1
|
Takahashi M, Hiraoka S, Matsumoto Y, Shibagaki R, Ujihara T, Maeda H, Seo S, Nagasaki K, Takeuchi H, Matsuzaki S. Host-encoded DNA methyltransferases modify the epigenome and host tropism of invading phages. iScience 2025; 28:112264. [PMID: 40241747 PMCID: PMC12003011 DOI: 10.1016/j.isci.2025.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Restriction modification (RM) systems are ubiquitous bacterial defense systems; however, some phages evade RM system and adapt to their bacterial hosts. In such cases, phages are thought to stochastically acquire DNA methylation from host-encoded DNA methyltransferases (MTases), facilitating host adaptation. However, no studies have directly compared the methylomes of host bacteria and their infecting phages. Here, we demonstrate the epigenetic landscape of adapted phages with diverse infection histories, focusing on the broad host-range phage KHP30T as its adapts to three Helicobacter pylori strains. Using a multistage infection system, we observed that the adapted phages displayed significantly high titers against the last infected H. pylori strain, suggesting an attendant change in host tropism. Single-molecule real-time sequencing revealed that methylated motifs were predominantly shared between the adapted phages and their most recent host. Our findings enhance our understanding of epigenetic phage-host interactions, which have significant implications for microbial ecology.
Collapse
Affiliation(s)
- Michiko Takahashi
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yuki Matsumoto
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Rikako Shibagaki
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takako Ujihara
- Science Research Center, Kochi University, Nankoku, Kochi, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Hiroaki Takeuchi
- Department of Medical Laboratory Sciences, Health and Science, International University of Health and Welfare Graduate School, Narita, Chiba, Japan
| | | |
Collapse
|
2
|
Bapteste É. The ageing virus hypothesis: Epigenetic ageing beyond the Tree of Life. Bioessays 2025; 47:e2400099. [PMID: 39400402 DOI: 10.1002/bies.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
A recent thought-provoking theory argues that complex organisms using epigenetic information for their normal development and functioning must irreversibly age as a result of epigenetic signal loss. Importantly, the scope of this theory could be considerably expanded, with scientific benefits, by analyzing epigenetic ageing beyond the borders of the Tree of Life. Viruses that use epigenetic signals for their normal functioning may also age, that is, present an increasing risk of failing to complete their individual life cycle and to disappear with time. As viruses are ancient, abundant, and infect a considerable diversity of hosts, the ageing virus hypothesis, if verified, would have important consequences for many fields of the Life sciences. Uncovering ageing viruses would integrate the most abundant and biologically central entities on Earth into theories of ageing, enhance virology, gerontology, evolutionary biology, molecular ecology, genomics, and possibly medicine through the development of new therapies manipulating viral ageing.
Collapse
Affiliation(s)
- Éric Bapteste
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| |
Collapse
|
3
|
Pan W, Liang M, You Y, Li Z, Weng S, He J, Guo C. Viral genomic methylation and the interspecies evolutionary relationships of ranavirus. PLoS Pathog 2024; 20:e1012736. [PMID: 39585924 PMCID: PMC11627377 DOI: 10.1371/journal.ppat.1012736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/09/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Ranaviruses are capable of infecting both wild and farmed fish, amphibians, and reptiles, leading to significant economic losses and ecological risks. Currently, ranaviruses have been found in at least 175 species spanning six continents. Except for Singapore grouper iridovirus (SGIV), ranavirus genomes are generally regarded as highly methylated. Nevertheless, our comprehension of the methylation characteristics within ranaviruses remains limited. Despite the numerous genomes currently included in the GenBank database, a complete phylogenetic tree for ranaviruses has not yet been determined, and interspecific evolutionary relationships among ranaviruses have not been thoroughly investigated. In this study, the whole-genome methylation profile of mandarin fish ranavirus (MRV; a ranavirus) was investigated, revealing a methylation level of 16.04%, and hypomethylation of the MRV genome was detrimental to viral replication, speculating the genome methylation may play an important role in MRV replication. Furthermore, by combining with whole-genome DNA sequence phylogenetic analyses, we propose the possibility of an interspecies evolutionary relationship among ranaviruses, with the presence of four distinct evolutionary lineages within ranavirus evolution: "SGIV, SCRAV(MRV/LMBV), EHNV/ENARV/ATV, and CMTV/FV3", which might be also supported by the genomic collinearity, natural host range and host habitats. Furthermore, ranavirus genomic methylation levels may provide additional evidence for this hypothesis, but further proof is needed. Our work enhances the understanding of the role of genome methylation in ranaviruses and is beneficial for the prevention and control of ranavirus diseases; simultaneously, the proposed evolutionary hypothesis of ranavirus provides novel insights and ideas for exploring the evolutionary trajectory of viruses.
Collapse
Affiliation(s)
- Weiqiang Pan
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mincong Liang
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlin You
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhimin Li
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoping Weng
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Schoelmerich MC, Ly L, West-Roberts J, Shi LD, Shen C, Malvankar NS, Taib N, Gribaldo S, Woodcroft BJ, Schadt CW, Al-Shayeb B, Dai X, Mozsary C, Hickey S, He C, Beaulaurier J, Juul S, Sachdeva R, Banfield JF. Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires. Nat Commun 2024; 15:5414. [PMID: 38926353 PMCID: PMC11208441 DOI: 10.1038/s41467-024-49548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.
Collapse
Affiliation(s)
- Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Environmental Systems Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Lynn Ly
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Ling-Dong Shi
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Cong Shen
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, West Haven, CT, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, West Haven, CT, USA
| | - Najwa Taib
- Institut Pasteur, Université de Paris cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | | | - Scott Hickey
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Christine He
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
| |
Collapse
|
6
|
Forni D, Pozzoli U, Cagliani R, Sironi M. Dinucleotide biases in the genomes of prokaryotic and eukaryotic dsDNA viruses and their hosts. Mol Ecol 2024; 33:e17287. [PMID: 38263702 DOI: 10.1111/mec.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
7
|
Liang M, Pan W, You Y, Qin X, Su H, Zhan Z, Weng S, Guo C, He J. Hypermethylated genome of a fish vertebrate iridovirus ISKNV plays important roles in viral infection. Commun Biol 2024; 7:237. [PMID: 38413759 PMCID: PMC10899263 DOI: 10.1038/s42003-024-05919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.
Collapse
Affiliation(s)
- Mincong Liang
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlin You
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowei Qin
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hualong Su
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Zhan
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China.
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Tisza MJ, Smith DDN, Clark AE, Youn JH, Khil PP, Dekker JP. Roving methyltransferases generate a mosaic epigenetic landscape and influence evolution in Bacteroides fragilis group. Nat Commun 2023; 14:4082. [PMID: 37429841 DOI: 10.1038/s41467-023-39892-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Three types of DNA methyl modifications have been detected in bacterial genomes, and mechanistic studies have demonstrated roles for DNA methylation in physiological functions ranging from phage defense to transcriptional control of virulence and host-pathogen interactions. Despite the ubiquity of methyltransferases and the immense variety of possible methylation patterns, epigenomic diversity remains unexplored for most bacterial species. Members of the Bacteroides fragilis group (BFG) reside in the human gastrointestinal tract as key players in symbiotic communities but also can establish anaerobic infections that are increasingly multi-drug resistant. In this work, we utilize long-read sequencing technologies to perform pangenomic (n = 383) and panepigenomic (n = 268) analysis of clinical BFG isolates cultured from infections seen at the NIH Clinical Center over four decades. Our analysis reveals that single BFG species harbor hundreds of DNA methylation motifs, with most individual motif combinations occurring uniquely in single isolates, implying immense unsampled methylation diversity within BFG epigenomes. Mining of BFG genomes identified more than 6000 methyltransferase genes, approximately 1000 of which were associated with intact prophages. Network analysis revealed substantial gene flow among disparate phage genomes, implying a role for genetic exchange between BFG phages as one of the ultimate sources driving BFG epigenome diversity.
Collapse
Affiliation(s)
- Michael J Tisza
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiol, Baylor College of Medicine, Houston, TX, USA
| | - Derek D N Smith
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Wildlife Toxicology Research Section, Ottawa, ON, Canada
| | - Andrew E Clark
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jung-Ho Youn
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Selective Depletion of ZAP-Binding CpG Motifs in HCV Evolution. Pathogens 2022; 12:pathogens12010043. [PMID: 36678391 PMCID: PMC9866289 DOI: 10.3390/pathogens12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hepatitis C virus (HCV) is a bloodborne pathogen that can cause chronic liver disease and hepatocellular carcinoma. The loss of CpGs from virus genomes allows escape from restriction by the host zinc-finger antiviral protein (ZAP). The evolution of HCV in the human host has not been explored in the context of CpG depletion. We analysed 2616 full-length HCV genomes from 1977 to 2021. During the four decades of evolution in humans, we found that HCV genomes have become significantly depleted in (a) CpG numbers, (b) CpG O/E ratios (i.e., relative abundance of CpGs), and (c) the number of ZAP-binding motifs. Interestingly, our data suggests that the loss of CpGs in HCV genomes over time is primarily driven by the loss of ZAP-binding motifs; thus suggesting a yet unknown role for ZAP-mediated selection pressures in HCV evolution. The HCV core gene is significantly enriched for the number of CpGs and ZAP-binding motifs. In contrast to the rest of the HCV genome, the loss of CpGs from the core gene does not appear to be driven by ZAP-mediated selection. This work highlights CpG depletion in HCV genomes during their evolution in humans and the role of ZAP-mediated selection in HCV evolution.
Collapse
|
10
|
Hanson HE, Liebl AL. The Mutagenic Consequences of DNA Methylation within and across Generations. EPIGENOMES 2022; 6:33. [PMID: 36278679 PMCID: PMC9624357 DOI: 10.3390/epigenomes6040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.
Collapse
Affiliation(s)
- Haley E. Hanson
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Andrea L. Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
11
|
Seong HJ, Roux S, Hwang CY, Sul WJ. Marine DNA methylation patterns are associated with microbial community composition and inform virus-host dynamics. MICROBIOME 2022; 10:157. [PMID: 36167684 PMCID: PMC9516812 DOI: 10.1186/s40168-022-01340-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND DNA methylation in prokaryotes is involved in many different cellular processes including cell cycle regulation and defense against viruses. To date, most prokaryotic methylation systems have been studied in culturable microorganisms, resulting in a limited understanding of DNA methylation from a microbial ecology perspective. Here, we analyze the distribution patterns of several microbial epigenetics marks in the ocean microbiome through genome-centric metagenomics across all domains of life. RESULTS We reconstructed 15,056 viral, 252 prokaryotic, 56 giant viral, and 6 eukaryotic metagenome-assembled genomes from northwest Pacific Ocean seawater samples using short- and long-read sequencing approaches. These metagenome-derived genomes mostly represented novel taxa, and recruited a majority of reads. Thanks to single-molecule real-time (SMRT) sequencing technology, base modification could also be detected for these genomes. This showed that DNA methylation can readily be detected across dominant oceanic bacterial, archaeal, and viral populations, and microbial epigenetic changes correlate with population differentiation. Furthermore, our genome-wide epigenetic analysis of Pelagibacter suggests that GANTC, a DNA methyltransferase target motif, is related to the cell cycle and is affected by environmental conditions. Yet, the presence of this motif also partitions the phylogeny of the Pelagibacter phages, possibly hinting at a competitive co-evolutionary history and multiple effects of a single methylation mark. CONCLUSIONS Overall, this study elucidates that DNA methylation patterns are associated with ecological changes and virus-host dynamics in the ocean microbiome. Video Abstract.
Collapse
Affiliation(s)
- Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Chung Yeon Hwang
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
12
|
Lei B, Song H, Xu F, Wei Q, Wang F, Tan G, Ma H. When does hepatitis B virus meet long-stranded noncoding RNAs? Front Microbiol 2022; 13:962186. [PMID: 36118202 PMCID: PMC9479684 DOI: 10.3389/fmicb.2022.962186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) infection in humans and its associated diseases are long-standing problems. HBV can produce a large number of non-self-molecules during its life cycle, which acts as targets for innate immune recognition and initiation. Among these, interferon and its large number of downstream interferon-stimulated gene molecules are important early antiviral factors. However, the development of an effective antiviral immune response is not simple and depends not only on the delicate regulation of the immune response but also on the various mechanisms of virus-related immune escape and immune tolerance. Therefore, despite there being a relatively well-established consensus on the major pathways of the antiviral response and their component molecules, the complete clearance of HBV remains a challenge in both basic and clinical research. Long-noncoding RNAs (lncRNAs) are generally >200 bp in length and perform different functions in the RNA strand encoding the protein. As an important part of the IFN-inducible genes, interferon-stimulated lncRNAs are involved in the regulation of several HBV infection-related pathways. This review traces the basic elements of such pathways and characterizes the various recent targets of lncRNAs, which not only complement the regulatory mechanisms of pathways related to chronic HBV infection, fibrosis, and cancer promotion but also present with new potential therapeutic targets for controlling HBV infection and the malignant transformation of hepatocytes.
Collapse
Affiliation(s)
- Bingxin Lei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Wei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Guangyun Tan,
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
- Haichun Ma,
| |
Collapse
|
13
|
Xu ZY, Gao H, Kuang QY, Xing JB, Wang ZY, Cao XY, Xu SJ, Liu J, Huang Z, Zheng ZZ, Gong L, Wang H, Shi M, Zhang GH, Sun YK. Clinical sequencing uncovers the genomic characteristics and mutation spectrum of the 2018 African swine fever virus in Guangdong, China. Front Vet Sci 2022; 9:978243. [PMID: 36061106 PMCID: PMC9437553 DOI: 10.3389/fvets.2022.978243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
African swine fever (ASF) outbreak have caused tremendous economic loss to the pig industry in China since its emergence in August 2018. Previous studies revealed that many published sequences are not suitable for detailed analyses due to the lack of data regarding quality parameters and methodology, and outdated annotations. Thus, high-quality genomes of highly pathogenic strains that can be used as references for early Chinese ASF outbreaks are still lacking, and little is known about the features of intra-host variants of ASF virus (ASFV). In this study, a full genome sequencing of clinical samples from the first ASF outbreak in Guangdong in 2018 was performed using MGI (MGI Tech Co., Ltd., Shenzhen, China) and Nanopore sequencing platforms, followed by Sanger sequencing to verify the variations. With 22 sequencing corrections, we obtained a high-quality genome of one of the earliest virulent isolates, GZ201801_2. After proofreading, we improved (add or modify) the annotations of this isolate using the whole genome alignment with Georgia 2007/1. Based on the complete genome sequence, we constructed the methylation profiles of early ASFV strains in China and predicted the potential 5mC and 6mA methylation sites, which are likely involved in metabolism, transcription, and replication. Additionally, the intra-host single nucleotide variant distribution and mutant allele frequency in the clinical samples of early strain were determined for the first time and found a strong preference for A and T substitution mutation, non-synonymous mutations, and mutations that resulted in amino acid substitutions into Lysine. In conclusion, this study provides a high-quality genome sequence, updated genome annotation, methylation profile, and mutation spectrum of early ASFV strains in China, thereby providing a reference basis for further studies on the evolution, transmission, and virulence of ASFV.
Collapse
Affiliation(s)
- Zhi-ying Xu
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Han Gao
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qi-yuan Kuang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jia-bao Xing
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhi-yuan Wang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xin-yu Cao
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Si-jia Xu
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jing Liu
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhao Huang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ze-zhong Zheng
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Lang Gong
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Mang Shi
| | - Gui-hong Zhang
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Gui-hong Zhang
| | - Yan-kuo Sun
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Yan-kuo Sun
| |
Collapse
|
14
|
Buyukozkan M, Alvarez-Mulett S, Racanelli AC, Schmidt F, Batra R, Hoffman KL, Sarwath H, Engelke R, Gomez-Escobar L, Simmons W, Benedetti E, Chetnik K, Zhang G, Schenck E, Suhre K, Choi JJ, Zhao Z, Racine-Brzostek S, Yang HS, Choi ME, Choi AM, Cho SJ, Krumsiek J. Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19. iScience 2022; 25:104612. [PMID: 35756895 PMCID: PMC9212983 DOI: 10.1016/j.isci.2022.104612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/05/2022] [Accepted: 06/09/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.
Collapse
Affiliation(s)
- Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Alvarez-Mulett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexandra C. Racanelli
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Katherine L. Hoffman
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Luis Gomez-Escobar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Will Simmons
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kelsey Chetnik
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Edward Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine – Qatar, Education City, Doha 24144, Qatar
| | - Justin J. Choi
- Department of Medicine, Division of General Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Augustine M.K. Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Soo Jung Cho
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Shi Y, Wang G, Lau HCH, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci 2022; 23:ijms23042181. [PMID: 35216302 PMCID: PMC8877284 DOI: 10.3390/ijms23042181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Whole genome metagenomic sequencing is a powerful platform enabling the simultaneous identification of all genes from entirely different kingdoms of organisms in a complex sample. This technology has revolutionised multiple areas from microbiome research to clinical diagnoses. However, one of the major challenges of a metagenomic study is the overwhelming non-microbial DNA present in most of the host-derived specimens, which can inundate the microbial signals and reduce the sensitivity of microorganism detection. Various host DNA depletion methods to facilitate metagenomic sequencing have been developed and have received considerable attention in this context. In this review, we present an overview of current host DNA depletion approaches along with explanations of their underlying principles, advantages and disadvantages. We also discuss their applications in laboratory microbiome research and clinical diagnoses and, finally, we envisage the direction of the further perfection of metagenomic sequencing in samples with overabundant host DNA.
Collapse
Affiliation(s)
| | | | | | - Jun Yu
- Correspondence: ; Tel.: +852-37636099; Fax:+852-21445330
| |
Collapse
|
16
|
Gao H, Jin Z, Tang K, Ji Y, Suarez J, Suarez JA, Cunha e Rocha K, Zhang D, Dillmann WH, Mahata SK, Ying W. Microbial DNA Enrichment Promotes Adrenomedullary Inflammation, Catecholamine Secretion, and Hypertension in Obese Mice. J Am Heart Assoc 2022; 11:e024561. [PMID: 35112881 PMCID: PMC9245808 DOI: 10.1161/jaha.121.024561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Obesity is an established risk factor for hypertension. Although obesity‐induced gut barrier breach leads to the leakage of various microbiota‐derived products into host circulation and distal organs, the roles of microbiota in mediating the development of obesity‐associated adrenomedullary disorders and hypertension have not been elucidated. We seek to explore the impacts of microbial DNA enrichment on inducing obesity‐related adrenomedullary abnormalities and hypertension. Methods and Results Obesity was accompanied by remarkable bacterial DNA accumulation and elevated inflammation in the adrenal glands. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into the adrenal glands in obese mice, causing microbial DNA enrichment. In lean wild‐type mice, adrenal macrophages expressed CRIg (complement receptor of the immunoglobulin superfamily) that efficiently blocks the infiltration of gut mEVs. In contrast, the adrenal CRIg+ cell population was greatly decreased in obese mice. In lean CRIg−/− or C3−/− (complement component 3) mice intravenously injected with gut mEVs, adrenal microbial DNA accumulation elevated adrenal inflammation and norepinephrine secretion, concomitant with hypertension. In addition, microbial DNA promoted inflammatory responses and norepinephrine production in rat pheochromocytoma PC12 cells treated with gut mEVs. Depletion of microbial DNA cargo markedly blunted the effects of gut mEVs. We also validated that activation of cGAS (cyclic GMP‐AMP synthase)/STING (cyclic GMP–AMP receptor stimulator of interferon genes) signaling is required for the ability of microbial DNA to trigger adrenomedullary dysfunctions in both in vivo and in vitro experiments. Restoring CRIg+ cells in obese mice decreased microbial DNA abundance, inflammation, and hypertension. Conclusions The leakage of gut mEVs leads to adrenal enrichment of microbial DNA that are pathogenic to induce obesity‐associated adrenomedullary abnormalities and hypertension. Recovering the CRIg+ macrophage population attenuates obesity‐induced adrenomedullary disorders.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Zhongmou Jin
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA
| | | | - Yudong Ji
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
- Department of AnesthesiologyInstitute of Anesthesiology and Critical CareUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jorge Suarez
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Jorge A. Suarez
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Karina Cunha e Rocha
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Dinghong Zhang
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Wolfgang H. Dillmann
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Sushil K. Mahata
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
- VA San Diego Healthcare SystemSan DiegoCA
| | - Wei Ying
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| |
Collapse
|
17
|
Farina A, Rosato E, York M, Gewurz BE, Trojanowska M, Farina GA. Innate Immune Modulation Induced by EBV Lytic Infection Promotes Endothelial Cell Inflammation and Vascular Injury in Scleroderma. Front Immunol 2021; 12:651013. [PMID: 33953718 PMCID: PMC8089375 DOI: 10.3389/fimmu.2021.651013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Microvascular injury is considered an initial event in the pathogenesis of scleroderma and endothelial cells are suspected of being the target of the autoimmune process seen in the disease. EBV has long been proposed as a trigger for autoimmune diseases, including scleroderma. Nevertheless, its contribution to the pathogenic process remains poorly understood. In this study, we report that EBV lytic antigens are detected in scleroderma dermal vessels, suggesting that endothelial cells might represent a target for EBV infection in scleroderma skin. We show that EBV DNA load is remarkably increased in peripheral blood, plasma and circulating monocytes from scleroderma patients compared to healthy EBV carriers, and that monocytes represent the prominent subsets of EBV-infected cells in scleroderma. Given that monocytes have the capacity to adhere to the endothelium, we then investigated whether monocyte-associated EBV could infect primary human endothelial cells. We demonstrated that endothelial cells are infectable by EBV, using human monocytes bound to recombinant EBV as a shuttle, even though cell-free virus failed to infect them. We show that EBV induces activation of TLR9 innate immune response and markers of vascular injury in infected endothelial cells and that up-regulation is associated with the expression of EBV lytic genes in infected cells. EBV innate immune modulation suggests a novel mechanism mediating inflammation, by which EBV triggers endothelial cell and vascular injury in scleroderma. In addition, our data point to up-regulation of EBV DNA loads as potential biomarker in developing vasculopathy in scleroderma. These findings provide the framework for the development of novel therapeutic interventions to shift the scleroderma treatment paradigm towards antiviral therapies.
Collapse
Affiliation(s)
- Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Michael York
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program in Virology, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Maria Trojanowska
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
18
|
Comparative Genomics and Integrated Network Approach Unveiled Undirected Phylogeny Patterns, Co-mutational Hot Spots, Functional Cross Talk, and Regulatory Interactions in SARS-CoV-2. mSystems 2021; 6:6/1/e00030-21. [PMID: 33622851 PMCID: PMC8573956 DOI: 10.1128/msystems.00030-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in 92 million cases in a span of 1 year. The study focuses on understanding population-specific variations attributing its high rate of infections in specific geographical regions particularly in the United States. Rigorous phylogenomic network analysis of complete SARS-CoV-2 genomes (245) inferred five central clades named a (ancestral), b, c, d, and e (subtypes e1 and e2). Clade d and subclade e2 were found exclusively comprised of U.S. strains. Clades were distinguished by 10 co-mutational combinations in Nsp3, ORF8, Nsp13, S, Nsp12, Nsp2, and Nsp6. Our analysis revealed that only 67.46% of single nucleotide polymorphism (SNP) mutations were at the amino acid level. T1103P mutation in Nsp3 was predicted to increase protein stability in 238 strains except for 6 strains which were marked as ancestral type, whereas co-mutation (P409L and Y446C) in Nsp13 were found in 64 genomes from the United States highlighting its 100% co-occurrence. Docking highlighted mutation (D614G) caused reduction in binding of spike proteins with angiotensin-converting enzyme 2 (ACE2), but it also showed better interaction with the TMPRSS2 receptor contributing to high transmissibility among U.S. strains. We also found host proteins, MYO5A, MYO5B, and MYO5C, that had maximum interaction with viral proteins (nucleocapsid [N], spike [S], and membrane [M] proteins). Thus, blocking the internalization pathway by inhibiting MYO5 proteins which could be an effective target for coronavirus disease 2019 (COVID-19) treatment. The functional annotations of the host-pathogen interaction (HPI) network were found to be closely associated with hypoxia and thrombotic conditions, confirming the vulnerability and severity of infection. We also screened CpG islands in Nsp1 and N conferring the ability of SARS-CoV-2 to enter and trigger zinc antiviral protein (ZAP) activity inside the host cell. IMPORTANCE In the current study, we presented a global view of mutational pattern observed in SARS-CoV-2 virus transmission. This provided a who-infect-whom geographical model since the early pandemic. This is hitherto the most comprehensive comparative genomics analysis of full-length genomes for co-mutations at different geographical regions especially in U.S. strains. Compositional structural biology results suggested that mutations have a balance of opposing forces affecting pathogenicity suggesting that only a few mutations are effective at the translation level. Novel HPI analysis and CpG predictions elucidate the proof of concept of hypoxia and thrombotic conditions in several patients. Thus, the current study focuses the understanding of population-specific variations attributing a high rate of SARS-CoV-2 infections in specific geographical regions which may eventually be vital for the most severely affected countries and regions for sharp development of custom-made vindication strategies.
Collapse
|
19
|
Kumar S, Mohapatra T. Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:596236. [PMID: 34093600 PMCID: PMC8175986 DOI: 10.3389/fpls.2021.596236] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | |
Collapse
|
20
|
López-Labrador FX, Brown JR, Fischer N, Harvala H, Van Boheemen S, Cinek O, Sayiner A, Madsen TV, Auvinen E, Kufner V, Huber M, Rodriguez C, Jonges M, Hönemann M, Susi P, Sousa H, Klapper PE, Pérez-Cataluňa A, Hernandez M, Molenkamp R, der Hoek LV, Schuurman R, Couto N, Leuzinger K, Simmonds P, Beer M, Höper D, Kamminga S, Feltkamp MCW, Rodríguez-Díaz J, Keyaerts E, Nielsen XC, Puchhammer-Stöckl E, Kroes ACM, Buesa J, Breuer J, Claas ECJ, de Vries JJC. Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. J Clin Virol 2021; 134:104691. [PMID: 33278791 DOI: 10.1016/j.jcv.2020.104691] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols.
Collapse
Affiliation(s)
- F Xavier López-Labrador
- Virology Laboratory, Genomics and Health Area, Centre for Public Health Research (FISABIO-Public Health), Valencia, Spain; CIBERESP, Instituto de Salud Carlos III, Madrid, Spain.
| | - Julianne R Brown
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom.
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, United Kingdom.
| | - Sander Van Boheemen
- ErasmusMC, Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Ondrej Cinek
- Department of Paediatrics and Medical Microbiology, 2nd Faculty of Medicine, Charles University Prague, Czech Republic.
| | - Arzu Sayiner
- Dokuz Eylul University, Faculty of Medicine, Department of Medical Microbiology, Division of Medical Virology. Izmir, Turkey.
| | - Tina Vasehus Madsen
- Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark.
| | - Eeva Auvinen
- Department of Virology, Helsinki University Hospital Laboratory and University of Helsinki, Helsinki, Finland.
| | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | - Christophe Rodriguez
- Microbiology Department and NGS Platform, University Hospital Henri Mondor (APHP), Créteil, France.
| | - Marcel Jonges
- Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory of Experimental Virology, Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Mario Hönemann
- Institute of Virology, Leipzig University, Leipzig, Germany.
| | - Petri Susi
- Institute of Biomedicine, University of Turku, Finland.
| | - Hugo Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.
| | - Paul E Klapper
- Faculty of Biology, Medicine, and Health, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom.
| | - Alba Pérez-Cataluňa
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Paterna, Valencia, Spain.
| | - Marta Hernandez
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnologico Agrario de Castilla y Leon, Valladolid, Spain.
| | - Richard Molenkamp
- ErasmusMC, Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Lia van der Hoek
- Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory of Experimental Virology, Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Rob Schuurman
- Department of Virology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | - Karoline Leuzinger
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany.
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany.
| | - Sergio Kamminga
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| | - Els Keyaerts
- Laboratorium Klinische en Epidemiologische Virologie (Rega Instituut), Leuven, Belgium.
| | - Xiaohui Chen Nielsen
- Department of Clinical Microbiology, University Hospital of Region Zealand, Slagelse, Denmark.
| | | | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Javier Buesa
- Department of Microbiology and Ecology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| | - Judy Breuer
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom.
| | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jutte J C de Vries
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Loew L, Goonawardane N, Ratcliff J, Nguyen D, Simmonds P. Use of a small DNA virus model to investigate mechanisms of CpG dinucleotide-induced attenuation of virus replication. J Gen Virol 2020; 101:1202-1218. [PMID: 32783803 PMCID: PMC7879557 DOI: 10.1099/jgv.0.001477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023] Open
Abstract
Suppression of the CpG dinucleotide is widespread in RNA viruses infecting vertebrates and plants, and in the genomes of retroviruses and small mammalian DNA viruses. The functional basis for CpG suppression in the latter was investigated through the construction of mutants of the parvovirus, minute virus of mice (MVM) with increased CpG or TpA dinucleotides in the VP gene. CpG-high mutants displayed extraordinary attenuation in A9 cells compared to wild-type MVM (>six logs), while TpA elevation showed no replication effect. Attenuation was independent of Toll-like receptor 9 and STING-mediated DNA recognition pathways and unrelated to effects on translation efficiency. While translation from codon-optimized VP RNA was enhanced in a cell-free assay, MVM containing this sequence was highly attenuated. Further mutational analysis indicated that this arose through its increased numbers of CpG dinucleotides (7→70) and separately from its increased G+C content (42.3→57.4 %), which independently attenuated replication. CpG-high viruses showed impaired NS mRNA expression by qPCR and reduced NS and particularly VP protein expression detected by immunofluorescence and replication in A549 cells, effects reversed in zinc antiviral protein (ZAP) knockout cells, even though nuclear relocalization of VP remained defective. The demonstrated functional basis for CpG suppression in MVM and potentially other small DNA viruses and the observed intolerance of CpGs in coding sequences, even after codon optimization, has implications for the use of small DNA virus vectors in gene therapy and immunization.
Collapse
Affiliation(s)
- Lisa Loew
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Present address: Clinical Biomanufacturing Facility, University of Oxford, Old Road, Headington, Oxford OX3 7BN, UK
| | - Niluka Goonawardane
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Jeremy Ratcliff
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Dung Nguyen
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
22
|
Wnuk M, Slipek P, Dziedzic M, Lewinska A. The Roles of Host 5-Methylcytosine RNA Methyltransferases during Viral Infections. Int J Mol Sci 2020; 21:E8176. [PMID: 33142933 PMCID: PMC7663479 DOI: 10.3390/ijms21218176] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic 5-methylcytosine RNA methyltransferases catalyze the transfer of a methyl group to the fifth carbon of a cytosine base in RNA sequences to produce 5-methylcytosine (m5C). m5C RNA methyltransferases play a crucial role in the maintenance of functionality and stability of RNA. Viruses have developed a number of strategies to suppress host innate immunity and ensure efficient transcription and translation for the replication of new virions. One such viral strategy is to use host m5C RNA methyltransferases to modify viral RNA and thus to affect antiviral host responses. Here, we summarize the latest findings concerning the roles of m5C RNA methyltransferases, namely, NOL1/NOP2/SUN domain (NSUN) proteins and DNA methyltransferase 2/tRNA methyltransferase 1 (DNMT2/TRDMT1) during viral infections. Moreover, the use of m5C RNA methyltransferase inhibitors as an antiviral therapy is discussed.
Collapse
Affiliation(s)
- Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland; (P.S.); (M.D.)
| | | | | | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland; (P.S.); (M.D.)
| |
Collapse
|
23
|
Pereira De Oliveira R, Lucas P, Chastagner A, De Boisseson C, Vial L, Le Potier MF, Blanchard Y. Evaluation of un-methylated DNA enrichment in sequencing of African swine fever virus complete genome. J Virol Methods 2020; 285:113959. [PMID: 32828806 DOI: 10.1016/j.jviromet.2020.113959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
African swine fever is a febrile hemorrhagic fever disease that is caused by the African swine fever virus (ASFV) and is lethal for domestic pigs and wild boar. ASFV also infects soft ticks of the genus Ornithodoros, some species of which can act as a vector for ASFV. Whole genome sequencing of ASFV is a challenge because, due to the size difference of the host genome versus the viral genome, the higher proportion of host versus virus DNA fragments renders the virus sequencing poorly efficient. A novel approach of DNA enrichment, based on the separation of methylated and un-methylated DNA, has been reported but without an evaluation of its efficacy. In this study, the efficiency of the un-methylated DNA enrichment protocol was evaluated for pig and tick samples infected by ASFV. As expected, fewer reads corresponding to ASFV were found in the methylated fraction compared to the un-methylated fraction. However, the sequencing coverage of the un-methylated fraction was not improved compared to the untreated DNA. In our hands, the ASFV DNA enrichment was inefficient for tick samples and very limited for pig samples. This enrichment process represents extra work and cost without a significant improvement of ASFV genome coverage. The efficiency of this enrichment approach and the cost/benefit ratio are discussed.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France; UMR ASTRE, CIRAD, Campus International de Baillarguet, F-34398, Montpellier, France; UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Campus International de Baillarguet, F-34398, Montpellier, France
| | - Pierrick Lucas
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Amélie Chastagner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Claire De Boisseson
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Laurence Vial
- UMR ASTRE, CIRAD, Campus International de Baillarguet, F-34398, Montpellier, France; UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Campus International de Baillarguet, F-34398, Montpellier, France
| | | | - Yannick Blanchard
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France.
| |
Collapse
|
24
|
Abstract
DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses' fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses' methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.
Collapse
|
25
|
Caudill VR, Qin S, Winstead R, Kaur J, Tisthammer K, Pineda EG, Solis C, Cobey S, Bedford T, Carja O, Eggo RM, Koelle K, Lythgoe K, Regoes R, Roy S, Allen N, Aviles M, Baker BA, Bauer W, Bermudez S, Carlson C, Castellanos E, Catalan FL, Chemel AK, Elliot J, Evans D, Fiutek N, Fryer E, Goodfellow SM, Hecht M, Hopp K, Hopson ED, Jaberi A, Kinney C, Lao D, Le A, Lo J, Lopez AG, López A, Lorenzo FG, Luu GT, Mahoney AR, Melton RL, Nascimento GD, Pradhananga A, Rodrigues NS, Shieh A, Sims J, Singh R, Sulaeman H, Thu R, Tran K, Tran L, Winters EJ, Wong A, Pennings PS. CpG-creating mutations are costly in many human viruses. Evol Ecol 2020; 34:339-359. [PMID: 32508375 PMCID: PMC7245597 DOI: 10.1007/s10682-020-10039-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
Mutations can occur throughout the virus genome and may be beneficial, neutral or deleterious. We are interested in mutations that yield a C next to a G, producing CpG sites. CpG sites are rare in eukaryotic and viral genomes. For the eukaryotes, it is thought that CpG sites are rare because they are prone to mutation when methylated. In viruses, we know less about why CpG sites are rare. A previous study in HIV suggested that CpG-creating transition mutations are more costly than similar non-CpG-creating mutations. To determine if this is the case in other viruses, we analyzed the allele frequencies of CpG-creating and non-CpG-creating mutations across various strains, subtypes, and genes of viruses using existing data obtained from Genbank, HIV Databases, and Virus Pathogen Resource. Our results suggest that CpG sites are indeed costly for most viruses. By understanding the cost of CpG sites, we can obtain further insights into the evolution and adaptation of viruses.
Collapse
Affiliation(s)
- Victoria R. Caudill
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Biology, University of Oregon, Eugene, OR USA
| | - Sarina Qin
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Quantitative Systems Biology, Univeristy of California, Merced, CA USA
| | - Ryan Winstead
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Jasmeen Kaur
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Kaho Tisthammer
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - E. Geo Pineda
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Caroline Solis
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Oana Carja
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
| | - Rosalind M. Eggo
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA USA
| | | | - Roland Regoes
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Scott Roy
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Nicole Allen
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Milo Aviles
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Brittany A. Baker
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - William Bauer
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Shannel Bermudez
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Corey Carlson
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Edgar Castellanos
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Francisca L. Catalan
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Neurological Surgery, University of California, San Francisco, CA USA
| | | | - Jacob Elliot
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Dwayne Evans
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Emily Fryer
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA USA
| | - Samuel Melvin Goodfellow
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Health Sciences Center, University of New Mexico, Albuquerque, NM USA
| | - Mordecai Hecht
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Kellen Hopp
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - E. Deshawn Hopson
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Amirhossein Jaberi
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Christen Kinney
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Derek Lao
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Adrienne Le
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Jacky Lo
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Alejandro G. Lopez
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Andrea López
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Fernando G. Lorenzo
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Gordon T. Luu
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Andrew R. Mahoney
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Rebecca L. Melton
- Department of Biology, San Francisco State University, San Francisco, CA USA
- UCSD Biomed Sciences PhD Program, University of California, San Diego, CA USA
| | | | - Anjani Pradhananga
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Nicole S. Rodrigues
- Department of Biology, San Francisco State University, San Francisco, CA USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA USA
| | - Annie Shieh
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Jasmine Sims
- Department of Biology, San Francisco State University, San Francisco, CA USA
- UCSF Tetrad Graduate Program, University of California, San Francisco, CA USA
| | - Rima Singh
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Hasan Sulaeman
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Ricky Thu
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Krystal Tran
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Livia Tran
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | | | - Albert Wong
- Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, CA USA
| |
Collapse
|
26
|
Hofmann-Sieber H, Gonzalez G, Spohn M, Dobner T, Kajon AE. Genomic and phylogenetic analysis of two guinea pig adenovirus strains recovered from archival lung tissue. Virus Res 2020; 285:197965. [PMID: 32311385 DOI: 10.1016/j.virusres.2020.197965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022]
Abstract
Next generation sequencing was used to determine the whole genome sequence for two different strains of guinea pig adenovirus (GPAdV) detected in association with outbreaks of pneumonia in Australia in 1996, and in Germany in 1997 using total DNA extracted from infected archival frozen lung tissue as a template. The length of the determined genomic sequences was 37,031 bp and 37,070 bp, respectively. The nucleotide composition showed a relatively high content of guanine + cytosine (G + C) of 62 %. The 99.6 % nucleotide identity between the two sequenced viruses suggests that they may represent variants of the same genotype. The GPAdV genome exhibits the genomic features of a typical mastadenovirus with at least 32 open reading frames identified. Five novel open reading frames were found at the right end of the genomic sequence. One of them maps to the predicted E3 region and encodes a putative CR1 protein, two map to the E4 region, and two map to the l strand of L1 and L3, respectively. Our phylogenetic analysis of whole genome sequences showed that among the mammalian AdV species described to date, GPAdV is most closely related to MAdV-2 The characterization of this mastadenovirus species offers an opportunity to develop a new small animal model to study mammalian adenovirus pathogenesis.
Collapse
Affiliation(s)
- Helga Hofmann-Sieber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adriana E Kajon
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
27
|
Jia L, Chen J, Liu H, Fan W, Wang D, Li J, Liu D. Potential m6A and m5C Methylations within the Genome of A Chinese African Swine Fever Virus Strain. Virol Sin 2020; 36:321-324. [PMID: 32270427 DOI: 10.1007/s12250-020-00217-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/07/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
- Lijia Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,African Swine Fever Regional Laboratory of China, Wuhan, 430071, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,African Swine Fever Regional Laboratory of China, Wuhan, 430071, China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Fertey J, Hagmann J, Ruscheweyh HJ, Munk C, Kjaer S, Huson D, Haedicke-Jarboui J, Stubenrauch F, Iftner T. Methylation of CpG 5962 in L1 of the human papillomavirus 16 genome as a potential predictive marker for viral persistence: A prospective large cohort study using cervical swab samples. Cancer Med 2019; 9:1058-1068. [PMID: 31856411 PMCID: PMC6997067 DOI: 10.1002/cam4.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Several studies have demonstrated that the viral genome can be methylated by the host cell during progression from persistent infection to cervical cancer. The aim of this study was to investigate whether methylation at a specific site could predict the development of viral persistence and whether viral load shows a correlation with specific methylation patterns. HPV16‐positive samples from women aged 20–29 years (n = 99) with a follow‐up time of 13 years, were included from a Danish cohort comprising 11 088 women. Viral load was measured by real‐time PCR and methylation status was determined for 39 CpG sites in the upstream regulatory region (URR), E6/E7, and L1 region of HPV16 by next‐generation sequencing. Participants were divided into two groups according to whether they were persistently (≥ 24 months) or transiently HPV16 infected. The general methylation status was significantly different between women with a persistent and women with a transient infection outcome (P = .025). One site located in L1 (nt. 5962) was statistically significantly (P = .00048) different in the methylation status after correction using the Holm‐Sidak method (alpha = 0.05). Correlation analyses of samples from HPV16 persistently infected women suggest that methylation is higher although viral load is lower. This study indicates that methylation at position 5962 of the HPV16 genome within the L1 gene might be a predictive marker for the development of a persistent HPV16 infection.
Collapse
Affiliation(s)
- Jasmin Fertey
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | | | - Christian Munk
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne Kjaer
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel Huson
- Centre for Bioinformatics, Tuebingen University, Tuebingen, Germany
| | - Juliane Haedicke-Jarboui
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Medical Virology, Institute of Medical Virology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
Methylation Status of the Adeno-Associated Virus Type 2 (AAV2). Viruses 2019; 11:v11010038. [PMID: 30634383 PMCID: PMC6356613 DOI: 10.3390/v11010038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
To analyze the methylation status of wild-type adeno-associated virus type 2 (AAV2), bisulfite PCR sequencing (BPS) of the packaged viral genome and its integrated form was performed and 262 of the total 266 CG dinucleotides (CpG) were mapped. In virion-packaged DNA, the ratio of the methylated cytosines ranged between 0⁻1.7%. In contrast, the chromosomally integrated AAV2 genome was hypermethylated with an average of 76% methylation per CpG site. The methylation level showed local minimums around the four known AAV2 promoters. To study the effect of methylation on viral rescue and replication, the replication initiation capability of CpG methylated and non-CpG methylated AAV DNA was compared. The in vitro hypermethylation of the viral genome does not inhibit its rescue and replication from a plasmid transfected into cells. This insensitivity of the viral replicative machinery to methylation may permit the rescue of the integrated heavily methylated AAV genome from the host's chromosomes.
Collapse
|
30
|
Jankowski J, Tykałowski B, Ognik K, Koncicki A, Kubińska M, Zduńczyk Z. The effect of different dietary levels of DL-methionine and DL-hydroxy analogue on the antioxidant status of young turkeys infected with the haemorrhagic enteritis virus. BMC Vet Res 2018; 14:404. [PMID: 30558623 PMCID: PMC6296110 DOI: 10.1186/s12917-018-1727-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/30/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The results of experiments involving broiler chickens and turkeys indicate that increased dietary methionine (Met) levels may improve the antioxidant protection of tissues in fast-growing birds. This is an important consideration since viral infections induce oxidative stress. The aim of this study was to verify the hypothesis that turkey diets with increased Met content can suppress oxidation processes induced by infection caused by the haemorrhagic enteritis virus (HEV), and that the noted effect is determined by the chemical form of this amino acid: DL-methionine (DLM) or DL-hydroxy analogue of Met (MHA). RESULTS Dietary Met content above 40% higher than the level recommended by the NRC (1994) intensified lipid peroxidation in the small intestine, leading to an increase in malondialdehyde (MDA) and lipid peroxide (LOOH) levels, but it also stimulated antioxidant mechanisms in the blood and liver of turkeys infected with HEV. In comparison with DLM, MHA contributed to more severe symptoms of oxidative stress, such as elevated MDA levels in the intestines, and a decrease in glutathione peroxidase (GPx) activity and ferric-reducing ability of plasma (FRAP). CONCLUSIONS In HEV-infected turkeys, diets with increased Met content did not exert a clear antioxidant effect, which was noted in uninfected birds. The prooxidant activity of Met observed in the small intestinal wall was suppressed in the blood and liver of turkeys, most likely due to intensified synthesis of uric acid and glutathione. In comparison with MHA, DLM had a more beneficial influence on the analysed parameters of the redox status in the small intestine, blood and liver of turkeys.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Science in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Magdalena Kubińska
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Zenon Zduńczyk
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
31
|
Fiano V, Trevisan M, Fasanelli F, Grasso C, Marabese F, da Graça Bicalho M, de Carvalho NS, Maestri CA, Merletti F, Sacerdote C, De Marco L, Gillio-Tos A. Methylation in host and viral genes as marker of aggressiveness in cervical lesions: Analysis in 543 unscreened women. Gynecol Oncol 2018; 151:319-326. [PMID: 30172480 DOI: 10.1016/j.ygyno.2018.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study aimed to evaluate the association between altered methylation and histologically confirmed high grade cervical intraepithelial neoplasia (hgCIN). METHODS Methylation levels in selected host (CADM1, MAL, DAPK1) and HPV (L1_I, L1_II, L2) genes were measured by pyrosequencing in DNA samples obtained from 543 women recruited in Curitiba (Brazil), 249 with hgCIN and 294 without cervical lesions. Association of methylation status with hgCIN was estimated by Odds Ratio (OR) with 95% confidence interval (CI). RESULTS The mean methylation level increased with severity of the lesion in the host and viral genes (p-trend < 0.05), with the exception of L1_II region (p-trend = 0.075). Positive association was found between methylation levels for host genes and CIN2 and CIN3 lesions respectively [CADM1: OR 4.17 (95%CI 2.03-8.56) and OR 9.54 (95%CI 4.80-18.97); MAL: OR 5.98 (95%CI 2.26-15.78) and OR 22.66 (95%CI 9.21-55.76); DAPK1: OR 3.37 (95%CI 0.93-12.13) and OR 6.74 (95%CI 1.92-23.64)]. Stronger risk estimates were found for viral genes [L1_I: OR 10.74 (95%CI 2.66-43.31) and OR 15.00 (95%CI 3.00-74.98); L1_II: OR 73.18 (95%CI 4.07-1315.94) and OR 32.50 (95%CI 3.86-273.65); L2: OR 4.73 (95%CI 1.55-14.44) and OR 10.62 (95%CI 2.60-43.39)]. The cumulative effect of the increasing number of host and viral methylated genes was associated with the risk of CIN2 and CIN3 lesions (p-trend < 0.001). CONCLUSIONS Our results, empowered by a wide cervical sample series with a large number of hgCIN, supported the role of methylation as marker of aggressiveness.
Collapse
Affiliation(s)
- Valentina Fiano
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| | - Morena Trevisan
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| | - Francesca Fasanelli
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| | - Chiara Grasso
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| | - Federica Marabese
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| | - Maria da Graça Bicalho
- Laboratory of Immunogenetics and Hystocompatibility (LIGH), Federal University of Paranà, Rua XV de Novembro, 1299, Curitiba, PR 80060-000, Brazil.
| | - Newton S de Carvalho
- Department of Gynecology and Obstetrics, Federal University of Paraná, Infectious Diseases in Gynecology and Obstetrics Sector, Hospital de Clínicas, Rua XV de Novembro, 1299, Curitiba, PR 80060-000, Brazil.
| | - Carlos A Maestri
- Department of Cervical Pathology, Hospital Erasto Gaertner, Curitiba, R. Dr. Ovande do Amaral, 201 - Jardim das Americas, Curitiba, PR 81520-060, Brazil.
| | - Franco Merletti
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy; Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy.
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy.
| | - Laura De Marco
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy; Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126 Turin, Italy.
| | - Anna Gillio-Tos
- Unit of Cancer Epidemiology-CeRMS, Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| |
Collapse
|
32
|
Cellular Antisilencing Elements Support Transgene Expression from Herpes Simplex Virus Vectors in the Absence of Immediate Early Gene Expression. J Virol 2018; 92:JVI.00536-18. [PMID: 29950408 DOI: 10.1128/jvi.00536-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/13/2018] [Indexed: 01/22/2023] Open
Abstract
Inactivation of all herpes simplex virus (HSV) immediate early (IE) genes to eliminate vector cytotoxicity results in rapid silencing of the viral genome, similar to the establishment of HSV latency. We recently reported that silencing of a nonviral reporter cassette could be overcome in nonneuronal cells by positioning the cassette in the viral latency (LAT) locus between resident chromatin boundary elements. Here, we tested the abilities of the chicken hypersensitive site 4 insulator and the human ubiquitous chromatin opening element A2UCOE to promote transgene expression from an IE-gene-inactivated HSV vector. We found that A2UCOE was particularly active in nonneuronal cells and reduced reporter promoter occupancy by a repressive histone mark. We determined whether multiple transgenes could be expressed under the control of different promoters from different loci of the same virus. The results showed abundant coexpression of LAT-embedded and A2UCOE-flanked genes in nonneuronal cells. In addition, a third reporter gene without known protective elements was active in cultured rat sensory neurons. These findings indicate that cellular antisilencing sequences can contribute to the expression of multiple genes from separate promoters in fully IE gene-disabled HSV vectors, providing an opportunity for therapeutic applications requiring mutually independent expression of different gene products from a single vector.IMPORTANCE Gene therapy has now entered a phase of development in which a growing number of recessive single gene defects can be successfully treated by vector-mediated introduction of a wild-type copy of the gene into the appropriate tissue. However, many disease conditions, such as neurodegeneration, cancer, and inflammatory processes, are more complex, requiring either multiple gene corrections or provision of coordinated gene activities to achieve a therapeutic outcome. Although herpes simplex virus (HSV) vectors have the capacity to meet this need, the challenge has been to genetically engineer the HSV genome in a manner to prevent expression of any viral genes while retaining the ability to express multiple therapeutic transgenes under independent transcriptional control. Here, we show that non-HSV insulator elements can be applied to retain at least transient transgene activity from multiple viral loci, thereby opening the door for more complex gene therapy applications in the future.
Collapse
|
33
|
Salloum N, Hussein HM, Jammaz R, Jiche S, Uthman IW, Abdelnoor AM, Rahal EA. Epstein-Barr virus DNA modulates regulatory T-cell programming in addition to enhancing interleukin-17A production via Toll-like receptor 9. PLoS One 2018; 13:e0200546. [PMID: 29995930 PMCID: PMC6040775 DOI: 10.1371/journal.pone.0200546] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with the Epstein-Barr virus (EBV) has been associated with several autoimmune diseases including rheumatoid arthritis (RA). We have previously reported that DNA from this virus enhances production of the pro-autoimmune interleukin 17A (IL-17A) in mice. In this study we assessed the effect of EBV DNA on regulatory T cell programming and examined whether it mediated its effects via Toll-like receptor 9 (TLR9) in mice; moreover, we evaluated whether EBV DNA in humans had similar effects to those seen in mice. For this purpose, we assessed the linearity of the correlation between EBV DNA and IL-17A levels in RA subjects and matched controls. A modulatory effect for the viral DNA was observed for regulatory T cell markers with an inhibitory effect observed for CTLA4 expression in the EBV DNA-treated mice. To examine whether TLR9 mediated the detection of EBV DNA and enhancement of IL-17A production, mouse peripheral blood mononuclear cells were treated with the DNA in the presence or absence of the TLR9 inhibitor ODN 2088. Subsequently, IL-17A production from these cells was assessed. Treatment with the TLR9 inhibitor resulted in a significant decrease in IL-17A production indicating that TLR9 is involved in this pathway. In human subjects, examining the linearity of the correlation between EBV DNA and IL-17A levels in RA subjects showed a propensity for linearity that was not observed in controls. Our data thus indicates that EBV DNA itself acts as a modulator of the Th17 compartment as well as that of regulatory T cell mechanisms. The involvement of TLR9 in the EBV DNA-triggered induction of IL-17A suggests therapeutic targeting of this endosomal receptor in EBV positive subjects with an autoimmune flare-up or possibly for prophylactic purposes.
Collapse
Affiliation(s)
- Noor Salloum
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hadi M. Hussein
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Rana Jammaz
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Sara Jiche
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Imad W. Uthman
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alexander M. Abdelnoor
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
34
|
Franzo G, Segales J, Tucciarone CM, Cecchinato M, Drigo M. The analysis of genome composition and codon bias reveals distinctive patterns between avian and mammalian circoviruses which suggest a potential recombinant origin for Porcine circovirus 3. PLoS One 2018; 13:e0199950. [PMID: 29958294 PMCID: PMC6025852 DOI: 10.1371/journal.pone.0199950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023] Open
Abstract
Members of the genus Circovirus are host-specific viruses, which are totally dependent on cell machinery for their replication. Consequently, certain mimicry of the host genome features is expected to maximize cellular replicative system exploitation and minimize the recognition by the innate immune system. In the present study, the analysis of several genome composition and codon bias parameters of circoviruses infecting avian and mammalian species demonstrated the presence of quite distinctive patterns between the two groups. Remarkably, a higher deviation from the expected values based only on mutational patterns was observed for mammalian circoviruses both at dinucleotide and codon levels. Accordingly, a stronger selective pressure was estimated to shape the genome of mammalian circoviruses, particularly in the Cap encoding gene, compared to avian circoviruses. These differences could be attributed to different physiological and immunological features of the two host classes and suggest a trade-off between a tendency to optimize the capsid protein translation while minimizing the recognition of the genome and the transcript molecules. Interestingly, the recently identified Porcine circovirus 3 (PCV-3) had an intermediate pattern in terms of genome composition and codon bias. Particularly, its Rep gene appeared closely related to other mammalian circoviruses (especially bat circoviruses) while the Cap gene more closely resembled avian circoviruses. These evidences, coupled with the high selective forces apparently modelling the PCV-3 Cap gene composition, suggest the potential recombinant origin, followed or preceded by a host jump, of this virus.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
- * E-mail:
| | - Joaquim Segales
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| |
Collapse
|
35
|
Yang L, Wang L, Ketkar H, Ma J, Yang G, Cui S, Geng T, Mordue DG, Fujimoto T, Cheng G, You F, Lin R, Fikrig E, Wang P. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun 2018; 9:2329. [PMID: 29899553 PMCID: PMC5998066 DOI: 10.1038/s41467-018-04759-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b-/-, like Sting-/- mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b+/+ littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b-/- primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses.
Collapse
Affiliation(s)
- Long Yang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0004 1936 8649grid.14709.3bLady Davis Institute-Jewish General Hospital, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E2 Canada
| | - Leilei Wang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0000 9678 1884grid.412449.eDepartment of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 110004 Shenyang City, Liaoning Province China
| | - Harshada Ketkar
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Jinzhu Ma
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0004 1808 3449grid.412064.5College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing City, Heilongjiang Province China
| | - Guang Yang
- 0000 0004 1790 3548grid.258164.cDepartment of Parasitology, School of Medicine, Jinan University, 510610 Guangzhou City, Guangdong Province China
| | - Shuang Cui
- 0000 0001 2256 9319grid.11135.37Beijing Key Laboratory of Tumor Systems Biology, Department of Immunology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Tingting Geng
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Dana G. Mordue
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Toyoshi Fujimoto
- 0000 0001 0943 978Xgrid.27476.30Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan
| | - Gong Cheng
- 0000 0001 0662 3178grid.12527.33Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Fuping You
- 0000 0001 2256 9319grid.11135.37Beijing Key Laboratory of Tumor Systems Biology, Department of Immunology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Rongtuan Lin
- 0000 0004 1936 8649grid.14709.3bLady Davis Institute-Jewish General Hospital, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E2 Canada
| | - Erol Fikrig
- 0000000419368710grid.47100.32Section of Infectious Diseases, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815 USA
| | - Penghua Wang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| |
Collapse
|
36
|
Assessment of viral methylation levels for high risk HPV types by newly designed consensus primers PCR and pyrosequencing. PLoS One 2018; 13:e0194619. [PMID: 29579066 PMCID: PMC5868804 DOI: 10.1371/journal.pone.0194619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/06/2018] [Indexed: 12/05/2022] Open
Abstract
Background Measuring viral DNA methylation in human papillomavirus (HPV) infected women showed promise for accurate detection of high-grade cervical lesions and cancer. Methylation status has been widely investigated for HPV16, sporadically for other HPV types. Methods Objective of this methodological study was to set up molecular methods to test the methylation levels in the twelve oncogenic HPV types by pyrosequencing, minimizing the number of HPV type-specific PCR protocols. Target CpGs were selected on the HPV L1 (two regions, L1 I and L1 II) and L2 genes. Study samples included DNA stored at Turin, Italy, purified by cervical cells collected in Standard Transport Medium or PreservCyt from women who participated in two studies (N = 126 and 140) nested within the regional organized screening programme. PCR consensus primers were designed by PyroMark Assay Design software to be suitable for amplification of many different oncogenic HPV types. Results Generation of consensus primers was successful for L1 I and II regions, unsuccessful for L2 region, for which HPV type-specific primers remained necessary. The difference between replicated tests on the same sample was ≤4% in 88%, 77% and 91% of cases when targeting the L1 I, L1 II and L2 regions, respectively. The corresponding intra-class correlation coefficients (ICC) were 0.94, 0.87 and 0.97 respectively. When comparing methylation measures based on consensus and type-specific primers, ICC was 0.97 for the L1 I region and 0.99 the for L1 II region. Conclusions The proposed protocols, applying consensus primers suitable to amplify the oncogenic HPV types and minimize the number of PCR reactions, represent a promising tool to quantify viral methylation in women positive for any high risk HPV type. Impact Potential application of these methylation protocols in screening settings can be explored to identify women with high probability of progression to high grade lesions.
Collapse
|
37
|
DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis. Viruses 2018; 10:v10020082. [PMID: 29438328 PMCID: PMC5850389 DOI: 10.3390/v10020082] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.
Collapse
|
38
|
Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017; 9:v9120393. [PMID: 29261104 PMCID: PMC5744167 DOI: 10.3390/v9120393] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.
Collapse
Affiliation(s)
- István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | | | - Peter Tijssen
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC H7V 1B7, Canada.
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| |
Collapse
|
39
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses 2017; 9:v9080233. [PMID: 28825669 PMCID: PMC5580490 DOI: 10.3390/v9080233] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
Collapse
|
41
|
Tan B, Yang XL, Ge XY, Peng C, Liu HZ, Zhang YZ, Zhang LB, Shi ZL. Novel bat adenoviruses with low G+C content shed new light on the evolution of adenoviruses. J Gen Virol 2017; 98:739-748. [PMID: 28475035 DOI: 10.1099/jgv.0.000739] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bats have been reported to carry diverse adenoviruses. However, most bat adenoviruses have been identified on the basis of partial genome sequences, and knowledge on the evolution of bat adenoviruses remains limited. In this study, we isolated and characterized four novel adenoviruses from two distinct bat species, and their full-length genomes were sequenced. Sequence analysis revealed that these isolates represented three distinct species of the genus Mastadenovirus. However, all isolates had an exceptionally low G+C content and relatively short genomes compared with other known mastadenoviruses. We further analysed the relationships among the G+C content, 5'-C-phosphate-G-3' (CpG) representation and genome size in the family Adenoviridae. Our results revealed that the CpG representation in adenoviral genomes depends primarily on the level of methylation, and the genome size displayed significant positive correlations with both G+C content and CpG representation. Since ancestral adenoviruses are believed to have contained short genomes, those probably had a low G+C content, similar to the genomes of these bat strains. Our results suggest that bats are important natural reservoirs for adenoviruses and play important roles in the evolution of adenoviruses.
Collapse
Affiliation(s)
- Bing Tan
- University of Chinese Academy of Sciences, Beijing, PR China.,CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases of Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases of Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xing-Yi Ge
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases of Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Cheng Peng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases of Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Hai-Zhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases of Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, PR China
| | - Li-Biao Zhang
- Guangdong Institute of Applied Biological Resource, Guangzhou, PR China
| | - Zheng-Li Shi
- University of Chinese Academy of Sciences, Beijing, PR China.,CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases of Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
42
|
Human Herpesvirus 6B Induces Hypomethylation on Chromosome 17p13.3, Correlating with Increased Gene Expression and Virus Integration. J Virol 2017; 91:JVI.02105-16. [PMID: 28298607 DOI: 10.1128/jvi.02105-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a neurotropic betaherpesvirus that achieves latency by integrating its genome into host cell chromosomes. Several viruses can induce epigenetic modifications in their host cells, but no study has investigated the epigenetic modifications induced by HHV-6B. This study analyzed methylation with an Illumina 450K array, comparing HHV-6B-infected and uninfected Molt-3 T cells 3 days postinfection. Bisulfite pyrosequencing was used to validate the Illumina results and to investigate methylation over time in vitro Expression of genes was investigated using quantitative PCR (qPCR), and virus integration was investigated with PCR. A total of 406 CpG sites showed a significant HHV-6B-induced change in methylation in vitro Remarkably, 86% (351/406) of these CpGs were located <1 Mb from chromosomal ends and were all hypomethylated in virus-infected cells. This was most evident at chromosome 17p13.3, where HHV-6B had induced CpG hypomethylation after 2 days of infection, possibly through TET2, which was found to be upregulated by the virus. In addition, virus-induced cytosine hydroxymethylation was observed. Genes located in the hypomethylated region at 17p13.3 showed significantly upregulated expression in HHV-6B-infected cells. A temporal experiment revealed HHV-6B integration in Molt-3 cell DNA 3 days after infection. The telomere at 17p has repeatedly been described as an integration site for HHV-6B, and we show for the first time that HHV-6B induces hypomethylation in this region during acute infection, which may play a role in the integration process, possibly by making the DNA more accessible.IMPORTANCE The ability to establish latency in the host is a hallmark of herpesviruses, but the mechanisms differ. Human herpesvirus 6B (HHV-6B) is known to establish latency through integration of its genome into the telomeric regions of host cells, with the ability to reactivate. Our study is the first to show that HHV-6B specifically induces hypomethylated regions close to the telomeres and that integrating viruses may use the host methylation machinery to facilitate their integration process. The results from this study contribute to knowledge of HHV-6B biology and virus-host interaction. This in turn will lead to further progress in our understanding of the underlying mechanisms by which HHV-6B contributes to pathological processes and may have important implications in both disease prevention and treatment.
Collapse
|
43
|
Sievers A, Bosiek K, Bisch M, Dreessen C, Riedel J, Froß P, Hausmann M, Hildenbrand G. K-mer Content, Correlation, and Position Analysis of Genome DNA Sequences for the Identification of Function and Evolutionary Features. Genes (Basel) 2017; 8:E122. [PMID: 28422050 PMCID: PMC5406869 DOI: 10.3390/genes8040122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/24/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
In genome analysis, k-mer-based comparison methods have become standard tools. However, even though they are able to deliver reliable results, other algorithms seem to work better in some cases. To improve k-mer-based DNA sequence analysis and comparison, we successfully checked whether adding positional resolution is beneficial for finding and/or comparing interesting organizational structures. A simple but efficient algorithm for extracting and saving local k-mer spectra (frequency distribution of k-mers) was developed and used. The results were analyzed by including positional information based on visualizations as genomic maps and by applying basic vector correlation methods. This analysis was concentrated on small word lengths (1 ≤ k ≤ 4) on relatively small viral genomes of Papillomaviridae and Herpesviridae, while also checking its usability for larger sequences, namely human chromosome 2 and the homologous chromosomes (2A, 2B) of a chimpanzee. Using this alignment-free analysis, several regions with specific characteristics in Papillomaviridae and Herpesviridae formerly identified by independent, mostly alignment-based methods, were confirmed. Correlations between the k-mer content and several genes in these genomes have been found, showing similarities between classified and unclassified viruses, which may be potentially useful for further taxonomic research. Furthermore, unknown k-mer correlations in the genomes of Human Herpesviruses (HHVs), which are probably of major biological function, are found and described. Using the chromosomes of a chimpanzee and human that are currently known, identities between the species on every analyzed chromosome were reproduced. This demonstrates the feasibility of our approach for large data sets of complex genomes. Based on these results, we suggest k-mer analysis with positional resolution as a method for closing a gap between the effectiveness of alignment-based methods (like NCBI BLAST) and the high pace of standard k-mer analysis.
Collapse
Affiliation(s)
- Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Katharina Bosiek
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Marc Bisch
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Chris Dreessen
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Jascha Riedel
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Patrick Froß
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany.
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
44
|
Rosca A, Anton G, Ene L, Iancu I, Temereanca A, Achim CL, Ruta SM. Immunoassay and molecular methods to investigate DNA methylation changes in peripheral blood mononuclear cells in HIV infected patients on cART. J Immunoassay Immunochem 2016; 38:299-307. [PMID: 27854146 PMCID: PMC5679203 DOI: 10.1080/15321819.2016.1260587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the influence of antiretroviral therapy on methylation markers, in a group of HIV infected, heavily treated patients. Immune and molecular methods were used to investigate potential changes in methylation profile in DNA isolated from peripheral blood mononuclear cells collected from antiretroviral-experienced HIV infected patients and healthy controls. The percentage of 5-methylcytosine was inversely correlated with proviral DNA and active replication while DNMT1 (p = 0.01) and DNMT3A (p = 0.004) independently correlated with active viral replication. DNMT3A expression increased with total treatment duration (p = 0.03), number of antiretroviral drugs ever used (p = 0.003), and cumulative exposure to protease inhibitors (p = 0.02) even in currently HIV undetectable patients.
Collapse
Affiliation(s)
- Adelina Rosca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Gabriela Anton
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Luminita Ene
- c Infectious Diseases Department , Victor Babes Hospital for Infectious and Tropical Diseases , Bucharest , Romania
| | - Iulia Iancu
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Aura Temereanca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Cristian L Achim
- d Department of Psychiatry , University of California , San Diego , California
| | - Simona M Ruta
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| |
Collapse
|
45
|
Genome-Wide Estimation of the Spontaneous Mutation Rate of Human Adenovirus 5 by High-Fidelity Deep Sequencing. PLoS Pathog 2016; 12:e1006013. [PMID: 27824949 PMCID: PMC5100877 DOI: 10.1371/journal.ppat.1006013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Rates of spontaneous mutation determine the ability of viruses to evolve, infect new hosts, evade immunity and undergo drug resistance. Contrarily to RNA viruses, few mutation rate estimates have been obtained for DNA viruses, because their high replication fidelity implies that new mutations typically fall below the detection limits of Sanger and standard next-generation sequencing. Here, we have used a recently developed high-fidelity deep sequencing technique (Duplex Sequencing) to score spontaneous mutations in human adenovirus 5 under conditions of minimal selection. Based on >200 single-base spontaneous mutations detected throughout the entire viral genome, we infer an average mutation rate of 1.3 × 10−7 per base per cell infection cycle. This value is similar to those of other, large double-stranded DNA viruses, but an order of magnitude lower than those of single-stranded DNA viruses, consistent with the possible action of post-replicative repair. Although the mutation rate did not vary strongly along the adenovirus genome, we found several sources of mutation rate heterogeneity. First, two regions mapping to transcription units L3 and E1B-IVa2 were significantly depleted for mutations. Second, several point insertions/deletions located within low-complexity sequence contexts appeared recurrently, suggesting mutational hotspots. Third, mutation probability increased at GpC dinucleotides. Our findings suggest that host factors may influence the distribution of spontaneous mutations in human adenoviruses and potentially other nuclear DNA viruses. Next-generation sequencing has provided a powerful tool for studying microbial genetic diversity but suffers from relatively low per-base accuracy, limiting our ability to detect low-frequency polymorphisms and spontaneous mutations. However, this limitation has been solved recently by the development of high-fidelity deep sequencing techniques. Taking advantage of these advancements, here we provide the first unbiased genome-wide characterization of the rate of spontaneous mutation of a human DNA virus (adenovirus 5) under controlled laboratory conditions. The adenovirus genome shows a relatively low mutation rate, consistent with high replication fidelity and the action of post-replicative repair. We also found evidence for mutation rate heterogeneities and regions of genetic instability in the viral genome. Together with previous reports, our findings indicate that DNA viruses with large double-stranded genomes mutate significantly slower than those with small single-stranded genomes.
Collapse
|
46
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
47
|
Functional Upregulation of the DNA Cytosine Deaminase APOBEC3B by Polyomaviruses. J Virol 2016; 90:6379-6386. [PMID: 27147740 DOI: 10.1128/jvi.00771-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The APOBEC3 family of DNA cytosine deaminases has important roles in innate immunity and cancer. It is unclear how DNA tumor viruses regulate these enzymes and how these interactions, in turn, impact the integrity of both the viral and cellular genomes. Polyomavirus (PyVs) are small DNA pathogens that contain oncogenic potentials. In this study, we examined the effects of PyV infection on APOBEC3 expression and activity. We demonstrate that APOBEC3B is specifically upregulated by BK polyomavirus (BKPyV) infection in primary kidney cells and that the upregulated enzyme is active. We further show that the BKPyV large T antigen, as well as large T antigens from related polyomaviruses, is alone capable of upregulating APOBEC3B expression and activity. Furthermore, we assessed the impact of A3B on productive BKPyV infection and viral genome evolution. Although the specific knockdown of APOBEC3B has little short-term effect on productive BKPyV infection, our informatics analyses indicate that the preferred target sequences of APOBEC3B are depleted in BKPyV genomes and that this motif underrepresentation is enriched on the nontranscribed stand of the viral genome, which is also the lagging strand during viral DNA replication. Our results suggest that PyV infection upregulates APOBEC3B activity to influence virus sequence composition over longer evolutionary periods. These findings also imply that the increased activity of APOBEC3B may contribute to PyV-mediated tumorigenesis. IMPORTANCE Polyomaviruses (PyVs) are a group of emerging pathogens that can cause severe diseases, including cancers in immunosuppressed individuals. Here we describe the finding that PyV infection specifically induces the innate immune DNA cytosine deaminase APOBEC3B. The induced APOBEC3B enzyme is fully functional and therefore may exert mutational effects on both viral and host cell DNA. We provide bioinformatic evidence that, consistent with this idea, BK polyomavirus genomes are depleted of APOBEC3B-preferred target motifs and enriched for the corresponding predicted reaction products. These data imply that the interplay between PyV infection and APOBEC proteins may have significant impact on both viral evolution and virus-induced tumorigenesis.
Collapse
|
48
|
Gutierrez DA, Valdes L, Serguera C, Llano M. Poly(ADP-ribose) polymerase-1 silences retroviruses independently of viral DNA integration or heterochromatin formation. J Gen Virol 2016; 97:1686-1692. [PMID: 27028089 DOI: 10.1099/jgv.0.000466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PARP-1 silences retrotransposons in Drosophila, through heterochromatin maintenance, and integrated retroviruses in chicken. Here, we determined the role of viral DNA integration and cellular heterochromatin in PARP-1-mediated retroviral silencing using HIV-1-derived lentiviral vectors and Rous-associated virus type 1 (RAV-1) as models. Analysis of the infection of PARP-1 knockout and control cells with HIV-1 harbouring WT integrase, in the presence or absence of an integrase inhibitor, or catalytic-dead mutant integrase indicated that silencing does not require viral DNA integration. The mechanism involves the catalytic activity of histone deacetylases but not that of PARP-1. In contrast to Drosophila, lack of PARP-1 in avian cells did not affect chromatin compaction globally or at the RAV-1 provirus, or the cellular levels of histone H3 N-terminal acetylated or Lys27 trimethylated, as indicated by micrococcal nuclease accessibility and immunoblot assays. Therefore, PARP-1 represses retroviruses prior to viral DNA integration by mechanisms involving histone deacetylases but not heterochromatin formation.
Collapse
Affiliation(s)
- Denisse A Gutierrez
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Luis Valdes
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | | | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| |
Collapse
|
49
|
Liu G, Weston CQ, Pham LK, Waltz S, Barnes H, King P, Sphar D, Yamamoto RT, Forsyth RA. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB. PLoS One 2016; 11:e0146064. [PMID: 26727463 PMCID: PMC4699840 DOI: 10.1371/journal.pone.0146064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.
Collapse
MESH Headings
- 5-Methylcytosine/analysis
- CpG Islands/genetics
- DNA Methylation
- DNA Restriction Enzymes/isolation & purification
- DNA Restriction Enzymes/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- DNA, Protozoan/genetics
- DNA, Protozoan/isolation & purification
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Deoxyribonuclease HpaII/isolation & purification
- Deoxyribonuclease HpaII/metabolism
- Escherichia coli Proteins/isolation & purification
- Escherichia coli Proteins/metabolism
- Gene Library
- Genetics, Microbial/methods
- Genomics/methods
- Humans
- Metagenome
- Microbiota/genetics
- Sequence Analysis, DNA
- Sputum/microbiology
- Substrate Specificity
Collapse
Affiliation(s)
- Guohong Liu
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Christopher Q. Weston
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
| | - Long K. Pham
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Shannon Waltz
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
- San Diego State University, San Diego, California, United States of America
| | - Helen Barnes
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Paula King
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
| | - Dan Sphar
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Robert T. Yamamoto
- Zova Systems, LLC, San Diego, California, 92129, United States of America
| | - R. Allyn Forsyth
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
- San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Khan MS, Gupta AK, Kumar M. ViralEpi v1.0: a high-throughput spectrum of viral epigenomic methylation profiles from diverse diseases. Epigenomics 2015; 8:67-75. [PMID: 26678852 DOI: 10.2217/epi.15.95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIMS To develop a computational resource for viral epigenomic methylation profiles from diverse diseases. MATERIALS & METHODS Methylation patterns of Epstein-Barr virus and hepatitis B virus genomic regions are provided as web platform developed using open source Linux-Apache-MySQL-PHP (LAMP) bundle: programming and scripting languages, that is, HTML, JavaScript and PERL. RESULTS A comprehensive and integrated web resource ViralEpi v1.0 is developed providing well-organized compendium of methylation events and statistical analysis associated with several diseases. Additionally, it also facilitates 'Viral EpiGenome Browser' for user-affable browsing experience using JavaScript-based JBrowse. CONCLUSION This web resource would be helpful for research community engaged in studying epigenetic biomarkers for appropriate prognosis and diagnosis of diseases and its various stages.
Collapse
Affiliation(s)
- Mohd Shoaib Khan
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Amit Kumar Gupta
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research (CSIR), Sector 39-A, Chandigarh-160036, India
| |
Collapse
|