung cancer metastasis, rendering it a promising therapeutic target. Research has shown that non-small cell lung cancer (NSCLC) with p53 mutations exhibits an increased tendency for cancer metastasis. However, the exact contribution of the p53-R273H mutation to tumor metastasis remains uncertain in the current literature. Our study established the H1299-p53-R273H cell model successfully by transfecting the p53-R273H plasmid into H1299 cells. We observed that p53-R273H promotes cell proliferation, migration, invasion, and EMT through CCK-8, wound healing, transwell, western blot and immunofluorescence assays. Notably, the expression of EGR1 was increased in H1299-p53-R273H cells. Knocking out EGR1 in these cells hindered the progression of EMT. ChIP-PCR experiments revealed that p53-R273H binds to the EGR1 promoter sequence, thereby regulating its expression. These findings suggest that p53-R273H triggers EMT by activating EGR1, thereby offering a potential therapeutic approach for lung cancer treatment.
Collapse
Affiliation(s)
- Weipei Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Yu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China
| | - Yan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuqing Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Wanyue Sun
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Haifeng Liu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China.
| |
Collapse
|
8
|
Kong L, Meng F, Zhou P, Ge R, Geng X, Yang Z, Li G, Zhang L, Wang J, Ma J, Dong C, Zhou J, Wu S, Zhong D, Xie S. An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer. Sci Bull (Beijing) 2024; 69:2122-2135. [PMID: 38811338 DOI: 10.1016/j.scib.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/31/2024]
Abstract
Targeting oncogenic mutant p53 represents an attractive strategy for cancer treatment due to the high frequency of gain-of-function mutations and ectopic expression in various cancer types. Despite extensive efforts, the absence of a druggable active site for small molecules has rendered these mutants therapeutically non-actionable. Here we develop a selective and effective proteolysis-targeting chimera (PROTAC) for p53-R175H, a common hotspot mutant with dominant-negative and oncogenic activity. Using a novel iterative molecular docking-guided post-SELEX (systematic evolution of ligands by exponential enrichment) approach, we rationally engineer a high-performance DNA aptamer with improved affinity and specificity for p53-R175H. Leveraging this resulting aptamer as a binder for PROTACs, we successfully developed a selective p53-R175H degrader, named dp53m. dp53m induces the ubiquitin-proteasome-dependent degradation of p53-R175H while sparing wildtype p53. Importantly, dp53m demonstrates significant antitumor efficacy in p53-R175H-driven cancer cells both in vitro and in vivo, without toxicity. Moreover, dp53m significantly and synergistically improves the sensitivity of these cells to cisplatin, a commonly used chemotherapy drug. These findings provide evidence of the potential therapeutic value of dp53m in p53-R175H-driven cancers.
Collapse
Affiliation(s)
- Lingping Kong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ping Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoshan Geng
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhihao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guo Li
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinfeng Ma
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China.
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
9
|
Romashin D, Rusanov A, Arzumanian V, Varshaver A, Poverennaya E, Vakhrushev I, Netrusov A, Luzgina N. Exploring the Functions of Mutant p53 through TP53 Knockout in HaCaT Keratinocytes. Curr Issues Mol Biol 2024; 46:1451-1466. [PMID: 38392212 PMCID: PMC10887868 DOI: 10.3390/cimb46020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Approximately 50% of tumors carry mutations in TP53; thus, evaluation of the features of mutant p53 is crucial to understanding the mechanisms underlying cell transformation and tumor progression. HaCaT keratinocytes represent a valuable model for research in this area since they are considered normal, although they bear two gain-of-function mutations in TP53. In the present study, transcriptomic and proteomic profiling were employed to examine the functions of mutant p53 and to investigate the impact of its complete abolishment. Our findings indicate that CRISPR-mediated TP53 knockout results in significant changes at the transcriptomic and proteomic levels. The knockout of TP53 significantly increased the migration rate and altered the expression of genes associated with invasion, migration, and EMT but suppressed the epidermal differentiation program. These outcomes suggest that, despite being dysfunctional, p53 may still possess oncosuppressive functions. However, despite being considered normal keratinocytes, HaCaT cells exhibit oncogenic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander Netrusov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow 101000, Russia
| | | |
Collapse
|
10
|
Wang Z, Burigotto M, Ghetti S, Vaillant F, Tan T, Capaldo BD, Palmieri M, Hirokawa Y, Tai L, Simpson DS, Chang C, Huang AS, Lieschke E, Diepstraten ST, Kaloni D, Riffkin C, Huang DC, Li Wai Suen CS, Garnham AL, Gibbs P, Visvader JE, Sieber OM, Herold MJ, Fava LL, Kelly GL, Strasser A. Loss-of-Function but Not Gain-of-Function Properties of Mutant TP53 Are Critical for the Proliferation, Survival, and Metastasis of a Broad Range of Cancer Cells. Cancer Discov 2024; 14:362-379. [PMID: 37877779 PMCID: PMC10850947 DOI: 10.1158/2159-8290.cd-23-0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Matteo Burigotto
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Sabrina Ghetti
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - François Vaillant
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Tao Tan
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Bianca D. Capaldo
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Michelle Palmieri
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Yumiko Hirokawa
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Daniel S. Simpson
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Catherine Chang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Sarah T. Diepstraten
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Deeksha Kaloni
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Chris Riffkin
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Connie S.N. Li Wai Suen
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Peter Gibbs
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jane E. Visvader
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Oliver M. Sieber
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Luca L. Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Gemma L. Kelly
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Dartora VFC, Passos JS, Costa-Lotufo LV, Lopes LB, Panitch A. Thermosensitive Polymeric Nanoparticles for Drug Co-Encapsulation and Breast Cancer Treatment. Pharmaceutics 2024; 16:231. [PMID: 38399285 PMCID: PMC10892816 DOI: 10.3390/pharmaceutics16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic exposure. Here, we used a poly(N-isopropyl acrylamide, pNIPAM) nanoparticle delivery system loaded with cytotoxic piplartine and an MAPKAP Kinase 2 inhibitor (YARA) for this purpose. For tumor environment targeting, a collagen-binding peptide SILY (RRANAALKAGELYKSILYGSG-hydrazide) was attached to pNIPAM nanoparticles, and the nanoparticle diameter, zeta potential, drug loading, and release were assessed. The system was evaluated for cytotoxicity in a 2D cell culture and 3D spheroids. In vivo efficacy was evaluated using a chemical carcinogenesis model in female Sprague-Dawley rats. Nanoparticle delivery significantly reduced the IC50 of piplartine (4.9 times) compared to the drug in solution. The combination of piplartine and YARA in nanoparticles further reduced the piplartine IC50 (~15 times). Treatment with these nanoparticles decreased the in vivo tumor incidence (5.2 times). Notably, the concentration of piplartine in mammary glands treated with nanoparticles (35.3 ± 22.4 μg/mL) was substantially higher than in plasma (0.7 ± 0.05 μg/mL), demonstrating targeted drug retention. These results indicate that our nanocarrier system effectively reduced tumor development with low systemic exposure.
Collapse
Affiliation(s)
- Vanessa Franco Carvalho Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
- Department of Biomedical Engineering, College of Engineering, University of California Davis, Davis, CA 95616, USA
| | - Julia S. Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Leticia V. Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Luciana B. Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil; (V.F.C.D.); (J.S.P.); (L.V.C.-L.); (L.B.L.)
| | - Alyssa Panitch
- Department of Biomedical Engineering, College of Engineering, University of California Davis, Davis, CA 95616, USA
- Wallace H. Coulter Department of Biomedical Engineering, College of Engineering, Georgia Institute of Technology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Qian H, Hou C, Zhang Y, Ji S, Zhong C, Li J, Zhang Q, Huang J, Li C, ChengJi. Effects of concurrent TP53 mutations on the efficacy and prognosis of targeted therapy for advanced EGFR mutant lung adenocarcinoma. Cancer Genet 2023; 278-279:62-70. [PMID: 37672936 DOI: 10.1016/j.cancergen.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND How concurrent TP53 mutations affect targeted therapy of advanced Epidermal Growth Factor Receptor (EGFR) mutant lung adenocarcinoma remains controversial, particularly the deep classification of TP53 mutations. METHODS This study retrospectively analyzed the clinical data of advanced EGFR mutant lung adenocarcinoma patients treated with EGFR-tyrosine kinase inhibitors (TKIs) in the First Affiliated Hospital of Soochow University. The survival rates were compared using Log-rank tests. Potential prognostic factors were identified using multivariate Cox hazard regression models. RESULTS Total 156 advanced lung adenocarcinoma patients treated with EGFR-TKIs were included in this study. Multivariate analysis showed that male [hazard rate (HR): 1.537, 95% confidence interval (CI): 1.055-2.240, P = 0.025], brain metastasis (HR: 1.707, 95%CI: 1.086-2.682, P = 0.020) and concurrent TP53 mutations (HR: 1.569, 95%CI: 1.051-2.341, P = 0.028) were independent negative predictors of progression-free survival (PFS). EGFR L858R mutations (HR: 2.475, 95%CI: 1.443-4.248, p = 0.001), smoking history (HR: 2.530, 95%CI: 1.352-4.733, P = 0.004) and concurrent TP53 mutations (HR: 2.326, 95%CI: 1.283-4.218, P = 0.005) were associated with worse survival. Further analysis revealed that mutations in TP53 exons 4, 5 and 8 (P<0.05), missense mutations (P = 0.006) and nondisruptive mutations (P<0.001) were associated with shorter PFS, whereas mutations in TP53 exons 5 and 7 (P<0.05), missense mutations and non-missense mutations (P = 0.006; P = 0.007), disruptive mutations and nondisruptive mutations (P = 0.013; P = 0.013) were all associated with poorer survival times. In addition, the PFS and overall survival (OS) of nondisruptive mutations in exon 7 were worse than those in other exons (P = 0.041; P<0.001). CONCLUSIONS Concurrent TP53 mutations conferred worse EGFR-TKIs efficacy and prognosis in advanced EGFR mutant lung adenocarcinoma and the effects of different TP53 mutation types were heterogeneous.
Collapse
Affiliation(s)
- Huiwen Qian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chunqi Hou
- Department of Hemodialysis center, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shundong Ji
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Juan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianan Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chong Li
- Department of Respiration, First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - ChengJi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
14
|
Lu Y, Wu M, Xu Y, Yu L. The Development of p53-Targeted Therapies for Human Cancers. Cancers (Basel) 2023; 15:3560. [PMID: 37509223 PMCID: PMC10377496 DOI: 10.3390/cancers15143560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
p53 plays a critical role in tumor suppression and is the most frequently mutated gene in human cancers. Most p53 mutants (mutp53) are missense mutations and are thus expressed in human cancers. In human cancers that retain wtp53, the wtp53 activities are downregulated through multiple mechanisms. For example, the overexpression of the negative regulators of p53, MDM2/MDMX, can also efficiently destabilize and inactivate wtp53. Therefore, both wtp53 and mutp53 have become promising and intensively explored therapeutic targets for cancer treatment. Current efforts include the development of small molecule compounds to disrupt the interaction between wtp53 and MDM2/MDMX in human cancers expressing wtp53 and to restore wtp53-like activity to p53 mutants in human cancers expressing mutp53. In addition, a synthetic lethality approach has been applied to identify signaling pathways affected by p53 dysfunction, which, when targeted, can lead to cell death. While an intensive search for p53-targeted cancer therapy has produced potential candidates with encouraging preclinical efficacy data, it remains challenging to develop such drugs with good efficacy and safety profiles. A more in-depth understanding of the mechanisms of action of these p53-targeting drugs will help to overcome these challenges.
Collapse
Affiliation(s)
- Yier Lu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Meng Wu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yang Xu
- Department of Cardiology, The Second Affiliated Hospital, Cardiovascular Key Lab of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
15
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
16
|
Bromodomain Protein BRD4-Mediated Mutant p53 Transcription Promotes TNBC Progression. Int J Mol Sci 2022; 23:ijms232315163. [PMID: 36499487 PMCID: PMC9738555 DOI: 10.3390/ijms232315163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
TP53 is the most common mutated gene in human cancer. Mutant p53 protein loses its tumor-suppressor properties and gains oncogenic activity. Mutant p53 is a therapeutic target in a broad range of cancer types. However, how mutant p53 is epigenetically regulated during tumor progression remains elusive. In this study, we found that the upregulation of mutant p53 is mediated by bromodomain protein BRD4 in triple-negative breast cancer (TNBC) cells. Inhibition of BRD4 with its inhibitor JQ1 or knockdown of BRD4 suppressed the transcription of mutant p53, which led to the re-expression of p21, the inhibition of S-phase entry, and colony formation in TNBC cells. BRD4 also positively regulated the transcription of wild-type p53, whereas JQ1 treatment and knockdown of BRD4 decreased the expression of p21 in MCF-7 cells. Knockdown of BRD4 resulted in attenuation of TNBC tumor growth in vivo. Taken together, our results uncover a novel regulatory mechanism of mutant p53 via BRD4, and suggest that the bromodomain inhibitor suppresses tumorigenesis through targeting mutant p53 in TNBC.
Collapse
|
17
|
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Int J Mol Sci 2022; 23:13287. [PMID: 36362074 PMCID: PMC9654280 DOI: 10.3390/ijms232113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2023] Open
Abstract
Continuous development of personalized treatments is undoubtedly beneficial for oncogenic patients' comfort and survival rate. Mutant TP53 is associated with a worse prognosis due to the occurrence of metastases, increased chemoresistance, and tumor growth. Currently, numerous compounds capable of p53 reactivation or the destabilization of mutant p53 are being investigated. Several of them, APR-246, COTI-2, SAHA, and PEITC, were approved for clinical trials. This review focuses on these novel therapeutic opportunities, their mechanisms of action, and their significance for potential medical application.
Collapse
Affiliation(s)
- Katarzyna A. Roszkowska
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| | | | | | | | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| |
Collapse
|
18
|
Jin Q, Zuo W, Lin Q, Wu T, Liu C, Liu N, Liu J, Zhu X. Zinc-doped Prussian blue nanoparticles for mutp53-carrying tumor ion interference and photothermal therapy. Asian J Pharm Sci 2022; 17:767-777. [PMID: 36382302 PMCID: PMC9640366 DOI: 10.1016/j.ajps.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 12/04/2022] Open
Abstract
Quite a great proportion of known tumor cells carry mutation in TP53 gene, expressing mutant p53 proteins (mutp53) missing not only original genome protective activities but also acquiring gain-of-functions that favor tumor progression and impede treatment of cancers. Zinc ions were reported as agents cytocidal to mutp53-carrying cells by recovering p53 normal functions and abrogating mutp53. Meanwhile in a hyperthermia scenario, the function of wild type p53 is required to ablate tumors upon heat treatment hence the effects might be hindered in a mutp53 background. We herein synthesized zinc-doped Prussian blue (ZP) nanoparticles (NPs) to combine Zn2+ based and photothermal therapeutic effects. An efficient release of Zn2+ in a glutathione-enriched tumor intracellular microenvironment and a prominent photothermal conversion manifested ZP NPs as zinc ion carriers and photothermal agents. Apoptotic death and autophagic mutp53 elimination were found to be induced by ZP NPs in R280K mutp53-containing MDA-MB-231 cells and hyperthermia was rendered to ameliorate the treatment in vitro through further mutp53 elimination and increased cell death. The combinatorial therapeutic effect was also confirmed in vivo in a mouse model. This study might expand zinc delivery carriers and shed a light on potential interplay of hyperthermia and mutp53 degradation in cancer treatment.
Collapse
|
19
|
Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ 2022; 29:911-920. [PMID: 35332311 PMCID: PMC9091235 DOI: 10.1038/s41418-022-00962-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the TP53 tumour suppressor gene are found in ~50% of human cancers [1-6]. TP53 functions as a transcription factor that directly regulates the expression of ~500 genes, some of them involved in cell cycle arrest/cell senescence, apoptotic cell death or DNA damage repair, i.e. the cellular responses that together prevent tumorigenesis [1-6]. Defects in TP53 function not only cause tumour development but also impair the response of malignant cells to anti-cancer drugs, particularly those that induce DNA damage [1-6]. Most mutations in TP53 in human cancers cause a single amino acid substitution, usually within the DNA binding domain of the TP53 protein. These mutant TP53 proteins are often expressed at high levels in the malignant cells. Three cancer causing attributes have been postulated for mutant TP53 proteins: the inability to activate target genes controlled by wt TP53 (loss-of-function, LOF) that are critical for tumour suppression, dominant negative effects (DNE), i.e. blocking the function of wt TP53 in cells during early stages of transformation when mutant and wt TP53 proteins are co-expressed, and gain-of-function (GOF) effects whereby mutant TP53 impacts diverse cellular pathways by interacting with proteins that are not normally engaged by wt TP53 [1-6]. The GOF effects of mutant TP53 were reported to be essential for the sustained proliferation and survival of malignant cells and it was therefore proposed that agents that can remove mutant TP53 protein would have substantial therapeutic impact [7-9]. In this review article we discuss evidence for and against the value of targeting mutant TP53 protein for cancer therapy.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
22
|
Udquim KI, Zettelmeyer C, Banday AR, Lin SHY, Prokunina-Olsson L. APOBEC3B expression in breast cancer cell lines and tumors depends on the estrogen receptor status. Carcinogenesis 2021; 41:1030-1037. [PMID: 31930332 DOI: 10.1093/carcin/bgaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/17/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Increased exposure to estrogen is associated with an elevated risk of breast cancer. Considering estrogen as a possible mutagen, we hypothesized that exposure to estrogen alone or in combination with the DNA-damaging chemotherapy drug, cisplatin, could induce expression of genes encoding enzymes involved in APOBEC-mediated mutagenesis. To test this hypothesis, we measured the expression of APOBEC3A (A3A) and APOBEC3B (A3B) genes in two breast cancer cell lines treated with estradiol, cisplatin or their combination. These cell lines, T-47D (ER+) and MDA-MB-231 (ER-), differed by the status of the estrogen receptor (ER). Expression of A3A was not detectable in any conditions tested, while A3B expression was induced by treatment with cisplatin and estradiol in ER+ cells but was not affected by estradiol in ER- cells. In The Cancer Genome Atlas, expression of A3B was significantly associated with genotypes of a regulatory germline variant rs17000526 upstream of the APOBEC3 cluster in 116 ER- breast tumors (P = 0.006) but not in 387 ER+ tumors (P = 0.48). In conclusion, we show that in breast cancer cell lines, A3B expression was induced by estradiol in ER+ cells and by cisplatin regardless of ER status. In ER+ breast tumors, the effect of estrogen may be masking the association of rs17000526 with A3B expression, which was apparent in ER- tumors. Our results provide new insights into the differential etiology of ER+ and ER- breast cancer and the possible role of A3B in this process through a mitogenic rather than the mutagenic activity of estrogen.
Collapse
Affiliation(s)
- Krizia-Ivana Udquim
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clara Zettelmeyer
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Rouf Banday
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seraph Han-Yin Lin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Hong MH, Heo SG, Lee YG, Kim HS, Park KU, Kim HG, Ko YH, Chung IJ, Min YJ, Kim MK, Kim KR, Yoo J, Kim TM, Kim HR, Cho BC. Phase 2 study of afatinib among patients with recurrent and/or metastatic esophageal squamous cell carcinoma. Cancer 2020; 126:4521-4531. [PMID: 32749686 DOI: 10.1002/cncr.33123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The objective of the current study was to investigate the clinical activity of, safety of, and predictive biomarkers for afatinib, an irreversible pan-ErbB kinase inhibitor, in patients with recurrent and/or metastatic esophageal squamous cell carcinoma (R/M-ESCC). METHODS Patients with R/M-ESCC that was refractory to platinum-based chemotherapy were enrolled in the current multicenter, single-arm, phase 2 study and received afatinib at a dose of 40 mg/day. The primary endpoint was the objective response rate. Secondary endpoints included progression-free survival, overall survival, the disease control rate, and the safety profile. To identify predictive biomarkers, single-nucleotide variations, short insertions/deletions, and somatic copy number alterations were assessed using whole-exome sequencing and their associations with clinical outcomes were analyzed. RESULTS Among 49 enrolled patients, the objective response rate and disease control rate were 14.3% and 73.3%, respectively. With a median follow-up of 6.6 months, the median progression-free survival and overall survival were 3.4 months and 6.3 months, respectively. Treatment-related adverse events were noted to have occurred in 33 patients (67.3%), with the majority being of grade 1 to 2 (adverse events were graded and recorded based on the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.03]). Whole-exome sequencing demonstrated that the ESCC genomes of patients who demonstrated a response to afatinib were enriched with genomic alterations of TP53 and epidermal growth factor receptor (EGFR). As a predictive marker, a score derived from TP53 disruptive mutations and EGFR amplifications and/or missense mutations demonstrated a significant association with the response to afatinib. The score based on the mutational status of EGFR and TP53 achieved a performance of an area under the curve of 0.86 in predicting the sensitivity of afatinib. CONCLUSIONS The results of the current study demonstrated that afatinib can confer modest clinical benefits with manageable toxicity in patients with platinum-resistant R/M-ESCC. Identification of TP53 alterations and EGFR amplifications may serve as predictive markers with which to identify patients with R/M-ESCC who may benefit from afatinib. LAY SUMMARY Esophageal squamous cell carcinoma (ESCC) is a type of cancer with a dismal prognosis and very limited treatment options. The clinical efficacy of afatinib was evaluated in patients with recurrent and/or metastatic ESCC, with adverse events demonstrating the modest efficacy with manageable toxicity of this irreversible, pan-ErbB kinase inhibitor. Whole-exome sequencing analysis of 41 cases of ESCC further revealed that the patients harboring epidermal growth factor receptor (EGFR) amplifications and disruptive TP53 mutations are more likely to benefit from treatment with afatinib. The results of the current study have highlighted the clinical value of EGFR and TP53 as predictive biomarkers of platinum-resistant recurrent and/or metastatic ESCC for afatinib sensitivity.
Collapse
Affiliation(s)
- Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Gu Heo
- JE-UK Institute for Cancer Research, JEUK Company Ltd, Gumi-City, Kyungbuk, Korea
| | - Yun-Gyoo Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Keon Uk Park
- Division of Hematology/Oncology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Hoon-Gu Kim
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ik-Joo Chung
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young Joo Min
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Min Kyoung Kim
- Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Korea
| | - Kyu Ryung Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jinseon Yoo
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,JE-UK Institute for Cancer Research, JEUK Company Ltd, Gumi-City, Kyungbuk, Korea
| |
Collapse
|
24
|
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam EWF, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer 2020; 19:138. [PMID: 32894144 PMCID: PMC7487905 DOI: 10.1186/s12943-020-01253-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. Methods RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). Results CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. Conclusions Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.
Collapse
Affiliation(s)
- Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuchao Hao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Kefeng Lin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yizhu Lyu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Meiwei Chen
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Han Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Deyu Zou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xuewen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Renchun Wang
- The Second Clinical Medicine School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Di Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, W12 0NN, London, UK
| | - Shujuan Shao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Quentin Liu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Xiang Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China. .,Present Address:Department of Neurosurgery, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Bilian Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
25
|
Gini B, Thomas N, Blakely CM. Impact of concurrent genomic alterations in epidermal growth factor receptor ( EGFR)-mutated lung cancer. J Thorac Dis 2020; 12:2883-2895. [PMID: 32642201 PMCID: PMC7330397 DOI: 10.21037/jtd.2020.03.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Comprehensive characterization of the genomic landscape of epidermal growth factor receptor (EGFR)-mutated lung cancers have identified patterns of secondary mutations beyond the primary oncogenic EGFR mutation. These include concurrent pathogenic alterations affecting p53 (60–65%), RTKs (5–10%), PIK3CA/KRAS (3–23%), Wnt (5–10%), and cell cycle (7–25%) pathways as well as transcription factors such as MYC and NKX2-1 (10–15%). The majority of these co-occurring alterations were detected or enriched in samples collected from patients at resistance to tyrosine kinase inhibitor (TKI) treatment, indicating a potential functional role in driving resistance to therapy. Of note, these co-occurring tumor genomic alterations are not necessarily mutually exclusive, and evidence suggests that multiple clonal and sub-clonal cancer cell populations can co-exist and contribute to EGFR TKI resistance. Computational tools aimed to classify, track and predict the evolution of cancer clonal populations during therapy are being investigated in pre-clinical models to guide the selection of combination therapy switching strategies that may delay the development of treatment resistance. Here we review the most frequently identified tumor genomic alterations that co-occur with mutated EGFR and the evidence that these alterations effect responsiveness to EGFR TKI treatment.
Collapse
Affiliation(s)
- Beatrice Gini
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Nicholas Thomas
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| |
Collapse
|
26
|
Qin ZQ, Li QG, Yi H, Lu SS, Huang W, Rong ZX, Tang YY, Xiao ZQ. Heterozygous p53-R280T Mutation Enhances the Oncogenicity of NPC Cells Through Activating PI3K-Akt Signaling Pathway. Front Oncol 2020; 10:104. [PMID: 32117754 PMCID: PMC7025553 DOI: 10.3389/fonc.2020.00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
A heterozygous point mutation of p53 gene at codon 280 from AGA to ACA (R280T) frequently occurs in nasopharyngeal carcinoma (NPC) cell lines, and about 10% NPC tissues. However, the role of this mutation in the pathogenesis of NPC remains unclear. In this study, we generated p53 knockout (KO) NPC cell lines from CNE2 cells carrying heterozygous p53 R280T (p53-R280T) mutation and C666-1 cells carrying wild-type p53 by CRISPR-Cas9 gene editing system, and found that KO of heterozygous p53-R280T significantly decreased NPC cell proliferation and increased NPC cell apoptosis, whereas KO of wild-type p53 had opposite effects on NPC cell proliferation and apoptosis. Moreover, KO of heterozygous p53-R280T inhibited the anchorage-independent growth and in vivo tumorigenicity of NPC cells. mRNA sequencing of heterozygous p53-R280T KO and control CNE2 cells revealed that heterozygous p53-R280T mutation activated PI3K-Akt signaling pathway. Moreover, blocking of PI3K-Akt signaling pathway abolished heterozygous p53-R280T mutation-promoting NPC cell proliferation and survival. Our data indicate that p53 with heterozygous R280T mutation functions as an oncogene, and promotes the oncogenicity of NPC cells by activating PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Zhen-Qi Qin
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Guang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo-Xian Rong
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Olafson LR, Gunawardena M, Nixdorf S, McDonald KL, Rapkins RW. The role of TP53 gain-of-function mutation in multifocal glioblastoma. J Neurooncol 2020; 147:37-47. [PMID: 32002804 PMCID: PMC7075848 DOI: 10.1007/s11060-019-03318-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022]
Abstract
Purpose The phenotypic and genotypic landscapes in multifocal glioblastoma (MF GBM) cases can vary greatly among lesions. In a MF GBM patient, the rapid development of a secondary lesion was investigated to determine if a unique genetic signature could account for the apparent increased malignancy of this lesion. Methods The primary (G52) and secondary (G53) tumours were resected to develop patient derived models followed by functional assays and multiplatform molecular profiling. Results Molecular profiling revealed G52 was wild-type for TP53 while G53 presented with a TP53 missense mutation. Functional studies demonstrated increased proliferation, migration, invasion and colony formation in G53. Conclusion This data suggests that the TP53 mutation led to gain-of-function phenotypes and resulted in greater overall oncogenic potential of G53. Electronic supplementary material The online version of this article (doi:10.1007/s11060-019-03318-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren R Olafson
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Manuri Gunawardena
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sheri Nixdorf
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kerrie L McDonald
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robert W Rapkins
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
28
|
Djulis ( Chenopodium Formosanum) Prevents Colon Carcinogenesis via Regulating Antioxidative and Apoptotic Pathways in Rats. Nutrients 2019; 11:nu11092168. [PMID: 31509964 PMCID: PMC6769785 DOI: 10.3390/nu11092168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/10/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Djulis is a cereal crop rich in polyphenols and dietary fiber that may have nutraceutical activity to prevent colon cancer. This study was designed to examine the preventive effect of djulis on colon carcinogenesis in rats treated with 1,2-dimethylhydrazine (DMH). Rats were fed different AIN-93G-based diets: groups N and DMH were fed AIN-93G diet and groups LD, MD, and HD were fed AIN-93G diet containing 5, 10, and 20% djulis, respectively. All rats except for group N were injected with DMH to induce colon carcinogenesis. After 10 weeks, rats were sacrificed and colon and liver tissues were collected for analysis. The results showed that djulis-treated rats had significantly lower numbers of colonic preneoplastic lesions, aberrant crypt foci (ACF), sialomucin-producing (SIM)-ACF, and mucin-depleted foci. Djulis treatment increased superoxide dismutase and catalase activities in colon and liver. Djulis also reduced p53, Bcl-2, and proliferating cell nuclear antigen expressions and increased Bax and caspase-9 expressions. Besides, phenolic compounds and flavonoids were found rich in djulis. These results demonstrate the chemopreventive effect of djulis on carcinogen-induced colon carcinogenesis via regulating antioxidative and apoptotic pathways in rats. Djulis may have the potential to be developed as a valuable cereal product for chemoprevention of colon cancer.
Collapse
|
29
|
Abstract
HIV-1 has evolved many strategies to circumvent the host’s antiviral innate immune responses and establishes disseminated infection; the molecular mechanisms of these strategies are not entirely clear. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for clearance. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which supports HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis. Macrophages and dendritic cells dominate early immune responses to lentiviruses. HIV-1 sensing by pathogen recognition receptors induces signaling cascades that culminate in type I alpha/beta interferon (IFN-α/β) induction. IFN-α/β signals back via the IFN-α/β receptors, inducing a plethora of IFN-stimulated gene (ISGs), including ISG15, p53, and p21Cip1. p21 inhibits HIV-1 replication by inactivating the deoxynucleoside triphosphate (dNTP) biosynthesis pathway and activating the restriction factor SAMHD1. p21 is induced by functional p53. ISG15-specific isopeptidase USP18 negatively regulates IFN signaling. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for its degradation. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which enhances HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis.
Collapse
|
30
|
Liu Y, Xu F, Wang Y, Wu Q, Wang B, Yao Y, Zhang Y, Han-Zhang H, Ye J, Zhang L, Mao X, Zhang Z, Liu J, Zhu L, Guo R. Mutations in exon 8 of TP53 are associated with shorter survival in patients with advanced lung cancer. Oncol Lett 2019; 18:3159-3169. [PMID: 31452792 PMCID: PMC6676404 DOI: 10.3892/ol.2019.10625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Abstract
Currently, in clinical settings, all TP53 mutations have been considered equally. However, numerous studies have demonstrated that the position and type of mutation have differential effects on prognosis. Such discrepancy can be partially due to the lack of unifying classification system for TP53 mutations. In the present study, two of the most frequently used systems were compared, according to the location of the mutation or its functional effects on p53 protein and the impact of TP53 mutations on the overall survival (OS) time of 379 Chinese patients with advanced lung cancer was analyzed. Capture-based ultra-deep targeted sequencing on plasma samples of 379 patients with advanced lung cancer was performed. The present results suggested that mutations occurring in exon 8 may be associated with shorter OS in tyrosine kinase inhibitor-naïve patients (P=0.013) and in patients previously treated with one line of treatment (P=0.032). The results of the present study provided solid evidence that not all TP53 mutations were associated with a similar prognosis. Mutations in exon 8 were found in a subgroup of patients with unfavorable prognosis across various treatment histories. To the best of our knowledge, the present study is the first to compare different TP53 mutation classification systems in a large cohort of patients with advanced lung cancer.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fang Xu
- Department of Thoracic Medicine, Hunan Cancer Center and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Buhai Wang
- Department of Medical Oncology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Military Area Command, Nanjing, Jiangsu 210002, P.R. China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210029, P.R. China
| | - Han Han-Zhang
- Burning Rock Biotech, Guangzhou, Guangdong 510300, P.R. China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou, Guangdong 510300, P.R. China
| | - Lu Zhang
- Burning Rock Biotech, Guangzhou, Guangdong 510300, P.R. China
| | - Xinru Mao
- Burning Rock Biotech, Guangzhou, Guangdong 510300, P.R. China
| | - Zhe Zhang
- Burning Rock Biotech, Guangzhou, Guangdong 510300, P.R. China
| | - Jing Liu
- Burning Rock Biotech, Guangzhou, Guangdong 510300, P.R. China
| | - Liangjun Zhu
- Department of Internal Medicine, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Renhua Guo
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
Song P, Zhang F, Li Y, Yang G, Li W, Ying J, Gao S. Concomitant TP53 mutations with response to crizotinib treatment in patients with ALK-rearranged non-small-cell lung cancer. Cancer Med 2019; 8:1551-1557. [PMID: 30843662 PMCID: PMC6488212 DOI: 10.1002/cam4.2043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TP53 mutations are the most prevalent mutations detected in non-small-cell lung cancer (NSCLC) and have been revealed as a negative prognostic biomarker of outcome. The impact of concomitant TP53 mutations in ALK-rearranged NSCLC remains uncertain. METHODS Tumor samples from 64 ALK-rearranged NSCLC patients receiving crizotinib treatment were subjected to next-generation sequencing (NGS) to identify TP53 mutational status. The clinicopathologic features of the TP53 mutations and its impact on the effect of crizotinib treatment were analyzed. RESULTS Among the 64 ALK-rearranged patients, 15 (23.4%) patients showed a TP53 mutation. Of these, six cases had disruptive mutations and nine with nondisruptive mutations. The objective response rate (ORR) and disease control rate (DCR) for TP53 mutated patients were both significantly lower compared with those for TP53 wild-type patients (p = 0.003 and 0.023, respectively). A significantly shorter progression-free survival (PFS) was found in TP53 mutated patients compared with TP53 wild-type patients (p = 0.045). Nondisruptive TP53 mutations were associated with a shorter PFS in comparison with disruptive TP53 mutations in ALK-rearranged patients (p = 0.069). When nondisruptive TP53 mutated patients were in comparison with TP53 wild-type patients, nondisruptive TP53 mutations were associated with a significant reduced PFS (p = 0.003). CONCLUSIONS TP53 mutations, especially nondisruptive mutations, negatively affected the response to crizotinib and correlated with shorter PFS in ALK-rearranged NSCLC patients.
Collapse
Affiliation(s)
- Peng Song
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fanshuang Zhang
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Li
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guangjian Yang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Li
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianming Ying
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shugeng Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
32
|
Hwang LA, Phang BH, Liew OW, Iqbal J, Koh XH, Koh XY, Othman R, Xue Y, Richards AM, Lane DP, Sabapathy K. Monoclonal Antibodies against Specific p53 Hotspot Mutants as Potential Tools for Precision Medicine. Cell Rep 2019; 22:299-312. [PMID: 29298430 DOI: 10.1016/j.celrep.2017.11.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The large number of mutations identified across all cancers represents an untapped reservoir of targets that can be useful for therapeutic targeting if highly selective, mutation-specific reagents are available. We report here our attempt to generate such reagents: monoclonal antibodies against the most common R175H, R248Q, and R273H hotspot mutants of the tumor suppressor p53. These antibodies recognize their intended specific alterations without any cross-reactivity against wild-type (WT) p53 or other p53 mutants, including at the same position (as exemplified by anti-R248Q antibody, which does not recognize the R248W mutation), evaluated by direct immunoblotting, immunoprecipitation, and immunofluorescence methods on transfected and endogenous proteins. Moreover, their clinical utility to diagnose the presence of specific p53 mutants in human tumor microarrays by immunohistochemistry is also shown. Together, the data demonstrate that antibodies against specific single-amino-acid alterations can be generated reproducibly and highlight their utility, which could potentially be extended to therapeutic settings.
Collapse
Affiliation(s)
- Le-Ann Hwang
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Beng Hooi Phang
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore 119228, Singapore
| | - Jabed Iqbal
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Xiao Hui Koh
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Xin Yu Koh
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Rashidah Othman
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Yuezhen Xue
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore.
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Institute of Molecular & Cellular Biology, Singapore 138673, Singapore.
| |
Collapse
|
33
|
Levine AJ. Targeting Therapies for the p53 Protein in Cancer Treatments. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Half of all human cancers contain TP53 mutations, and in many other cancers, the function of the p53 protein is compromised. The diversity of these mutations and phenotypes presents a challenge to the development of drugs that target p53 mutant cancer cells. This review describes the rationale for many different approaches in the development of p53 targeted therapies: ( a) viruses and gene therapies, ( b) increased levels and activity of wild-type p53 proteins in cancer cells, ( c) p53 protein gain-of-function inhibitors, ( d) p53 protein loss-of-function structural correctors, ( e) mutant p53 protein synthetic lethal drugs interfering with the p53 pathway, and ( f) cellular immune responses to mutant p53 protein antigens. As these types of therapies are developed, tested, and evaluated, the best of them will have a significant impact upon cancer treatments and possibly prevention.
Collapse
|
34
|
Cancer therapeutic targeting using mutant-p53-specific siRNAs. Oncogene 2019; 38:3415-3427. [PMID: 30643191 PMCID: PMC6756012 DOI: 10.1038/s41388-018-0652-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/28/2022]
Abstract
Mutations in Tp53 compromise therapeutic response, due either to the dominant-negative effect over the functional wild-type allele; or as a result of the survival advantage conferred by mutant p53 to which cancer cells become addicted. Thus, targeting mutant p53 represents an effective therapeutic strategy to treat over half of all cancers. We have therefore generated a series of small-interfering-RNAs, capable of targeting four p53 hot-spot mutants which represent ~20% of all p53 mutations. These mutant–p53-specific siRNAs (MupSi) are highly specific in silencing the expression of the intended mutants without affecting wild-type p53. Functionally, these MupSis induce cell death by abrogating both the addiction to mutant p53 and the dominant-negative effect; and retard tumor growth in xenografts when administered in a therapeutic setting. These data together demonstrate the possibility of targeting mutant p53 specifically to improve clinical outcome.
Collapse
|
35
|
The p53 Pathway in Glioblastoma. Cancers (Basel) 2018; 10:cancers10090297. [PMID: 30200436 PMCID: PMC6162501 DOI: 10.3390/cancers10090297] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. TP53 is one of the most commonly deregulated genes in cancer. The p53-ARF-MDM2 pathway is deregulated in 84% of glioblastoma (GBM) patients and 94% of GBM cell lines. Deregulated p53 pathway components have been implicated in GBM cell invasion, migration, proliferation, evasion of apoptosis, and cancer cell stemness. These pathway components are also regulated by various microRNAs and long non-coding RNAs. TP53 mutations in GBM are mostly point mutations that lead to a high expression of a gain of function (GOF) oncogenic variants of the p53 protein. These relatively understudied GOF p53 mutants promote GBM malignancy, possibly by acting as transcription factors on a set of genes other than those regulated by wild type p53. Their expression correlates with worse prognosis, highlighting their potential importance as markers and targets for GBM therapy. Understanding mutant p53 functions led to the development of novel approaches to restore p53 activity or promote mutant p53 degradation for future GBM therapies.
Collapse
|
36
|
M JR, S V. BMI1 and PTEN are key determinants of breast cancer therapy: A plausible therapeutic target in breast cancer. Gene 2018; 678:302-311. [PMID: 30096458 DOI: 10.1016/j.gene.2018.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/11/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
BMI-1 (B-lymphoma Mo-MLV insertion region 1) is a key protein partner in polycomb repressive complex 1 (PRC1) that helps in maintaining the integrity of the complex. It is also a key player in ubiquitination of histone H2A which affects gene expression pattern involved in various cellular processes such as cell proliferation, growth, DNA repair, apoptosis and senescence. In many cancers, Overexpression of BMI1correlates with advanced stages of disease, aggressive clinicopathological behavior, poor prognosis resistance to radiation and chemotherapy. BMI1 is emerging as a key player in EMT, chemo-resistance and cancer stemness. Overexpression is observed in various cancer types such as breast, primary hepatocellular carcinoma (HCC), gastric, ovarian, head and neck, pancreatic and lung cancer. Studies have shown that experimental reduction of BMI protein level in tumor cells results in inhibition of cell proliferation, induction of apoptosis and/or senescence, and increases susceptibility to cytotoxic agents and radiation therapy. Thus, inhibition of BMI1 expression particularly in breast cancer stem cells can be used as a potential strategy for the complete elimination of tumor and to prevent disease relapse. On other hand PTEN is known to be an important tumor suppressor next to p53. In many cancers particularly in breast cancer, p53 and PTEN undergo mutations. Studies have indicated the functional and mechanistic link between the BMI-1oncoprotein and tumor suppressor PTEN in the development and progression of cancer. The current review focuses on recent findings of how oncogenicity and chemo-resistance are caused by BMI1. It also highlights the transcriptional regulation between BMI1 and PTEN that dictates the therapeutic outcome in cancers where the functional p53 is absent. Herein, we have clearly demonstrated the regulation of transcription at genomic loci of BMI1 and PTEN in cancerous tissue or cells and the possible epigenetic regulation by histone deacetylase inhibitors (HDACi) at BMI1 and PTEN loci that may provide some clue for the possible therapy against TNBC in near future.
Collapse
Affiliation(s)
- Janaki Ramaiah M
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India.
| | - Vaishnave S
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India
| |
Collapse
|
37
|
Boudreau HE, Ma WF, Korzeniowska A, Park JJ, Bhagwat MA, Leto TL. Histone modifications affect differential regulation of TGFβ- induced NADPH oxidase 4 (NOX4) by wild-type and mutant p53. Oncotarget 2018; 8:44379-44397. [PMID: 28574838 PMCID: PMC5546487 DOI: 10.18632/oncotarget.17892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Previously, we showed wild-type (WT) and mutant (mut) p53 differentially regulate reactive oxygen species (ROS) generation by NADPH oxidase-4 (NOX4): p53-WT suppresses TGFβ-induced NOX4, ROS and cell migration, whereas tumor-associated mut-p53 proteins enhance NOX4 expression and cell migration. Here, we extended our findings on the effects of p53 on NOX4 in several tumors and examined the basis of NOX4 transcriptional regulation by p53 and SMAD3. Statistical analysis of expression data from primary tumors available from The Cancer Genome Atlas (TCGA) detected correlations between mut-p53 and increased NOX4 expression. Furthermore, by altering p53 levels in cell culture models we showed several common tumor-associated mutant forms support TGFβ/SMAD3-dependent NOX4 expression. Deletion analysis revealed two critical SMAD3 binding elements (SBE) required for mut-p53-dependent NOX4 induction, whereas p53-WT caused dose-dependent suppression of NOX4 transcription. ChIP analysis revealed SMAD3 and p53-WT or mut-p53 associate with SBEs and p53 response elements in a TGFβ-dependent manner. Interestingly, the repressive effects of p53-WT on NOX4 were relieved by mutation of its transactivation domain or histone deacetylase (HDAC) inhibitor treatment. Overexpression of p300, a transcriptional co-regulator and histone acetyltransferase (HAT), enhanced p53-mediated NOX4 induction, whereas HAT-inactive p300 reduced NOX4 expression. Mut-p53 augmented TGFβ-stimulated histone acetylation within the NOX4 promoter. Finally, wound assays demonstrated NOX4 and p300 promote TGFβ/mut-p53-mediated cell migration. Our studies provide new insight into TGFβ/SMAD3 and mut-p53-mediated NOX4 induction involving epigenetic control of NOX4 in tumor cell migration, suggesting NOX4 is a potential therapeutic target to combat tumor progression and metastasis.
Collapse
Affiliation(s)
- Howard E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Feng Ma
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan J Park
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Medha A Bhagwat
- Bioinformatics Support Program, National Institutes of Health Library, National Institutes of Health, Maryland, USA
| | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, Wu M. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol 2018; 20:492-502. [DOI: 10.1038/s41556-018-0066-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
|
39
|
Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B, Sabri S. Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget 2018; 7:60245-60269. [PMID: 27533246 PMCID: PMC5312382 DOI: 10.18632/oncotarget.11197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Alterations of the TP53 tumor suppressor gene occur in ~30% of primary glioblastoma (GBM) with a high frequency of missense mutations associated with the acquisition of oncogenic “gain-of-function” (GOF) mutant (mut)p53 activities. PRIMA-1MET/APR-246, emerged as a promising compound to rescue wild-type (wt)p53 function in different cancer types. Previous studies suggested the role of wtp53 in the negative regulation of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), a major determinant in resistance to therapy in GBM treatment. The potential role of MGMT in expression of p53 and the efficacy of PRIMA-1MET with respect to TP53 status and expression of MGMT in GBM remain unknown. We investigated response to PRIMA-1MET of wtp53/MGMT-negative (U87MG, A172), mutp53/MGMT-positive U138, LN-18, T98/Empty vector (T98/EV) and its isogenic MGMT/shRNA gene knockdown counterpart (T98/shRNA). We show that MGMT silencing decreased expression of mutp53/GOF in T98/shRNA. PRIMA-1MET further cleared T98/shRNA cells of mutp53, decreased proliferation and clonogenic potential, abrogated the G2 checkpoint control, increased susceptibility to apoptotic cell death, expression of GADD45A and sustained expression of phosphorylated Erk1/2. PRIMA-1MET increased expression of p21 protein in U87MG and A172 and promoted senescence in U87MG cell line. Importantly, PRIMA-1MET decreased relative cell numbers, disrupted the structure of neurospheres of patient-derived GBM stem cells (GSCs) and enabled activation of wtp53 with decreased expression of MGMT in MGMT-positive GSCs or decreased expression of mutp53. Our findings highlight the cell-context dependent effects of PRIMA-1MET irrespective of p53 status and suggest the role of MGMT as a potential molecular target of PRIMA-1MET in MGMT-positive GSCs.
Collapse
Affiliation(s)
- Mariia Patyka
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zeinab Sharifi
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, McGill University, The Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Jose Mansure
- Department of Urologic Oncology Research, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Jean-Claude
- Department of Medicine, Division of Experimental Medicine, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Siham Sabri
- Department of Oncology, Division of Radiation Oncology, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
40
|
The Relationship between TP53 Gene Status and Carboxylesterase 2 Expression in Human Colorectal Cancer. DISEASE MARKERS 2018; 2018:5280736. [PMID: 29651325 PMCID: PMC5831679 DOI: 10.1155/2018/5280736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/28/2017] [Indexed: 11/26/2022]
Abstract
Irinotecan (CPT-11) is an anticancer prodrug that is activated by the carboxylesterase CES2 and has been approved for the treatment of many types of solid tumors, including colorectal cancer. Recent studies with cell lines show that CES2 expression is regulated by the tumor suppressor protein p53. However, clinical evidence for this regulatory mechanism in cancer is lacking. In this study, we examined the relationship between TP53 gene status and CES2 expression in human colorectal cancer. Most colorectal cancer specimens (70%; 26 of 37) showed lower CES2 mRNA levels (≥1.5-fold lower) than the adjacent normal tissue, and only 30% (12 of 37) showed similar (<1.5-fold lower) or higher CES2 mRNA levels. However, TP53 gene sequencing revealed no relationship between CES2 downregulation and TP53 mutational status. Moreover, while colorectal cancer cells expressing wild-type p53 exhibited p53-dependent upregulation of CES2, PRIMA-1MET, a drug that restores the transcriptional activity of mutant p53, failed to upregulate CES2 expression in cells with TP53 missense mutations. These results, taken together, suggest that CES2 mRNA expression is decreased in human colorectal cancer independently of p53.
Collapse
|
41
|
Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 2017; 15:13-30. [DOI: 10.1038/nrclinonc.2017.151] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
El Baroudi M, Machiels JP, Schmitz S. Expression of SESN1, UHRF1BP1, and miR-377-3p as prognostic markers in mutated TP53 squamous cell carcinoma of the head and neck. Cancer Biol Ther 2017; 18:775-782. [PMID: 28886272 DOI: 10.1080/15384047.2017.1373212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The tumor suppressor gene TP53 is the most frequently mutated gene in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). It represents a known transcription factor that controls different microRNAs (miRNA) and target genes involved in the regulation of cellular stress, apoptosis and response to DNA damage. We used The Cancer Genome Atlas database to investigate the difference in transcriptome and proteome levels between mutated and wild-type TP53 HPV-negative HNSCC. Using different databases and an extensive literature review, we built the transcriptional and post-transcriptional network regulated by TP53. TP53 mutation was associated with poor overall survival in 203 HPV-negative patients compared to 40 patients with TP53 wild-type tumors. Using the enrichment analysis, we found that UHRF1BP1 and SESN1 mRNA were linked to prognosis in the TP53 mutated group. This is also the case for miR-377-3p, an important miRNA regulator of SESN1. Our study shows that SESN1 mRNA, UHRF1BP11 mRNA and miRNA-377-3p levels are prognostically relevant in HPV-negative HNSCC patients. This finding may help with patient stratification and the development of potential new therapeutic targets to treat patients with HNSCC.
Collapse
Affiliation(s)
- Mariama El Baroudi
- a Department of Medical Oncology, Institut de Recherche Expérimentale et Clinique (IREC)-Pole MIRO , Université Catholique de Louvain , Brussels , Belgium
| | - Jean-Pascal Machiels
- a Department of Medical Oncology, Institut de Recherche Expérimentale et Clinique (IREC)-Pole MIRO , Université Catholique de Louvain , Brussels , Belgium.,b Institut Roi Albert II, Department of Medical Oncology and Head and Neck Surgery , Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université catholique de Louvain , Brussels , Belgium
| | - Sandra Schmitz
- a Department of Medical Oncology, Institut de Recherche Expérimentale et Clinique (IREC)-Pole MIRO , Université Catholique de Louvain , Brussels , Belgium.,b Institut Roi Albert II, Department of Medical Oncology and Head and Neck Surgery , Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
43
|
Histone Deacetylase Inhibitor-Induced Autophagy in Tumor Cells: Implications for p53. Int J Mol Sci 2017; 18:ijms18091883. [PMID: 30563957 PMCID: PMC5618532 DOI: 10.3390/ijms18091883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process of the eukaryotic cell allowing degradation and recycling of dysfunctional cellular components in response to either physiological or pathological changes. Inhibition of autophagy in combination with chemotherapeutic treatment has emerged as a novel approach in cancer treatment leading to cell cycle arrest, differentiation, and apoptosis. Suberoyl hydroxamic acid (SAHA) is a broad-spectrum histone deacetylase inhibitor (HDACi) suppressing family members in multiple HDAC classes. Increasing evidence indicates that SAHA and other HDACi can, in addition to mitochondria-mediated apoptosis, also promote caspase-independent autophagy. SAHA-induced mTOR inactivation as a major regulator of autophagy activating the remaining autophagic core machinery is by far the most reported pathway in several tumor models. However, the question of which upstream mechanisms regulate SAHA-induced mTOR inactivation that consequently initiate autophagy has been mainly left unexplored. To elucidate this issue, we recently initiated a study clarifying different modes of SAHA-induced cell death in two human uterine sarcoma cell lines which led to the conclusion that the tumor suppressor protein p53 could act as a molecular switch between SAHA-triggered autophagic or apoptotic cell death. In this review, we present current research evidence about HDACi-mediated apoptotic and autophagic pathways, in particular with regard to p53 and its therapeutic implications.
Collapse
|
44
|
Edwards ZC, Trotter EW, Torres-Ayuso P, Chapman P, Wood HM, Nyswaner K, Brognard J. Survival of Head and Neck Cancer Cells Relies upon LZK Kinase-Mediated Stabilization of Mutant p53. Cancer Res 2017; 77:4961-4972. [PMID: 28760853 DOI: 10.1158/0008-5472.can-17-0267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/14/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes epithelial cancers of the oral and nasal cavity, larynx, and pharynx and accounts for ∼350,000 deaths per year worldwide. Smoking-related HNSCC is associated with few targetable mutations but is defined by frequent copy-number alteration, the most common of which is gain at 3q. Critical 3q target genes have not been conclusively determined for HNSCC. Here, we present data indicating that MAP3K13 (encoding LZK) is an amplified driver gene in HNSCC. Copy-number gain at 3q resulted in increased MAP3K13 mRNA in HNSCC tumor samples and cell lines. Silencing LZK reduced cell viability and proliferation of HNSCC cells with 3q gain but not control cell lines. Inducible silencing of LZK caused near-complete loss of colony-forming ability in cells harboring 3q gain. These results were validated in vivo by evidence that LZK silencing was sufficient to reduce tumor growth in a xenograft model of HNSCC. Our results establish LZK as critical for maintaining expression of mutant stabilized p53. Cancer Res; 77(18); 4961-72. ©2017 AACR.
Collapse
Affiliation(s)
- Zoe C Edwards
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Eleanor W Trotter
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Pedro Torres-Ayuso
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom.,Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland
| | - Phil Chapman
- Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Henry M Wood
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St. James' University Hospital, Leeds, United Kingdom
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland
| | - John Brognard
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom. .,Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
45
|
Tong R, Yang B, Xiao H, Peng C, Hu W, Weng X, Cheng S, Du C, Lv Z, Ding C, Zhou L, Xie H, Wu J, Zheng S. KCTD11 inhibits growth and metastasis of hepatocellular carcinoma through activating Hippo signaling. Oncotarget 2017; 8:37717-37729. [PMID: 28465479 PMCID: PMC5514943 DOI: 10.18632/oncotarget.17145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/29/2017] [Indexed: 02/05/2023] Open
Abstract
A lack of effective prognostic biomarkers and molecular targets is a serious problem in hepatocellular carcinoma. KCTD11, reported as a tumor suppressor, are still not well understood. In this study, KCTD11 was found low-expressed in HCC tissues and cell lines. The HCC patients with low expression of KCTD11 suggested shorter overall survival. We found KCTD11 inhibiting cell proliferation in vitro and tumor growth in vivo, by activating p21 and repressing cycle related proteins. KCTD11 also inhibited cell adhesion by decreasing CTGF and CLDN1. We found CTGF binding COL3A1 in HCCLM3, which might lead to reduction of COL3A1 expression. KCTD11 also inhibited cell migration and invasion in HCC, by repressing MMPs and EMT. We found the tumor suppression function of KCTD11 was at least partly through activating Hippo pathway in HCC. Base on the enhanced Hippo pathway, KCTD11 could activate p21 by stabilizing p53 or promoting the MST1/ GSK3β/p21 signaling in HCC. Overall, these results suggest that KCTD11 works as a tumor suppressor and owns prognostic and therapeutic potentials in HCC.
Collapse
Affiliation(s)
- Rongliang Tong
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Beng Yang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310000, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chuanhui Peng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Wendi Hu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Xiaoyu Weng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Shaobing Cheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Chengli Du
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Zhen Lv
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Chaofeng Ding
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| | - Jian Wu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| | - Shusen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
46
|
R M, P HA, Mahadevan V. HDAC inhibitors show differential epigenetic regulation and cell survival strategies on p53 mutant colon cancer cells. J Biomol Struct Dyn 2017; 36:938-955. [PMID: 28264628 DOI: 10.1080/07391102.2017.1302820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Besides inactivating tumour suppressor activity in cells, mutations in p53 confer significant oncogenic functions and promote metastasis and resistance to anticancer therapy. A variety of therapies involving genetic and epigenetic signalling events regulate tumorogenesis and progression in such cases. Pharmacological interventions with HDAC inhibitors have shown promise in therapy. This work explores the changes in efficacy of the four HDAC inhibitors SAHA, MS-275, valproic acid and sodium butyrate on a panel of colon cancer cell lines - HCT116 (p53 wt), HCT116 p53-/-, HT29 and SW480 (with mutations in p53). Clonogenic assays, gene profiling and epigenetic expression done on these cells point to p53 dependent differential activity of the 4 HDAC inhibitors which also elevate methylation levels in p53 mutant cell lines. In silico modelling establishes the alterations in interactions that lead to such differential activity of valproic acid, one of the inhibitors considered for the work. Molecular Dynamic simulations carried out on the valproic acid complex ensure stability of the complex. This work establishes a p53 dependent epigenetic signalling mechanism triggered by HDAC inhibition expanding the scope of HDAC inhibitors in adjuvant therapy for p53 mutant tumours.
Collapse
Affiliation(s)
- Mahalakshmi R
- a Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur 613401 , India
| | - Husayn Ahmed P
- b Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore 560100 , India
| | - Vijayalakshmi Mahadevan
- a Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur 613401 , India.,b Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore 560100 , India
| |
Collapse
|
47
|
Abstract
The excitement around the entry into the clinic of the first generation of p53-specific drugs has become muted as the hoped-for dramatic clinical responses have not yet been seen. However, these pioneer molecules have become exceptionally powerful tools in the analysis of the p53 pathway and, as a result, a whole spectrum of new interventions are being explored. These include entirely novel and innovative approaches to drug discovery, such as the use of exon-skipping antisense oligonucleotides and T-cell-receptor-based molecules. The extraordinary resources available to the p53 community in terms of reagents, models, and collaborative networks are generating breakthrough approaches to medicines for oncology and also for other diseases in which aberrant p53 signaling plays a role.
Collapse
|
48
|
Pfister NT, Prives C. Transcriptional Regulation by Wild-Type and Cancer-Related Mutant Forms of p53. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026054. [PMID: 27836911 DOI: 10.1101/cshperspect.a026054] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TP53 missense mutations produce a mutant p53 protein that cannot activate the p53 tumor suppressive transcriptional response, which is the primary selective pressure for TP53 mutation. Specific codons of TP53, termed hotspot mutants, are mutated at elevated frequency. Hotspot forms of mutant p53 possess oncogenic properties in addition to being deficient in tumor suppression. Such p53 mutants accumulate to high levels in the cells they inhabit, causing transcriptional alterations that produce pro-oncogenic activities, such as increased pro-growth signaling, invasiveness, and metastases. These forms of mutant p53 very likely use features of wild-type p53, such as interactions with the transcriptional machinery, to produce oncogenic effects. In this review, we discuss commonalities between wild-type and mutant p53 proteins with an emphasis on transcriptional processes.
Collapse
Affiliation(s)
- Neil T Pfister
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
49
|
Bhattacharyya S, Sekar V, Majumder B, Mehrotra DG, Banerjee S, Bhowmick AK, Alam N, Mandal GK, Biswas J, Majumder PK, Murmu N. CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell Oncol (Dordr) 2016; 40:145-155. [PMID: 28039610 DOI: 10.1007/s13402-016-0311-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The tumor suppressor protein p53 is known to control cell cycle arrest and apoptosis. Lupeol is a phytochemical that has been found to induce apoptosis in different cancer types through the extrinsic pathway. As yet, however, its role in the induction of cell cycle arrest and apoptosis through the intrinsic pathway in head and neck cancer has not been investigated. Here, we aimed at understanding the mechanism underlying the antitumor effect of Lupeol in head and neck cancer. METHODS The antitumor effect of Lupeol on oral and laryngeal carcinomas was assessed using two in vitro 2D cell line models (HEp-2, UPCI:SCC-131) and, subsequently, an ex vivo 3D tumor explant culture platform that maintains key features of the native tumor microenvironment. The mechanism underlying Lupeol-mediated antitumor responses was delineated using MTT, colony formation, flow cytometry, immunofluorescence, Western blotting and immunohistochemistry assays. RESULTS We found that Lupeol induced an enhanced expression of p53 in both cell line models tested and, subsequently, cell cycle arrest at the G1 phase. In addition we found that, following Lupeol treatment, p53 induced Bax expression and activated the intrinsic apoptotic pathway (as measured by Caspase-3 cleavage). Interestingly, Lupeol was also found to trigger G1 cell cycle arrest through up-regulation of the expression of CDKN2A, but not p21, resulting in inhibition of CyclinD1. In an ex vivo platform Lupeol was found to impart a potent antitumor response as defined by inhibition of Ki67 expression, decreased cell viability and concomitant activation (cleavage) of Caspase-3. Finally, we found that Lupeol can re-sensitize primary head and neck squamous cell carcinoma (HNSCC) tumor samples that had clinically progressed under a Cisplatin treatment regimen. CONCLUSION Together, our data indicate that Lupeol may orchestrate a bifurcated regulation of neoplastic growth and apoptosis in head and neck cancers and may serve as a promising agent for the management of tumors that have progressed on a platinum-based treatment regimen.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Vasanthakumar Sekar
- Department of Molecular Pathology and Cancer Biology, Mitra Biotech, 202, Narayana Nethralaya, Hosur Main Road, Bangalore, 560099, India
| | - Biswanath Majumder
- Department of Molecular Pathology and Cancer Biology, Mitra Biotech, 202, Narayana Nethralaya, Hosur Main Road, Bangalore, 560099, India
| | - Debapriya G Mehrotra
- Department of Molecular Pathology and Cancer Biology, Mitra Biotech, 202, Narayana Nethralaya, Hosur Main Road, Bangalore, 560099, India
| | - Samir Banerjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anup K Bhowmick
- Department of ENT, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Gautam K Mandal
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Jaydip Biswas
- Department of Translation Research, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | | | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
50
|
Iyer SV, Parrales A, Begani P, Narkar A, Adhikari AS, Martinez LA, Iwakuma T. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities. Oncotarget 2016; 7:5401-15. [PMID: 26700961 PMCID: PMC4868694 DOI: 10.18632/oncotarget.6634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022] Open
Abstract
Many p53 hotspot mutants not only lose the transcriptional activity, but also show dominant-negative (DN) and oncogenic gain-of-function (GOF) activities. Increasing evidence indicates that knockdown of mutant p53 (mutp53) in cancer cells reduces their aggressive properties, suggesting that survival and proliferation of cancer cells are, at least partially, dependent on the presence of mutp53. However, these p53 siRNAs can downregulate both wild-type p53 (wtp53) and mutp53, which limits their therapeutic applications. In order to specifically deplete mutp53, we have developed allele-specific siRNAs against p53 hotspot mutants and validated their biological effects in the absence or presence of wtp53. First, the mutp53-specific siRNAs selectively reduced protein levels of matched p53 mutants with minimal reduction in wtp53 levels. Second, downregulation of mutp53 in cancer cells expressing a mutp53 alone (p53mut) resulted in significantly decreased cell proliferation and migration. Third, transfection of mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53 also reduced cell proliferation and migration with increased transcripts of p53 downstream target genes, which became further profound when cells were treated with an MDM2 inhibitor Nutlin-3a or a chemotherapeutic agent doxorubicin. These results indicate that depletion of mutp53 by its specific siRNA restored endogenous wtp53 activity in cells expressing both wtp53 and mutp53. This is the first study demonstrating biological effects and therapeutic potential of allele-specific silencing of mutp53 by mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53, thus providing a novel strategy towards targeted cancer therapies.
Collapse
Affiliation(s)
- Swathi V Iyer
- Department of Cancer Biology, The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alejandro Parrales
- Department of Cancer Biology, The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Priya Begani
- Department of Cancer Biology, The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Akshay Narkar
- Department of Cancer Biology, The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amit S Adhikari
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Luis A Martinez
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, NY, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|