1
|
Gong X, Fan J, Huang H, Xu F, Hu K, Liu J, Tan Y, Chen F. Plasma Metabolic Profiles of Chronic and Recurrent Uveitis Treated by Artesunate in Lewis Rats. Biomedicines 2025; 13:821. [PMID: 40299394 PMCID: PMC12025074 DOI: 10.3390/biomedicines13040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the plasma metabolic profile of recurrent autoimmune uveitis remains unclear. This study aims to explore the effect of ART on the plasma metabolic features of recurrent experimental autoimmune uveitis (EAU) in a Lewis rat. Methods: Rats were clinically and pathologically evaluated for the development of recurrent EAU induced by inter-photoreceptor retinoid-binding protein (IRBP) R16 peptide-specific T-cells (tEAU). The disruptive effects of ART on tEAU were investigated to evaluate the potential role of rat recurrent EAU. Differentially expressed metabolites were identified in the plasma of rats by untargeted metabolomics analysis after ART treatment. The differential metabolites were applied to subsequent pathway analysis and biomarker analysis by MetaboAnalyst. Results: ART can significantly alleviate the severity of clinical signs and pathological injuries of eyeballs with tEAU. Both non-supervised principal component analysis and orthogonal partial least-squares discriminant analysis showed 84 differential metabolites enriched in 16 metabolic pathways in the tEAU group compared with heathy controls and 51 differential metabolites enriched in 17 metabolic pathways, including arginine and proline metabolism, alanine metabolism, and aminoacyl-tRNA biosynthesis, in the ART-treated group compared with the tEAU group. Particularly, upregulated L-alanine levels in both alanine metabolism and aminoacyl-tRNA biosynthesis were associated with T-cell activation, while elevated spermidine and N-acetyl putrescine levels in arginine and proline metabolism related to T-cell differentiation proved to be valuable biomarkers for ART treatment. Conclusions: Our study demonstrates that ART treatment can alleviate recurrent uveitis by altering the plasma metabolic characteristics associated with T-cell activation and differentiation, which might provide novel insights for potential therapeutic treatments.
Collapse
Affiliation(s)
- Xinyi Gong
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Jingchuan Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China;
| | - Hui Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Fei Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Kaijiao Hu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Jianping Liu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China;
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| | - Feilan Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (X.G.); (H.H.); (F.X.); (K.H.)
- Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing 400016, China
| |
Collapse
|
2
|
Radecki AA, Fantasia-Davis A, Maldonado JS, Mann JW, Sepulveda-Camacho S, Morosky P, Douglas J, Vargas-Rodriguez O. Coexisting bacterial aminoacyl-tRNA synthetase paralogs exhibit distinct phylogenetic backgrounds and functional compatibility with Escherichia coli. IUBMB Life 2024; 76:1139-1153. [PMID: 39417753 DOI: 10.1002/iub.2920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are universally essential enzymes that synthesize aminoacyl-tRNA substrates for protein synthesis. Although most organisms require a single aaRS gene for each proteinogenic amino acid to translate their genetic information, numerous species encode multiple gene copies of an aaRS. Growing evidence indicates that organisms acquire extra aaRS genes to sustain or adapt to their unique lifestyle. However, predicting and defining the function of repeated aaRS genes remains challenging due to their potentially unique physiological role in the host organism and the inconsistent annotation of repeated aaRS genes in the literature. Here, we carried out comparative, phylogenetic, and functional studies to determine the activity of coexisting paralogs of tryptophanyl-, tyrosyl-, seryl-, and prolyl-tRNA synthetases encoded in several human pathogenic bacteria. Our analyses revealed that, with a few exceptions, repeated aaRSs involve paralogous genes with distinct phylogenetic backgrounds. Using a collection of Escherichia coli strains that enabled the facile characterization of aaRS activity in vivo, we found that, in almost all cases, one aaRS displayed transfer RNA (tRNA) aminoacylation activity, whereas the other was not compatible with E. coli. Together, this work illustrates the challenges of identifying, classifying, and predicting the function of aaRS paralogs and highlights the complexity of aaRS evolution. Moreover, these results provide new insights into the potential role of aaRS paralogs in the biology of several human pathogens and foundational knowledge for the investigation of the physiological role of repeated aaRS paralogs across bacteria.
Collapse
Affiliation(s)
- Alexander A Radecki
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ariana Fantasia-Davis
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Juan S Maldonado
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Joshua W Mann
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | | | - Pearl Morosky
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jordan Douglas
- Department of Physics, University of Auckland, Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Song Y, Zhou X, Zhao H, Zhao W, Sun Z, Zhu J, Yu Y. Characterizing the role of the microbiota-gut-brain axis in cerebral small vessel disease: An integrative multi‑omics study. Neuroimage 2024; 303:120918. [PMID: 39505226 DOI: 10.1016/j.neuroimage.2024.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Prior efforts have revealed changes in gut microbiome, circulating metabolome, and multimodal neuroimaging features in cerebral small vessel disease (CSVD). However, there is a paucity of research integrating the multi-omic information to characterize the role of the microbiota-gut-brain axis in CSVD. METHODS We collected gut microbiome, fecal and blood metabolome, multimodal magnetic resonance imaging data from 37 CSVD patients with white matter hyperintensities and 46 healthy controls. Between-group comparison was performed to identify the differential gut microbial taxa, followed by performance of multi-stage microbiome-metabolome-neuroimaging-neuropsychology correlation analyses in CSVD patients. RESULTS Our data showed both depleted and enriched gut microbes in CSVD patients. Among the differential microbes, Haemophilus and Akkermansia were associated with a range of metabolites enriched for Aminoacyl-tRNA biosynthesis pathway. Furthermore, the affected metabolites were associated with neuroimaging measures involving gray matter morphology, spontaneous intrinsic brain activity, white matter integrity, and global structural network topology, which were in turn related to cognition and emotion in CSVD patients. CONCLUSION Our findings provide an integrative framework to understand the pathophysiological mechanisms underlying the interplay between gut microbiota dysbiosis and CSVD, highlighting the potential of targeting the microbiota-gut-brain axis as a therapeutic strategy in CSVD patients.
Collapse
Affiliation(s)
- Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China.
| |
Collapse
|
4
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024; 76:505-522. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
5
|
Wang YJ, Zhou X, Zhang MM, Liu MH, Ding N, Wu QF, Lei CR, Dong ZY, Ren JL, Zhao JR, Jia CL, Liu J, Zhou B, Lu D. Physiological and biochemical characteristics of the carbon ion beam irradiation-generated mutant strain Clostridium butyricum FZM 240 in vitro and in vivo. Enzyme Microb Technol 2024; 178:110447. [PMID: 38626534 DOI: 10.1016/j.enzmictec.2024.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China.
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070, China
| | - Mei-Han Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Zi-Yi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jun-Le Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jing-Ru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cheng-Lin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jun Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China; Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070, China.
| |
Collapse
|
6
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
7
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
8
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
9
|
Kleikamp HBC, Palacios PA, Kofoed MVW, Papacharalampos G, Bentien A, Nielsen JL. The Selenoproteome as a Dynamic Response Mechanism to Oxidative Stress in Hydrogenotrophic Methanogenic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6637-6646. [PMID: 38580315 PMCID: PMC11025550 DOI: 10.1021/acs.est.3c07725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.
Collapse
Affiliation(s)
- Hugo B. C. Kleikamp
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Paola A. Palacios
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Michael V. W. Kofoed
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Georgios Papacharalampos
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Anders Bentien
- Department
of Biological and Chemical Engineering, Aarhus University, Åbogade 40, 8200 Aarhus, Denmark
| | - Jeppe L. Nielsen
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
10
|
Qu R, Chen M, Liu J, Xie Q, Liu N, Ge F. Blockage of ATPase-mediated energy supply inducing metabolic disturbances in algal cells under silver nanoparticles stress. J Environ Sci (China) 2023; 131:141-150. [PMID: 37225375 DOI: 10.1016/j.jes.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 05/26/2023]
Abstract
Adenosine triphosphate (ATP) generation of aquatic organisms is often subject to nanoparticles (NPs) stress, involving extensive reprogramming of gene expression and changes in enzyme activity accompanied by metabolic disturbances. However, little is known about the mechanism of energy supply by ATP to regulate the metabolism of aquatic organisms under NPs stress. Here, we selected extensively existing silver nanoparticles (AgNPs) to investigate their implications on ATP generation and relevant metabolic pathways in alga (Chlorella vulgaris). Results showed that ATP content significantly decreased by 94.2% of the control (without AgNPs) in the algal cells at 0.20 mg/L AgNPs, which was mainly attributed to the reduction of chloroplast ATPase activity (81.4%) and the downregulation of ATPase-coding genes atpB and atpH (74.5%-82.8%) in chloroplast. Molecular dynamics simulations demonstrated that AgNPs competed with the binding sites of substrates adenosine diphosphate and inorganic phosphate by forming a stable complex with ATPase subunit beta, potentially resulting in the reduced binding efficiency of substrates. Furthermore, metabolomics analysis proved that the ATP content positively correlated with the content of most differential metabolites such as D-talose, myo-inositol, and L-allothreonine. AgNPs remarkably inhibited ATP-involving metabolic pathways, including inositol phosphate metabolism, phosphatidylinositol signaling system, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and glutathione metabolism. These results could provide a deep understanding of energy supply in regulating metabolic disturbances under NPs stress.
Collapse
Affiliation(s)
- Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mi Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China..
| |
Collapse
|
11
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Oliveira Pereira EA, Labine LM, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Daphnia magna sub-lethal exposure to phthalate pollutants elicits disruptions in amino acid and energy metabolism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106432. [PMID: 36841068 DOI: 10.1016/j.aquatox.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phthalic acid esters (PAEs) are a class of chemicals that are usually incorporated as additives in the manufacturing of plastics. PAEs are not covalently bound to the material matrix and can, consequently, be leached into the environment. PAEs have been reported to act as endocrine disruptors, neurotoxins, metabolic stressors, and immunotoxins to aquatic organisms but there is a lack of information regarding the impact of sub-lethal concentrations to target organisms. The freshwater crustacean Daphnia magna, a commonly used model organism in aquatic toxicity, was exposed to four phthalate pollutants: dimethyl phthalate (DMP), diethyl phthalate (DEP), monomethyl phthalate (MMP), and monoethyl phthalate (MEP). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in a targeted metabolomic approach to quantify polar metabolites extracted from a single Daphnia body. Individual metabolite percent changes and hierarchical clustering heatmap analysis showed unique metabolic profiles for each phthalate pollutant. Metabolite percent changes were mostly downregulated or presented opposing responses for the low and high concentrations tested. Meanwhile, pathway analyses suggest the disruption of related and unique pathways, mostly connected with amino acid and energy metabolism. The pathways aminoacyl-tRNA biosynthesis, arginine biosynthesis, and glutathione metabolism were disrupted by most selected PAEs. Overall, this study indicates that although phthalate pollutants can elicit distinct metabolic perturbations to each PAE, they still impacted related biochemical pathways. These chemical-class based responses could be associated with a common toxic mechanism of action. The reported findings show how targeted metabolomic approaches can lead to a better understanding of sub-lethal exposure to pollutants, revealing metabolomic endpoints do not hold a close relationship with traditional acute toxicity endpoints.
Collapse
Affiliation(s)
- Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Lisa M Labine
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
13
|
Mani K, Vitenberg T, Ben-Mordechai L, Schweitzer R, Opatovsky I. Comparative untargeted metabolic analysis of natural- and laboratory-reared larvae of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110851. [PMID: 37001582 DOI: 10.1016/j.cbpb.2023.110851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
In the present study, we examined the metabolic composition of black soldier fly (BSF) larvae from natural populations (Ruhama: R and She'ar Yashuv: S) and from a laboratory-reared colony (C) using untargeted metabolomics analysis. The results revealed significant over-accumulation of metabolites from phenylalanine and purine metabolism and biosynthesis of phenylalanine, tyrosine and tryptophan, and arginine in both natural populations, and enriched pathway analysis, compared to the laboratory-reared colony. In addition, we found accumulation of glutathione metabolism and aminoacyl tRNA biosynthesis related metabolites in R, and linoleic acid and tryptophan metabolism related metabolites in S. Moreover, we found down-accumulation of metabolites belonging to alanine, aspartate and glutamate metabolism in both natural populations: amino sugar and nucleotide sugar metabolism only in the R population and aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism only in the S population. Overall, the results suggest that the naturally growing larvae require large quantities of metabolites from aromatic amino acids (phenylalanine, tyrosine and tryptophan) for defense against pathogens under natural conditions e.g., melanization. In addition, glutathione metabolites help the BSF to survive under oxidative stress. Further study of the functional metabolomics of naturally growing and laboratory-reared larvae could provide a platform for better understanding of BSF larval survival mechanisms in complex environments.
Collapse
Affiliation(s)
- Kannan Mani
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, 1 Tarshish Street, P.O.B. 831, Kiryat Shmona 11016, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, 1220800, Israel
| | - Tzach Vitenberg
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, 1 Tarshish Street, P.O.B. 831, Kiryat Shmona 11016, Israel
| | - Lilach Ben-Mordechai
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, 1 Tarshish Street, P.O.B. 831, Kiryat Shmona 11016, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, 1220800, Israel
| | - Ron Schweitzer
- Analytical Chemistry Laboratory, Tel-Hai Academic College, Upper Galilee, Israel
| | - Itai Opatovsky
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, 1 Tarshish Street, P.O.B. 831, Kiryat Shmona 11016, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, 1220800, Israel.
| |
Collapse
|
14
|
Meng K, Chung CZ, Söll D, Krahn N. Unconventional genetic code systems in archaea. Front Microbiol 2022; 13:1007832. [PMID: 36160229 PMCID: PMC9499178 DOI: 10.3389/fmicb.2022.1007832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Archaea constitute the third domain of life, distinct from bacteria and eukaryotes given their ability to tolerate extreme environments. To survive these harsh conditions, certain archaeal lineages possess unique genetic code systems to encode either selenocysteine or pyrrolysine, rare amino acids not found in all organisms. Furthermore, archaea utilize alternate tRNA-dependent pathways to biosynthesize and incorporate members of the 20 canonical amino acids. Recent discoveries of new archaeal species have revealed the co-occurrence of these genetic code systems within a single lineage. This review discusses the diverse genetic code systems of archaea, while detailing the associated biochemical elements and molecular mechanisms.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Krahn N, Söll D, Vargas-Rodriguez O. Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Front Physiol 2022; 13:983245. [PMID: 36060688 PMCID: PMC9437257 DOI: 10.3389/fphys.2022.983245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Dang JT, Mocanu V, Park H, Laffin M, Hotte N, Karmali S, Birch DW, Madsen KL. Roux-en-Y gastric bypass and sleeve gastrectomy induce substantial and persistent changes in microbial communities and metabolic pathways. Gut Microbes 2022; 14:2050636. [PMID: 35316158 PMCID: PMC8942407 DOI: 10.1080/19490976.2022.2050636] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bariatric surgery induces significant microbial and metabolomic changes, however, links between microbial and metabolic pathways have not been fully elucidated. The objective of this study was to conduct a comprehensive investigation of the microbial, metabolomic, and inflammatory changes that occur following Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). A prospective clinical trial was conducted with participants undergoing RYGB, SG, and non-operative controls (CTRL). Clinical parameters, blood samples, and fecal samples were collected pre-intervention and at 3 and 9 months. A multi-omics approach was used to perform integrated microbial-metabolomic analysis to identify functional pathways in which weight loss and metabolic changes occur after surgery. RYGB led to profound microbial changes over time that included reductions in alpha-diversity, increased Proteobacteria and Verrucomicrobiota, decreased Firmicutes, and numerous changes at the genera level. These changes were associated with a reduction in inflammation and significant weight loss. A reduction in Romboutsia genera correlated strongly with weight loss and integrated microbial-metabolomic analysis revealed the importance of Romboutsia. Its obliteration correlated with improved weight loss and insulin resistance, possibly through decreases in glycerophospholipids. In contrast, SG was associated with no changes in alpha-diversity, and only a small number of changes in microbial genera. A cluster of Firmicutes genera including Butyriciccocus, Eubacterium ventriosum, and Monoglobus was decreased, which correlated with decreased weight, insulin resistance, and systemic inflammation. This work represents comprehensive analyses of microbial-metabolomic changes that occur following bariatric surgery and identifies several pathways that are associated with beneficial metabolic effects of surgery.
Collapse
Affiliation(s)
- Jerry T. Dang
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada,CONTACT Jerry T. Dang Division of General Surgery, Department of Surgery, University of Alberta, University of Alberta Hospital, 8440 112 Street NW, Edmonton, AB, CanadaT6G 2B7
| | - Valentin Mocanu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Heekuk Park
- Department of Medicine, Columbia University, New York, New York, USA
| | - Michael Laffin
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shahzeer Karmali
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel W. Birch
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
18
|
Chen X, Dong JN, Rong JY, Xiao J, Zhao W, Aschalew ND, Zhang XF, Wang T, Qin GX, Sun Z, Zhen YG. Impact of heat stress on milk yield, antioxidative levels, and serum metabolites in primiparous and multiparous Holstein cows. Trop Anim Health Prod 2022; 54:159. [PMID: 35419715 DOI: 10.1007/s11250-022-03159-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to access the effect of heat stress on milk yield, antioxidative levels, and serum metabolites in primiparous and multiparous Holstein dairy cows during the early lactation stage. A total of 200 cows were selected based on their month of calving (June, temperature humidity index (THI) = 66.72; July, THI = 70.30; August, THI = 69.32; September, THI = 67.20; October, THI = 59.45). Blood samples were collected on days 0, 21, 50, 80, and 100 after calving for serum oxidative status analysis and milk yield was recorded daily. The lower average daily milk yield was recorded among the cows that calved in June and July (P < 0.05), and the average daily milk yield of multiparous cows was higher than that of primiparous cows that calved in the same month (P < 0.05) from d1 to d100, suggesting that seasonal (June, July) heat stress negatively affected milk yield in both primiparous and multiparous cows at early lactation. The study also indicated that there was seasonal variation in most of the serum metabolites across the studied months. The study shows that heat stress (average THI = 70.30) was higher among the cows calving in June vis-à-vis those calving in October and differences were also observed among the primiparous cows and multiparous cows, respectively. These metabolites (e.g., glycine, serine, etc.) which showed significant variations were mainly involved in the pathways of aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, and the metabolism of glycine, serine and threonine. These data suggested that heat stress negatively affected the elevation of the serum oxidative and antioxidative index and thus badly influence milk yield. Metabolic biomarkers in serum associated with heat stress could be a reliable way to identify heat stress of primiparas and multiparas dairy cows.
Collapse
Affiliation(s)
- Xue Chen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jia Nan Dong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Ji Ye Rong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jun Xiao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Wei Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Natnael D Aschalew
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xue Feng Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Gui Xin Qin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Zhe Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,College of Life Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Feed Engineering Technology Research Center of Jilin Province, Postdoctoral Scientific Research Workstation, Changchun Borui Science & Technology Co, Ltd, Changchun, 130118, People's Republic of China.
| | - Yu Guo Zhen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Feed Engineering Technology Research Center of Jilin Province, Postdoctoral Scientific Research Workstation, Changchun Borui Science & Technology Co, Ltd, Changchun, 130118, People's Republic of China.
| |
Collapse
|
19
|
Li Q, Zhou Y, Lu R, Zheng P, Wang Y. Phylogeny, distribution and potential metabolism of candidate bacterial phylum KSB1. PeerJ 2022; 10:e13241. [PMID: 35433121 PMCID: PMC9012183 DOI: 10.7717/peerj.13241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/18/2022] [Indexed: 01/13/2023] Open
Abstract
Candidate phylum KSB1 is composed of uncultured bacteria and has been reported across various environments. However, the phylogeny and metabolic potential of KSB1 have not been studied comprehensively. In this study, phylogenomic analysis of KSB1 genomes from public databases and eleven metagenome-assembled genomes (MAGs) from marine and hydrothermal sediments revealed that those genomes were clustered into four clades. Isolation source and relative abundance of KSB1 genomes showed that clade I was particularly abundant in bioreactor sludge. Genes related to dissimilatory reduction of nitrate to ammonia (DNRA), the last step of denitrification converting nitrous oxide to nitrogen and assimilatory sulfur reduction were observed in the expanded genomes of clade I, which may due to horizontal gene transfer that frequently occurred in bioreactor. Annotation and metabolic reconstruction of clades II and IV showed flagellum assembly and chemotaxis genes in the genomes, which may indicate that exploration and sensing for nutrients and chemical gradients are critical for the two clades in deep-sea and hydrothermal sediment. Metabolic potentials of fatty acids and short-chain hydrocarbons utilization were predicted in clades I and IV of KSB1. Collectively, phylogenomic and metabolic analyses of KSB1 clades provide insight into their anaerobic heterotrophic lifestyle and differentiation in potential ecological roles.
Collapse
Affiliation(s)
- Qingmei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yingli Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Lu
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Zheng
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
20
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Lin H, Chen S, Shen L, Hu T, Cai J, Zhan S, Liang J, Huang M, Xian M, Wang S. Integrated Analysis of the Cecal Microbiome and Plasma Metabolomics to Explore NaoMaiTong and Its Potential Role in Changing the Intestinal Flora and Their Metabolites in Ischemic Stroke. Front Pharmacol 2022; 12:773722. [PMID: 35126115 PMCID: PMC8811223 DOI: 10.3389/fphar.2021.773722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS), as a leading cause of disability worldwide, affects intestinal bacterial communities and their metabolites, while recent discoveries have highlighted the importance of the intestinal microflora in the development of IS. Systematic investigations of complex intestinal bacterial communities and their metabolites during ischemic brain injury contribute to elucidate the promising therapeutic targets for IS. However, the associations between intestinal microbiota and related circulating metabolic processes in IS remained unclear. Hence, to identify the changed microflora and their metabolites in IS of NaoMaiTong (NMT), an effective clinical medication, we established the middle cerebral artery occlusion/reperfusion (MCAO/R) model using conventionalized and pseudo-germ-free (PGF) rats. Subsequently, we systematically screen the microflora and related metabolites changing in IS via an integrated approach of cecal 16S rRNA sequencing combined with plasma metabolomics. We found that NMT relied on intestinal flora to improve stroke outcome in conventionalized rats while the protection of NMT was reduced in PGF rats. Total 35 differential bacterial genera and 26 differential microbial metabolites were regulated by NMT. Furthermore, L-asparagine and indoleacetaldehyde were significantly negatively correlated with Lachnospiraceae_UCG.001 and significantly positively correlated with Lachnoclostridium. Indoleacetaldehyde also presented a negative correlation with Lactobacillus and Bifidobacterium. 2-Hydroxybutyric acid was strongly negatively correlated with Ruminococcus, Lachnospiraceae_UCG.001 and Lachnospiraceae_UCG.006. Creatinine was strongly negatively correlated with Akkermansia. In summary, the research provided insights into the intricate interaction between intestinal microbiota and metabolism of NMT in IS. We identified above differential bacteria and differential endogenous metabolites which could be as prebiotic and probiotic substances that can influence prognosis in stroke and have potential to be used as novel therapeutic targets or exogenous drug supplements.
Collapse
Affiliation(s)
- Huiting Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shaoru Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiale Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sikai Zhan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayin Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingmin Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghua Xian
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Minghua Xian, ; Shumei Wang,
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Minghua Xian, ; Shumei Wang,
| |
Collapse
|
22
|
Mukai T, Amikura K, Fu X, Söll D, Crnković A. Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems. Front Genet 2022; 12:794509. [PMID: 35047015 PMCID: PMC8762117 DOI: 10.3389/fgene.2021.794509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Universally present aminoacyl-tRNA synthetases (aaRSs) stringently recognize their cognate tRNAs and acylate them with one of the proteinogenic amino acids. However, some organisms possess aaRSs that deviate from the accurate translation of the genetic code and exhibit relaxed specificity toward their tRNA and/or amino acid substrates. Typically, these aaRSs are part of an indirect pathway in which multiple enzymes participate in the formation of the correct aminoacyl-tRNA product. The indirect cysteine (Cys)-tRNA pathway, originally thought to be restricted to methanogenic archaea, uses the unique O-phosphoseryl-tRNA synthetase (SepRS), which acylates the non-proteinogenic amino acid O-phosphoserine (Sep) onto tRNACys. Together with Sep-tRNA:Cys-tRNA synthase (SepCysS) and the adapter protein SepCysE, SepRS forms a transsulfursome complex responsible for shuttling Sep-tRNACys to SepCysS for conversion of the tRNA-bound Sep to Cys. Here, we report a comprehensive bioinformatic analysis of the diversity of indirect Cys encoding systems. These systems are present in more diverse groups of bacteria and archaea than previously known. Given the occurrence and distribution of some genes consistently flanking SepRS, it is likely that this gene was part of an ancient operon that suffered a gradual loss of its original components. Newly identified bacterial SepRS sequences strengthen the suggestion that this lineage of enzymes may not rely on the m1G37 identity determinant in tRNA. Some bacterial SepRSs possess an N-terminal fusion resembling a threonyl-tRNA synthetase editing domain, which interestingly is frequently observed in the vicinity of archaeal SepCysS genes. We also found several highly degenerate SepRS genes that likely have altered amino acid specificity. Cross-analysis of selenocysteine (Sec)-utilizing traits confirmed the co-occurrence of SepCysE and the Sec-utilizing machinery in archaea, but also identified an unusual O-phosphoseryl-tRNASec kinase fusion with an archaeal Sec elongation factor in some lineages, where it may serve in place of SepCysE to prevent crosstalk between the two minor aminoacylation systems. These results shed new light on the variations in SepRS and SepCysS enzymes that may reflect adaptation to lifestyle and habitat, and provide new information on the evolution of the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
23
|
Oliveira Pereira EA, Labine LM, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Metabolomics Reveals That Bisphenol Pollutants Impair Protein Synthesis-Related Pathways in Daphnia magna. Metabolites 2021; 11:metabo11100666. [PMID: 34677381 PMCID: PMC8540811 DOI: 10.3390/metabo11100666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bisphenols are used in the production of polycarbonate plastics and epoxy resins. Bisphenol A (BPA) has been widely studied and is believed to act as an endocrine disruptor. Bisphenol F (BPF) and bisphenol S (BPS) have increasingly been employed as replacements for BPA, although previous studies suggested that they yield similar physiological responses to several organisms. Daphnia magna is a common model organism for ecotoxicology and was exposed to sub-lethal concentrations of BPA, BPF, and BPS to investigate disruption to metabolic profiles. Targeted metabolite analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to measure polar metabolites extracted from D. magna, which are linked to a range of biochemical pathways. Multivariate analyses and individual metabolite changes showed similar non-monotonic concentration responses for all three bisphenols (BPA, BPF, and BPS). Pathway analyses indicated the perturbation of similar and distinct pathways, mostly associated with protein synthesis, amino acid metabolism, and energy metabolism. Overall, we observed responses that can be linked to a chemical class (bisphenols) as well as distinct responses that can be related to each individual bisphenol type (A, F, and S). These findings further demonstrate the need for using metabolomic analyses in exposure assessment, especially for chemicals within the same class which may disrupt the biochemistry uniquely at the molecular-level.
Collapse
Affiliation(s)
- Erico A. Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (E.A.O.P.); (L.M.L.); (A.J.S.)
| | - Lisa M. Labine
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (E.A.O.P.); (L.M.L.); (A.J.S.)
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada;
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada;
| | - André J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (E.A.O.P.); (L.M.L.); (A.J.S.)
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (E.A.O.P.); (L.M.L.); (A.J.S.)
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
- Correspondence: ; Tel.: +1-416-287-7234
| |
Collapse
|
24
|
Zhang J, Lu Z, Ren T, Cong R, Lu J, Li X. Metabolomic and Transcriptomic Changes Induced by Potassium Deficiency During Sarocladium oryzae Infection Reveal Insights into Rice Sheath Rot Disease Resistance. RICE (NEW YORK, N.Y.) 2021; 14:81. [PMID: 34533651 PMCID: PMC8448798 DOI: 10.1186/s12284-021-00524-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 05/31/2023]
Abstract
Rice sheath rot disease caused by Sarocladium oryzae (S. oryzae) infection is an emerging disease, and infection can cause yield losses of 20-85%. Adequate potassium (K) application is a feasible strategy for rice tolerance to S. oryzae infection. However, little is known about the metabolic mechanisms regulated by K that allow rice to cope better with S. oryzae infection. The present study performed a comparative metabolome and transcriptome analysis of rice with different K nutrition statuses before and upon S. oryzae infection. Sarocladium oryzae infection triggered a hydrogen peroxide (H2O2) burst, and K starvation aggravated the accumulation of H2O2 in the flag leaf sheath (FLS), which resulted in lipid peroxidation. Likewise, K deficiency altered the lipid homeostasis of the host plants by hyperaccumulation of 1-alkyl-2-acylglycerophosphoethanolamine. K starvation decreased the content of glycoglycerolipids including monogalactosyldiacyglycerol and digalactosyldoacylglycerol during S. oryzae infection, which destroyed the stability of bilayer membranes. In contrast, sufficient K supply increased antioxidant-related transcript expression (for example, the genes related to glutathione-S-transferase biosynthesis were upregulated), which activated the antioxidant systems. Additionally, upon S. oryzae infection, K starvation amplified the negative impacts of S. oryzae infection on flag leaf photosynthetic potential. These results provide new insight into the role of K in alleviating S. oryzae infection. Adequate K supply decreased the negative impacts of sheath rot disease on rice growth by alleviating lipid peroxidation and maintaining lipid homeostasis.
Collapse
Affiliation(s)
- Jianglin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhifeng Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
| |
Collapse
|
25
|
Suzuki H, Okumura Y, Mikawa Y, Takata M, Yoshimura S, Ohshiro T. Transcriptome and growth efficiency comparisons of recombinant thermophiles that produce thermolabile and thermostable proteins: implications for burden-based selection of thermostable proteins. Extremophiles 2021; 25:403-412. [PMID: 34191121 DOI: 10.1007/s00792-021-01237-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Geobacillus kaustophilus is a thermophilic bacterium that grows at temperatures ranging between 42 and 74 °C. Here, we modified this organism to produce the thermolabile protein (PyrFA) or its thermostable variant (PyrFV) and analyzed the transcriptome and growth efficiency profiles of the resultant strains. In the producer of PyrFA, the transcriptome profile was changed to facilitate ATP synthesis from NADH without pooling reduced quinones. This change implies that PyrFA production at elevated temperatures places an energy burden on cells potentially to maintain protein homeostasis. This was consistent with the observation that the PyrFA producer grew slower than the PyrFV producer at > 45 °C and had a lower cellular fitness. Similar growth profiles were also observed in the PyrFA and PyrFV producers derived from another thermophile (Geobacillus thermodenitrificans) but not in those from Escherichia coli at 30 °C. Thus, we suggest that the production of thermolabile proteins impairs host survival at higher temperatures; therefore, thermophiles are under evolutionary selection for thermostable proteins regardless of whether their functions are associated with survival advantages. This hypothesis provides new insights into evolutionary protein selection in thermophiles and suggests an engineering approach to select thermostable protein variants generated via random gene mutagenesis.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan. .,Center for Research On Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| | - Yuta Okumura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yui Mikawa
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Mao Takata
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Shunsuke Yoshimura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takashi Ohshiro
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.,Center for Research On Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| |
Collapse
|
26
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Decoquinate Derivative RMB041 Using Metabolomics. Antibiotics (Basel) 2021; 10:693. [PMID: 34200519 PMCID: PMC8228794 DOI: 10.3390/antibiotics10060693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current anti-TB drugs, exacerbated by lack of patient adherence due to drug toxicity. The aforementioned highlights the urgent need for new anti-TB compounds with different antimycobacterial mechanisms of action to those currently being used. An N-alkyl quinolone; decoquinate derivative RMB041, has recently shown promising antimicrobial activity against Mtb, while also exhibiting low cytotoxicity and excellent pharmacokinetic characteristics. Its exact mechanism of action, however, is still unknown. Considering this, we used GCxGC-TOFMS and well described metabolomic approaches to analyze and compare the metabolic alterations of Mtb treated with decoquinate derivative RMB041 by comparison to non-treated Mtb controls. The most significantly altered pathways in Mtb treated with this drug include fatty acid metabolism, amino acid metabolism, glycerol metabolism, and the urea cycle. These changes support previous findings suggesting this drug acts primarily on the cell wall and secondarily on the DNA metabolism of Mtb. Additionally, we identified metabolic changes suggesting inhibition of protein synthesis and a state of dormancy.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| |
Collapse
|
27
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Ciprofloxacin Using Metabolomics. Microorganisms 2021; 9:microorganisms9061158. [PMID: 34071153 PMCID: PMC8228629 DOI: 10.3390/microorganisms9061158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
- Correspondence: ; Tel.: +27-(0)18-299-1818
| |
Collapse
|
28
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
Chen J, Liu X, Shen L, Lin Y, Shen B. CMBD: a manually curated cancer metabolic biomarker knowledge database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6163092. [PMID: 33693668 PMCID: PMC7947571 DOI: 10.1093/database/baaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023]
Abstract
The pathogenesis of cancer is influenced by interactions among genes, proteins, metabolites and other small molecules. Understanding cancer progression at the metabolic level is propitious to the visual decoding of changes in living organisms. To date, a large number of metabolic biomarkers in cancer have been measured and reported, which provide an alternative method for cancer precision diagnosis, treatment and prognosis. To systematically understand the heterogeneity of cancers, we developed the database CMBD to integrate the cancer metabolic biomarkers scattered over literatures in PubMed. At present, CMBD contains 438 manually curated relationships between 282 biomarkers and 76 cancer subtypes of 18 tissues reported in 248 literatures. Users can access the comprehensive metabolic biomarker information about cancers, references, clinical samples and their relationships from our online database. As case studies, pathway analysis was performed on the metabolic biomarkers of breast and prostate cancers, respectively. 'Phenylalanine, tyrosine and tryptophan biosynthesis', 'phenylalanine metabolism' and 'primary bile acid biosynthesis' were identified as playing key roles in breast cancer. 'Glyoxylate and dicarboxylate metabolism', 'citrate cycle (TCA cycle)', and 'alanine, aspartate and glutamate metabolism' have important functions in prostate cancer. These findings provide us with an understanding of the metabolic pathway of cancer initiation and progression. Database URL: http://www.sysbio.org.cn/CMBD/.
Collapse
Affiliation(s)
- Jing Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,The School of Science, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
30
|
Guan Y, Hu W, Xu Y, Yang X, Ji Y, Feng K, Sarengaowa. Metabolomics and physiological analyses validates previous findings on the mechanism of response to wounding stress of different intensities in broccoli. Food Res Int 2021; 140:110058. [PMID: 33648282 DOI: 10.1016/j.foodres.2020.110058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
The mechanism of response of plant to wounding stress is a complex process that physiologically modifies the wounded tissue for protection. In this study, untargeted metabolomics and physiological analyses were performed to validate the molecular mechanism of response to wounding stress of two intensities (0.04 and 1.85 m2 kg-1) in broccoli florets and shreds, respectively. The results showed that 97 and 1220 differentially expressed metabolites could be identified in broccoli subjected to the Florets vs. Control and Shreds vs. Control experiments, respectively. The Kyoto Encyclopedia Genes and Genomes pathway analyses revealed that these metabolites were mainly involved in aminoacyl-tRNA, amino acid, and secondary metabolite biosynthesis; purine metabolism; and plant signal molecule production. This study validated that wounding stress induced plant signal molecule production. Activation of jasmonic acid biosynthesis and H2O2 production were more susceptible to wounding stress of higher intensities, whereas induction of salicylic acid biosynthesis and O2- production were more susceptible to wounding stress of lower intensities. Furthermore, wounding stress also activated glucosinolate and phenylpropanoid biosynthesis by regulating the levels of the precursors, including L-leucine, phenylalanine, tyrosine, valine, isoleucine, tryptophan, methionine, and phenylalanine. Wounding stress induced phenylpropanoid biosynthesis and the antioxidant system by upregulating the corresponding critical enzyme activity and gene expression, contributing greatly to the enhancement of phenolic compound levels, free radical scavenging ability, and resistance to wounding in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China
| | - Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Xu J, Su G, Huang X, Chang R, Chen Z, Ye Z, Cao Q, Kijlstra A, Yang P. Metabolomic Analysis of Aqueous Humor Identifies Aberrant Amino Acid and Fatty Acid Metabolism in Vogt-Koyanagi-Harada and Behcet's Disease. Front Immunol 2021; 12:587393. [PMID: 33732231 PMCID: PMC7959366 DOI: 10.3389/fimmu.2021.587393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
To investigate aqueous metabolic profiles in Vogt-Koyanagi-Harada (VKH) and Behcet's disease (BD), we applied ultra-high-performance liquid chromatography equipped with quadrupole time-of flight mass spectrometry in aqueous humor samples collected from these patients and controls. Metabolite levels in these three groups were analyzed by univariate logistic regression. The differential metabolites were subjected to subsequent pathway analysis by MetaboAnalyst. The results showed that both partial-least squares discrimination analysis and hierarchical clustering analysis showed specific aqueous metabolite profiles when comparing VKH, BD, and controls. There were 28 differential metabolites in VKH compared to controls and 29 differential metabolites in BD compared to controls. Amino acids and fatty acids were the two most abundant categories of differential metabolites. Furthermore, pathway enrichment analysis identified several perturbed pathways, including pantothenate and CoA biosynthesis when comparing VKH with the control group, and D-arginine and D-ornithine metabolism and phenylalanine metabolism when comparing BD with the control group. Aminoacyl-tRNA biosynthesis was altered in both VKH and BD when compared to controls. Our findings suggest that amino acids metabolism as well as two fatty acids, palmitic acid and oleic acid, may be involved in the pathogenesis of BD and VKH.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhijun Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
32
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
33
|
González-Magaña A, Sainz-Polo MÁ, Pretre G, Çapuni R, Lucas M, Altuna J, Montánchez I, Fucini P, Albesa-Jové D. Structural insights into Pseudomonas aeruginosaType six secretion system exported effector 8. J Struct Biol 2020; 212:107651. [PMID: 33096229 DOI: 10.1016/j.jsb.2020.107651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Recent reports indicate that the Type six secretion system exported effector 8 (Tse8) is a cytoactive effector secreted by the Type VI secretion system (T6SS) of the human pathogen Pseudomonas aeruginosa. The T6SS is a nanomachine that assembles inside of the bacteria and injects effectors/toxins into target cells, providing a fitness advantage over competing bacteria and facilitating host colonisation. Here we present the first crystal structure of Tse8 revealing that it conserves the architecture of the catalytic triad Lys84-transSer162-Ser186 that characterises members of the Amidase Signature superfamily. Furthermore, using binding affinity experiments, we show that the interaction of phenylmethylsulfonyl fluoride (PMSF) to Tse8 is dependent on the putative catalytic residue Ser186, providing support for its nucleophilic reactivity. This work thus demonstrates that Tse8 belongs to the Amidase Signature (AS) superfamily. Furthermore, it highlights Tse8 similarity to two family members: the Stenotrophomonas maltophilia Peptide Amidase and the Glutamyl-tRNAGln amidotransferase subunit A from Staphylococcus aureus.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940 Leioa, Spain
| | - M Ángela Sainz-Polo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Gabriela Pretre
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940 Leioa, Spain
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - María Lucas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011 Cantabria, Spain
| | - Jon Altuna
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Itxaso Montánchez
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940 Leioa, Spain
| | - Paola Fucini
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David Albesa-Jové
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
34
|
Wei B, Wang C, Teng T, Guo P, Chen M, Xia F, Liu H, Xie J, Feng J, Huang H. Chemotherapeutic efficacy of cucurmosin for pancreatic cancer as an alternative of gemcitabine: a comparative metabolomic study. Gland Surg 2020; 9:1428-1442. [PMID: 33224818 DOI: 10.21037/gs-20-202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background As the preferred drug for single chemotherapeutic application in pancreatic cancer, gemcitabine often demonstrated low sensitivity and strong chemotherapy resistance in patients. Therefore, the search for other drugs with high efficiency and low side effects has become of high importance. The aim of this study was to assess the therapeutic effects of cucurmosin on pancreatic cancer as an alternative of gemcitabine and explore its underlying biochemical mechanism. Methods The subcutaneous xenograft mice with pancreatic cancer were treated by high- and low-dose cucurmosin and gemcitabine, respectively. A comparative metabolomic analysis was performed on the serum samples from the different groups by 1H nuclear magnetic resonance (NMR) techniques and then subjected to univariate and multivariate statistical analysis. Results Cucurmosin demonstrated a dose-dependent inhibition to the pancreatic tumors. High-dose cucurmosin provided similar chemotherapeutic efficacy with gemcitabine by positively regulating pyruvate metabolism, glycolysis or gluconeogenesis, and cysteine and methionine metabolism. Inactivating GFR signaling pathway and further inducing apoptosis of tumor cells are the important mechanism of anti-tumor function of cucurmosin. Conclusions Cucurmosin is a promising chemotherapeutic drug for pancreatic cancer. However, the dose selection and surface modification should be optimized according to the stage of pancreatic cancer, and an expanded study in both laboratory and clinical regimes needs to be performed.
Collapse
Affiliation(s)
- Binbin Wei
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Congfei Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Minghuang Chen
- State Structural Chemistry Key Laboratory of Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jieming Xie
- Department of Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
35
|
Zheng R, Xia Y, Keyhani NO. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. J Proteomics 2020; 232:104050. [PMID: 33217581 DOI: 10.1016/j.jprot.2020.104050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022]
Abstract
The narrow host range entomopathogenic fungus, Metarhizium acridum, is an environmentally friendly acridid specific pathogen used for locust control. The locust is capable of responding within hours of infection, however, little is known concerning how the locust detects the pathogen. Here, we have identified 3213 proteins in the infected antennal proteome of the migratory locust, Locusta migratoria. iTRAQ comparative analyses of antennal proteomes identified 194 differentially abundant proteins (DAPs) between uninfected and infected males, 218 DAPs between uninfected and infected females, and 240 DAPs between infected males and infected females. In relation to olfaction, a total of 29 chemosensory proteins (CSPs), 9 odorant binding proteins (OBPs), 31 odorant receptors (ORs), and 8 ionotropic receptors (IRs) were differentially abundant after M. acridum infection, with a subset of 12 proteins found in both infected male and female antennae not present in uninfected individuals. The time course of the gene expression profiles of olfaction related DAPs were investigated by quantitative real-time PCR (qRT-PCR). Our data indicate significant changes in the antennal proteomes of male and female locusts in response to a microbial pathogen, highlighting the potential participation of olfactory processes in pathogen detection and response. BIOLOGICAL SIGNIFICANCE: The ability of an organism to detect microbial pathogens is essential for mounting a response to mitigate the spread of the infection. Using iTRAQ-based proteomic analyses changes in the protein repertoire of the antennae of male and female locusts in response to infection by a host-specific pathogen were determined. These data show proteomic alterations that are also sex-specific, identifying members of olfactory pathways that are modified in response to infection. Our data identify antennal and related olfactory proteins that are candidates for mediating host detection of pathogens, and that may contribute to subsequent behavioral and/or immune responses of the host to the infection challenge.
Collapse
Affiliation(s)
- Renwen Zheng
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 400030, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 400030, China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd., Gainesville FL32611, USA.
| |
Collapse
|
36
|
Kaiser F, Krautwurst S, Salentin S, Haupt VJ, Leberecht C, Bittrich S, Labudde D, Schroeder M. The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases. Sci Rep 2020; 10:12647. [PMID: 32724042 PMCID: PMC7387524 DOI: 10.1038/s41598-020-69100-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defines the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric effects.
Collapse
Affiliation(s)
- Florian Kaiser
- Biotechnology Center (BIOTEC), TU Dresden, 01307, Dresden, Germany. .,PharmAI GmbH, Tatzberg 47, 01307, Dresden, Germany.
| | - Sarah Krautwurst
- University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | | | - V Joachim Haupt
- Biotechnology Center (BIOTEC), TU Dresden, 01307, Dresden, Germany.,PharmAI GmbH, Tatzberg 47, 01307, Dresden, Germany
| | | | | | - Dirk Labudde
- University of Applied Sciences Mittweida, 09648, Mittweida, Germany
| | | |
Collapse
|
37
|
Abstract
The aminoacylation reaction is one of most extensively studied cellular processes. The so-called "canonical" reaction is carried out by direct charging of an amino acid (aa) onto its corresponding transfer RNA (tRNA) by the cognate aminoacyl-tRNA synthetase (aaRS), and the canonical usage of the aminoacylated tRNA (aa-tRNA) is to translate a messenger RNA codon in a translating ribosome. However, four out of the 22 genetically-encoded aa are made "noncanonically" through a two-step or indirect route that usually compensate for a missing aaRS. Additionally, from the 22 proteinogenic aa, 13 are noncanonically used, by serving as substrates for the tRNA- or aa-tRNA-dependent synthesis of other cellular components. These nontranslational processes range from lipid aminoacylation, and heme, aa, antibiotic and peptidoglycan synthesis to protein degradation. This chapter focuses on these noncanonical usages of aa-tRNAs and the ways of generating them, and also highlights the strategies that cells have evolved to balance the use of aa-tRNAs between protein synthesis and synthesis of other cellular components.
Collapse
|
38
|
The phylogenetic distribution of the glutaminyl-tRNA synthetase and Glu-tRNA Gln amidotransferase in the fundamental lineages would imply that the ancestor of archaea, that of eukaryotes and LUCA were progenotes. Biosystems 2020; 196:104174. [PMID: 32535177 DOI: 10.1016/j.biosystems.2020.104174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
The function of the glutaminyl-tRNA synthetase and Glu-tRNAGln amidotransferase might be related to the origin of the genetic code because, for example, glutaminyl-tRNA synthetase catalyses the fundamental reaction that makes the genetic code. If the evolutionary stage of the origin of these two enzymes could be unambiguously identified, then the genetic code should still have been originating at that particular evolutionary stage because the fundamental reaction that makes the code itself was still evidently evolving. This would result in that particular evolutionary moment being attributed to the evolutionary stage of the progenote because it would have a relationship between the genotype and the phenotype not yet fully realized because the genetic code was precisely still originating. I then analyzed the distribution of the glutaminyl-tRNA synthetase and Glu-tRNAGln aminodotrasferase in the main phyletic lineages. Since in some cases the origin of these two enzymes can be related to the evolutionary stages of ancestors of archaea and eukaryotes, this would indicate these ancestors as progenotes because at that evolutionary moment the genetic code was evidently still evolving, thus realizing the definition of progenote. The conclusion that the ancestor of archaea and that of eukaryotes were progenotes would imply that even the last universal common ancestor (LUCA) was a progenote because it appeared, on the tree of life, temporally before these ancestors.
Collapse
|
39
|
Zhang Y, Chen W, Chen H, Zhong Q, Yun Y, Chen W. Metabolomics Analysis of the Deterioration Mechanism and Storage Time Limit of Tender Coconut Water during Storage. Foods 2020; 9:E46. [PMID: 31947875 PMCID: PMC7022768 DOI: 10.3390/foods9010046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/05/2023] Open
Abstract
Tender coconut water tastes sweet and is enjoyed by consumers, but its commercial development is restricted by an extremely short shelf life, which cannot be explained by existing research. UPLC-MS/MS-based metabolomics methods were used to identify and statistically analyze metabolites in coconut water under refrigerated storage. A multivariate statistical analysis method was used to analyze the UPLC-MS/MS datasets from 35 tender coconut water samples stored for 0-6 weeks. In addition, we identified other differentially expressed metabolites by selecting p-values and fold changes. Hierarchical cluster analysis and association analysis were performed with the differentially expressed metabolites. Metabolic pathways were analyzed using the KEGG database and the MetPA module of MetaboAnalyst. A total of 72 differentially expressed metabolites were identified in all groups. The OPLS-DA score chart showed that all samples were well grouped. Thirty-one metabolic pathways were enriched in the week 0-1 samples. The results showed that after a tender coconut is peeled, the maximum storage time at 4 °C is 1 week. Analysis of metabolic pathways related to coconut water storage using the KEGG and MetPA databases revealed that amino acid metabolism is one of the main causes of coconut water quality deterioration.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijun Chen
- College of Food Science and Engineering, Hainan University, Haikou 57022, China; (Y.Z.); (W.C.); (H.C.); (Q.Z.); (Y.Y.)
| |
Collapse
|
40
|
Tessari P. Nonessential amino acid usage for protein replenishment in humans: a method of estimation. Am J Clin Nutr 2019; 110:255-264. [PMID: 31187867 DOI: 10.1093/ajcn/nqz039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Essential amino acids (EAAs) are key factors in determining dietary protein quality. Their RDAs have been estimated. However, although nonessential amino acids (NEAAs) are utilized for protein synthesis too, no estimates of their usage for body protein replenishment have been proposed so far. OBJECTIVE The aim of this study was to provide minimum, approximate estimates of NEAA usage for body protein replenishment/conservation in humans. METHODS A correlation between the pattern of both EAAs and NEAAs in body proteins, and their usage, was assumed. In order to reconstruct an "average" amino acid pattern/composition of total body proteins (as grams of amino acid per gram of protein), published data of relevant human organs/tissues (skeletal muscle, liver, kidney, gut, and collagen, making up ∼74% of total proteins) were retrieved. The (unknown) amino acid composition of residual proteins (∼26% of total proteins) was assumed to be the same as for the sum of the aforementioned organs excluding collagen. Using international EAA RDA values, an average ratio of EAA RDA to the calculated whole-body EAA composition was derived. This ratio was then used to back-calculate NEAA usage for protein replenishment. The data were calculated also using estimated organ/tissue amino acid turnover. RESULTS The individual ratios of World Health Organization/Food and Agriculture Organization/United Nations University RDA to EAA content ranged between 1.35 (phenylalanine + tyrosine) and 3.68 (leucine), with a mean ± SD value of 2.72 ± 0.81. In a reference 70-kg subject, calculated NEAA usage for body protein replenishment ranged from 0.73 g/d for asparagine to 3.61 g/d for proline. Use of amino acid turnover data yielded similar results. Total NEAA usage for body protein replenishment was ∼19 g/d (45% of total NEAA intake), whereas ∼24 g/d was used for other routes. CONCLUSION This method may provide indirect minimum estimates of the usage of NEAAs for body protein replacement in humans.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Sharaf A, Gruber A, Jiroutová K, Oborník M. Characterization of Aminoacyl-tRNA Synthetases in Chromerids. Genes (Basel) 2019; 10:E582. [PMID: 31370303 PMCID: PMC6723311 DOI: 10.3390/genes10080582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/24/2023] Open
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Kateřina Jiroutová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
42
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
43
|
Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018; 8:17012. [PMID: 30451959 PMCID: PMC6242988 DOI: 10.1038/s41598-018-35389-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
Collapse
|
44
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
45
|
Price MN, Zane GM, Kuehl JV, Melnyk RA, Wall JD, Deutschbauer AM, Arkin AP. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLoS Genet 2018; 14:e1007147. [PMID: 29324779 PMCID: PMC5764234 DOI: 10.1371/journal.pgen.1007147] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/10/2017] [Indexed: 11/18/2022] Open
Abstract
For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine) by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes. For a few bacteria, it is well known how they can make all 20 of the standard amino acids (the building blocks of proteins). For many other bacteria, their genome sequence implies that there are gaps in these biosynthetic pathways, so that the bacteria cannot make all of the amino acids and would need to take up some of them from their environment instead. But many bacteria can grow in minimal media (without any amino acids) despite these apparent gaps. We studied 10 bacteria with predicted gaps in amino acid biosynthesis that nevertheless grow in minimal media. Most of these gaps were spurious, but 11 of the gaps were genuine and could not be explained by current knowledge. Using high-throughput genetics, we systematically identified genes that were required for growth in minimal media and identified the biosynthetic genes that fill 9 of the 11 gaps. We hope that this approach can be applied to many more bacteria and will eventually allow us to accurately predict the nutritional requirements of a bacterium from its genome sequence.
Collapse
Affiliation(s)
- Morgan N. Price
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (MNP); (AMD); (APA)
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer V. Kuehl
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ryan A. Melnyk
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (MNP); (AMD); (APA)
| | - Adam P. Arkin
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail: (MNP); (AMD); (APA)
| |
Collapse
|
46
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
47
|
Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, Amoutzias GD. The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res 2017; 45:1059-1068. [PMID: 28180287 PMCID: PMC5388404 DOI: 10.1093/nar/gkw1182] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent from many genomes. In the course of this analysis, highly conserved protein motifs and domains within each of the AARS loci were identified and used to build a web-based computational tool for the genome-wide detection of AARS coding sequences. This is based on hidden Markov models (HMMs) and is available together with a cognate database that may be used for specific analyses. The bioinformatics tools that we have developed may also help to identify new antibiotic agents and targets using these essential enzymes. These tools also may help to identify organisms with alternative pathways that are involved in maintaining the fidelity of the genetic code.
Collapse
Affiliation(s)
- Anargyros Chaliotis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Panayotis Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Dimitris Mossialos
- Molecular Microbiology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Hubert D Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, 4 allée Konrad Röntgen, Strasbourg Cedex, France
| | | | - Grigorios D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
48
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
49
|
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol 2017; 52:205-219. [PMID: 28075177 DOI: 10.1080/10409238.2016.1274284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mistranslation describes errors during protein synthesis that prevent the amino acid sequences specified in the genetic code from being reflected within proteins. For a long time, mistranslation has largely been considered an aberrant cellular process that cells actively avoid at all times. However, recent evidence has demonstrated that cells from all three domains of life not only tolerate certain levels and forms of mistranslation, but actively induce mistranslation under certain circumstances. To this end, dedicated biological mechanisms have recently been found to reduce translational fidelity, which indicates that mistranslation is not exclusively an erroneous process and can even benefit cells in particular cellular contexts. There currently exists a spectrum of mistranslational processes that differ not only in their origins, but also in their molecular and cellular effects. These findings suggest that the optimal degree of translational fidelity largely depends on a specific cellular context. This review aims to conceptualize the basis and functional consequence of the diverse types of mistranslation that have been described so far.
Collapse
Affiliation(s)
- Michael H Schwartz
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| | - Tao Pan
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| |
Collapse
|
50
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|