1
|
Chen C, Zhang Y, Wu H, Qiao J, Caiyin Q. Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems. Microorganisms 2025; 13:1126. [PMID: 40431298 PMCID: PMC12114051 DOI: 10.3390/microorganisms13051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Restriction-modification systems (RMS) are ubiquitous in prokaryotes and serve as primitive immune-like mechanisms that safeguard microbial genomes against foreign genetic elements. Beyond their well-known role in sequence-specific defense, RMS also contribute significantly to genomic stability, drive evolutionary processes, and mitigate the deleterious effects of mutations. This review provides a comprehensive synthesis of current insights into RMS, emphasizing their structural and functional diversity, ecological and evolutionary roles, and expanding applications in biotechnology. By integrating recent advances with an analysis of persisting challenges, we highlight the critical contributions of RMS to both fundamental microbiology and practical applications in biomedicine and industrial biotechnology. Furthermore, we discuss emerging research directions in RMS, particularly in light of novel technologies and the increasing importance of microbial genetics in addressing global health and environmental issues.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Yue Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Hao Wu
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| |
Collapse
|
2
|
Troshin K, Sykilinda N, Shuraleva S, Tokmakova A, Tkachenko N, Kurochkina L, Miroshnikov K, Suzina N, Brzhozovskaya E, Petrova K, Toshchakov S, Evseev P. Pseudomonas Phage Lydia and the Evolution of the Mesyanzhinovviridae Family. Viruses 2025; 17:369. [PMID: 40143297 PMCID: PMC11946847 DOI: 10.3390/v17030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
Phage Lydia, a newly isolated siphovirus infecting Pseudomonas aeruginosa, was characterized with respect to its basic kinetic properties and subjected to comparative bioinformatic analysis with related phages. The phage exhibited a restricted host range, with lytic activity observed against 7 of 30 tested isolates. The genome of phage Lydia consists of a 61,986 bp dsDNA molecule and contains 89 predicted genes. Bioinformatic analysis suggests the presence of a DNA modification system, but no apparent genes associated with lysogeny or antibiotic resistance were identified. Taxonomic classification places Lydia within the Mesyanzhinovviridae family, Rabinowitzvirinae subfamily, and Yuavirus genus, with the closest relation to Pseudomonas virus M6. Comprehensive bioinformatic studies, including structural modelling and analysis of phage proteins, as well as comparative taxonomic, phylogenomic, and pangenomic analyses of the Mesyanzhinovviridae family, revealed relationships between proteins of Mesyanzhinovviridae phages, proteins from other phage groups, encapsulins, and a gene transfer agent (GTA) particle from Rhodobacter capsulatus. These analyses uncovered patterns of evolutionary history within the family, characterized by genetic exchange events alongside the maintenance of a common genomic architecture, leading to the emergence of new groups within the family.
Collapse
Affiliation(s)
- Konstantin Troshin
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (N.S.); (A.T.); (K.M.)
| | - Sofia Shuraleva
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (N.S.); (A.T.); (K.M.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Nikolay Tkachenko
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1 Bld 40, 119991 Moscow, Russia;
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (N.S.); (A.T.); (K.M.)
| | - Natalia Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki 5, 142290 Pushchino, Russia;
| | - Ekaterina Brzhozovskaya
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Kristina Petrova
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123098 Moscow, Russia (S.T.)
| | - Stepan Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123098 Moscow, Russia (S.T.)
| | - Peter Evseev
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| |
Collapse
|
3
|
Dimitriu T, Szczelkun M, Westra E. Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation. Nucleic Acids Res 2024; 52:12976-12986. [PMID: 39413206 PMCID: PMC11602122 DOI: 10.1093/nar/gkae896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
In bacteria, genes conferring antibiotic resistance are mostly carried on conjugative plasmids, mobile genetic elements that spread horizontally between bacterial hosts. Bacteria carry defence systems that defend them against genetic parasites, but how effective these are against plasmid conjugation is poorly understood. Here, we study to what extent restriction-modification (RM) systems-by far the most prevalent bacterial defence systems-act as a barrier against plasmids. Using 10 different RM systems and 13 natural plasmids conferring antibiotic resistance in Escherichia coli, we uncovered variation in defence efficiency ranging from none to 105-fold protection. Further analysis revealed genetic features of plasmids that explain the observed variation in defence levels. First, the number of RM recognition sites present on the plasmids generally correlates with defence levels, with higher numbers of sites being associated with stronger defence. Second, some plasmids encode methylases that protect against restriction activity. Finally, we show that a high number of plasmids in our collection encode anti-restriction genes that provide protection against several types of RM systems. Overall, our results show that it is common for plasmids to encode anti-RM strategies, and that, as a consequence, RM systems form only a weak barrier for plasmid transfer by conjugation.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Mark D Szczelkun
- DNA–Protein Interactions Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
4
|
Siedentop B, Losa Mediavilla C, Kouyos RD, Bonhoeffer S, Chabas H. Assessing the Role of Bacterial Innate and Adaptive Immunity as Barriers to Conjugative Plasmids. Mol Biol Evol 2024; 41:msae207. [PMID: 39382385 PMCID: PMC11525042 DOI: 10.1093/molbev/msae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Plasmids are ubiquitous mobile genetic elements, that can be either costly or beneficial for their bacterial host. In response to constant viral threat, bacteria have evolved various immune systems, such as the prevalent restriction modification (innate immunity) and CRISPR-Cas systems (adaptive immunity). At the molecular level, both systems also target plasmids, but the consequences of these interactions for plasmid spread are unclear. Using a modeling approach, we show that restriction modification and CRISPR-Cas are effective as barriers against the spread of costly plasmids, but not against beneficial ones. Consequently, bacteria can profit from the selective advantages that beneficial plasmids confer even in the presence of bacterial immunity. While plasmids that are costly for bacteria may persist in the bacterial population for a certain period, restriction modification and CRISPR-Cas can eventually drive them to extinction. Finally, we demonstrate that the selection pressure imposed by bacterial immunity on costly plasmids can be circumvented through a diversity of escape mechanisms and highlight how plasmid carriage might be common despite bacterial immunity. In summary, the population-level outcome of interactions between plasmids and defense systems in a bacterial population is closely tied to plasmid cost: Beneficial plasmids can persist at high prevalence in bacterial populations despite defense systems, while costly plasmids may face extinction.
Collapse
Affiliation(s)
- Berit Siedentop
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Yang Y, Zhou P, Tian D, Wang W, Zhou Y, Jiang X. CRISPR-Cas3 and type I restriction-modification team up against bla KPC-IncF plasmid transfer in Klebsiella pneumoniae. BMC Microbiol 2024; 24:240. [PMID: 38961341 PMCID: PMC11223367 DOI: 10.1186/s12866-024-03381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Peiyao Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwen Wang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Skutel M, Yanovskaya D, Demkina A, Shenfeld A, Musharova O, Severinov K, Isaev A. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic Acids Res 2024; 52:5195-5208. [PMID: 38567730 PMCID: PMC11109961 DOI: 10.1093/nar/gkae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.
Collapse
Affiliation(s)
- Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Yanovskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Olga Musharova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Piscataway, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
7
|
Mayo-Muñoz D, Pinilla-Redondo R, Camara-Wilpert S, Birkholz N, Fineran PC. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat Rev Genet 2024; 25:237-254. [PMID: 38291236 DOI: 10.1038/s41576-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 02/01/2024]
Abstract
To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Costa AR, van den Berg DF, Esser JQ, Muralidharan A, van den Bossche H, Bonilla BE, van der Steen BA, Haagsma AC, Fluit AC, Nobrega FL, Haas PJ, Brouns SJJ. Accumulation of defense systems in phage-resistant strains of Pseudomonas aeruginosa. SCIENCE ADVANCES 2024; 10:eadj0341. [PMID: 38394193 PMCID: PMC10889362 DOI: 10.1126/sciadv.adj0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of Pseudomonas aeruginosa and a broad panel of phages, we demonstrate that defense systems contribute substantially to defining phage host range and that overall phage resistance scales with the number of defense systems in the bacterial genome. We show that many individual defense systems target specific phage genera and that defense systems with complementary phage specificities co-occur in P. aeruginosa genomes likely to provide benefits in phage-diverse environments. Overall, we show that phage-resistant phenotypes of P. aeruginosa with at least 19 phage defense systems exist in the populations of clinical, antibiotic-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Daan F. van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Jelger Q. Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Halewijn van den Bossche
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Boris Estrada Bonilla
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Baltus A. van der Steen
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Anna C. Haagsma
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Ad C. Fluit
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Stan J. J. Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| |
Collapse
|
9
|
Wimmer F, Englert F, Wandera KG, Alkhnbashi O, Collins S, Backofen R, Beisel C. Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation. Nucleic Acids Res 2024; 52:769-783. [PMID: 38015466 PMCID: PMC10810201 DOI: 10.1093/nar/gkad1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
CRISPR-Cas systems store fragments of invader DNA as spacers to recognize and clear those same invaders in the future. Spacers can also be acquired from the host's genomic DNA, leading to lethal self-targeting. While self-targeting can be circumvented through different mechanisms, natural examples remain poorly explored. Here, we investigate extensive self-targeting by two CRISPR-Cas systems encoding 24 self-targeting spacers in the plant pathogen Xanthomonas albilineans. We show that the native I-C and I-F1 systems are actively expressed and that CRISPR RNAs are properly processed. When expressed in Escherichia coli, each Cascade complex binds its PAM-flanked DNA target to block transcription, while the addition of Cas3 paired with genome targeting induces cell killing. While exploring how X. albilineans survives self-targeting, we predicted putative anti-CRISPR proteins (Acrs) encoded within the bacterium's genome. Screening of identified candidates with cell-free transcription-translation systems and in E. coli revealed two Acrs, which we named AcrIC11 and AcrIF12Xal, that inhibit the activity of Cas3 but not Cascade of the respective system. While AcrF12Xal is homologous to AcrIF12, AcrIC11 shares sequence and structural homology with the anti-restriction protein KlcA. These findings help explain tolerance of self-targeting through two CRISPR-Cas systems and expand the known suite of DNA degradation-inhibiting Acrs.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Secure Systems (IRC-ISS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Scott P Collins
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Kato A. Isolation and draft genome sequence of Enterobacter asburiae strain i6 amenable to genetic manipulation. J Genomics 2024; 12:26-34. [PMID: 38321998 PMCID: PMC10845240 DOI: 10.7150/jgen.91337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Enterobacter asburiae is a species of Gram-negative bacteria that is found in soil, water, and sewage. E. asburiae is generally considered to be an opportunistic pathogen, but has also been reported as a plant growth-promoting bacterium (PGPB), which may have beneficial effects on plant growth and development. However, genetic analysis of E. asburiae has been limited, possibly due to its redundant enzymes that digest exogenous DNA in the cell. Here, an E. asburiae strain i6 was isolated from soil in Nara, Japan. This strain was amenable to transformation and the one-step gene inactivation method based on λ Red recombinase. The transformation efficiency of the i6 strain with the 10 kb plasmid DNA pCF430 was at least four orders of magnitude higher than that of the previously sequenced E. asburiae strain ATCC 35953, which could not be transformed with the same plasmid DNA. A draft genome sequence of the i6 strain was determined and deposited into the database, allowing several factors that may determine transformation efficiency to be perturbed and tested. Together with the amenability of the i6 strain to genetic manipulation, the information from the i6 genome will facilitate characterization and fine-tuning of the beneficial and detrimental traits of this species.
Collapse
Affiliation(s)
- Akinori Kato
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan
| |
Collapse
|
11
|
Yan Y, Zheng J, Zhang X, Yin Y. dbAPIS: a database of anti-prokaryotic immune system genes. Nucleic Acids Res 2024; 52:D419-D425. [PMID: 37889074 PMCID: PMC10767833 DOI: 10.1093/nar/gkad932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Anti-prokaryotic immune system (APIS) proteins, typically encoded by phages, prophages, and plasmids, inhibit prokaryotic immune systems (e.g. restriction modification, toxin-antitoxin, CRISPR-Cas). A growing number of APIS genes have been characterized and dispersed in the literature. Here we developed dbAPIS (https://bcb.unl.edu/dbAPIS), as the first literature curated data repository for experimentally verified APIS genes and their associated protein families. The key features of dbAPIS include: (i) experimentally verified APIS genes with their protein sequences, functional annotation, PDB or AlphaFold predicted structures, genomic context, sequence and structural homologs from different microbiome/virome databases; (ii) classification of APIS proteins into sequence-based families and construction of hidden Markov models (HMMs); (iii) user-friendly web interface for data browsing by the inhibited immune system types or by the hosts, and functions for searching and batch downloading of pre-computed data; (iv) Inclusion of all types of APIS proteins (except for anti-CRISPRs) that inhibit a variety of prokaryotic defense systems (e.g. RM, TA, CBASS, Thoeris, Gabija). The current release of dbAPIS contains 41 verified APIS proteins and ∼4400 sequence homologs of 92 families and 38 clans. dbAPIS will facilitate the discovery of novel anti-defense genes and genomic islands in phages, by providing a user-friendly data repository and a web resource for an easy homology search against known APIS proteins.
Collapse
Affiliation(s)
- Yuchen Yan
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Xinpeng Zhang
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
12
|
Gladysheva-Azgari M, Sharko F, Evteeva M, Kuvyrchenkova A, Boulygina E, Tsygankova S, Slobodova N, Pustovoit K, Melkina O, Nedoluzhko A, Korzhenkov A, Kudryavtseva A, Utkina A, Manukhov I, Rastorguev S, Zavilgelsky G. ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes. Heliyon 2023; 9:e22986. [PMID: 38144267 PMCID: PMC10746416 DOI: 10.1016/j.heliyon.2023.e22986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
The ardA genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal ardA genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes. In the present study, we confirmed the antirestriction function of the ardA gene from the Bifidobacterium bifidum chromosome. Transcriptome analysis in Escherichia coli showed that the range of regulated genes varies significantly for ardA from conjugative plasmid pKM101 and from the B. bifidum chromosome. Moreover, if the targets for both ardA genes match, they often show an opposite effect on regulated gene expression. The results obtained indicate two seemingly mutually exclusive conclusions. On the one hand, the pleiotropic effect of ardA genes was shown not only on restriction-modification system, but also on expression of a number of other genes. On the other hand, the range of affected genes varies significally for ardA genes from different sources, which indicates the specificity of ardA to inhibited targets. Author Summary. Conjugative plasmids, bacteriophages, as well as transposons, are capable to transfer various genes, including antibiotic resistance genes, among bacterial cells. However, many of those genes pose a threat to the bacterial cells, therefore bacterial cells have special restriction systems that limit such transfer. Antirestriction genes have previously been described as a part of conjugative plasmids, and bacteriophages and transposons. Those plasmids are able to overcome bacterial cell protection in the presence of antirestriction genes, which inhibit bacterial restriction systems. This work unveils the antirestriction mechanisms, which play an important role in the bacterial life cycle. Here, we clearly show that antirestriction genes, which are able to inhibit cell protection, exist not only in plasmids but also in the bacterial chromosomes themselves. Moreover, antirestrictases have not only an inhibitory function but also participate in the regulation of other bacterial genes. The regulatory function of plasmid antirestriction genes also helps them to overcome the bacterial cell protection against gene transfer, whereas the regulatory function of genomic antirestrictases has no such effect.
Collapse
Affiliation(s)
| | - F.S. Sharko
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - M.A. Evteeva
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | | | - E.S. Boulygina
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S.V. Tsygankova
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - N.V. Slobodova
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - K.S. Pustovoit
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| | - O.E. Melkina
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| | - A.V. Nedoluzhko
- European University at Saint Petersburg, 191187, Saint-Petersburg, Russia
| | - A.A. Korzhenkov
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A.A. Kudryavtseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - A.A. Utkina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - I.V. Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
- Faculty of Physics, HSE University, 109028, Moscow, Russia
- Laboratory for Microbiology, BIOTECH University, 125080, Moscow, Russia
| | - S.M. Rastorguev
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, Moscow, 117997, Russia
| | - G.B. Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| |
Collapse
|
13
|
Burgaya J, Marin J, Royer G, Condamine B, Gachet B, Clermont O, Jaureguy F, Burdet C, Lefort A, de Lastours V, Denamur E, Galardini M, Blanquart F. The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans. PLoS Genet 2023; 19:e1010842. [PMID: 37531401 PMCID: PMC10395866 DOI: 10.1371/journal.pgen.1010842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.
Collapse
Affiliation(s)
- Judit Burgaya
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Guilhem Royer
- Université Paris Cité, INSERM, IAME, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, UMR CNRS 6047, Université Paris-Cité, Paris, France
| | | | | | | | | | | | - Agnès Lefort
- Université Paris Cité, INSERM, IAME, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM, IAME, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241 / INSERM U1050, PSL Research University, Paris, France
| |
Collapse
|
14
|
Kudryavtseva AA, Cséfalvay E, Gnuchikh EY, Yanovskaya DD, Skutel MA, Isaev AB, Bazhenov SV, Utkina AA, Manukhov IV. Broadness and specificity: ArdB, ArdA, and Ocr against various restriction-modification systems. Front Microbiol 2023; 14:1133144. [PMID: 37138625 PMCID: PMC10149784 DOI: 10.3389/fmicb.2023.1133144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/10/2023] [Indexed: 05/05/2023] Open
Abstract
ArdB, ArdA, and Ocr proteins inhibit the endonuclease activity of the type I restriction-modification enzymes (RMI). In this study, we evaluated the ability of ArdB, ArdA, and Ocr to inhibit different subtypes of Escherichia coli RMI systems (IA, IB, and IC) as well as two Bacillus licheniformis RMI systems. Furthermore we explored, the antirestriction activity of ArdA, ArdB, and Ocr against a type III restriction-modification system (RMIII) EcoPI and BREX. We found that DNA-mimic proteins, ArdA and Ocr exhibit different inhibition activity, depending on which RM system tested. This effect might be linked to the DNA mimicry nature of these proteins. In theory, DNA-mimic might competitively inhibit any DNA-binding proteins; however, the efficiency of inhibition depend on the ability to imitate the recognition site in DNA or its preferred conformation. In contrast, ArdB protein with an undescribed mechanism of action, demonstrated greater versatility against various RMI systems and provided similar antirestriction efficiency regardless of the recognition site. However, ArdB protein could not affect restriction systems that are radically different from the RMI such as BREX or RMIII. Thus, we assume that the structure of DNA-mimic proteins allows for selective inhibition of any DNA-binding proteins depending on the recognition site. In contrast, ArdB-like proteins inhibit RMI systems independently of the DNA recognition site.
Collapse
Affiliation(s)
- Anna A. Kudryavtseva
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Eva Cséfalvay
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady, Czechia
| | - Evgeniy Yu Gnuchikh
- Kurchatov Genomic Center, National Research Center Kurchatov Institute, Moscow, Russia
| | - Darya D. Yanovskaya
- Center of Cellular and Molecular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail A. Skutel
- Center of Cellular and Molecular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artem B. Isaev
- Center of Cellular and Molecular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sergey V. Bazhenov
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, Moscow, Russia
- Faculty of Physics, HSE University, Moscow, Russia
| | - Anna A. Utkina
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya V. Manukhov
- Laboratory for Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, Moscow, Russia
- Faculty of Physics, HSE University, Moscow, Russia
| |
Collapse
|
15
|
Cooke MB, Herman C. Conjugation's Toolkit: the Roles of Nonstructural Proteins in Bacterial Sex. J Bacteriol 2023; 205:e0043822. [PMID: 36847532 PMCID: PMC10029717 DOI: 10.1128/jb.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.
Collapse
Affiliation(s)
- Matthew B. Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Chen H, Tao S, Li N, Zhu Q, Liu L, Fang Y, Xu Y, Liang W. Anti-restriction protein ArdA promotes clinical Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae spread and its molecular mechanism. J Antimicrob Chemother 2023; 78:521-530. [PMID: 36575565 DOI: 10.1093/jac/dkac423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) has spread worldwide and has become a major threat to public health. The restriction modification system provides an innate defence of bacteria against plasmids or transposons, while many different types of plasmid encoding the anti-restriction protein ArdA can specifically affect the restriction activity in bacteria. OBJECTIVES To detect the codistribution of ArdA and blaKPC-2 plasmids in KPC-KP and explore the molecular mechanism of ArdA promoting KPC-KP spread. METHODS We collected 65 clinical CRKP isolates from Ningbo, China, and 68 cases of plasmid complete sequences in GenBank to determine the prevalence of ArdA gene on the K. pneumoniae blaKPC-2 plasmid. The anti-restriction function of ArdA in promoting horizontal gene transfer (HGT) was verified by transformation, conjugation and transduction methods, and the pull-down experiment was used to investigate the molecular mechanism of ArdA protein in vitro. RESULTS We found that ArdA was widely distributed in KPC-KP in 100% of cases, which was detected in 0% of drug susceptible K. pneumoniae, and the plasmids containing the ArdA gene in 90% of the 30 cases randomly retrieved from the database. We also verified that ArdA has a good anti-restriction function (P < 0.05) through two aspects of HGT (transformation, transduction), and explored the non-occurrence interaction of ArdA and the hsdM subunit protein of EcoKI enzyme from the perspective of protein molecules. CONCLUSIONS These findings suggest that the coexistence advantage of ArdA with the blaKPC-2 plasmids may provide KPC-producing K. pneumoniae with a very efficient evasion of the restriction of type I systems, which not only favours ArdA-containing mobile genetic elements in the same species HGT between bacteria also facilitates HGT between other bacterial species.
Collapse
Affiliation(s)
- Huimin Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Na Li
- Laboratory Medical School, Bengbu Medical College, Bengbu, Anhui, China
| | - Qing Zhu
- School of Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Liu
- School of Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yeiwei Fang
- School of medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yao Xu
- School of medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Liang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, No. 59, Liuting Street, Ningbo City, Zhejiang 315010, China
| |
Collapse
|
17
|
Kudryavtseva AA, Alekhin VA, Lebedeva MD, Cséfalvay E, Weiserova M, Manukhov IV. Anti-Restriction Activity of ArdB Protein against EcoAI Endonuclease. Mol Biol 2023. [DOI: 10.1134/s0026893323010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Kirillov A, Morozova N, Kozlova S, Polinovskaya V, Smirnov S, Khodorkovskii M, Zeng L, Ispolatov Y, Severinov K. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population. Nucleic Acids Res 2022; 50:12355-12368. [PMID: 36477901 PMCID: PMC9757035 DOI: 10.1093/nar/gkac1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The action of Type II restriction-modification (RM) systems depends on restriction endonuclease (REase), which cleaves foreign DNA at specific sites, and methyltransferase (MTase), which protects host genome from restriction by methylating the same sites. We here show that protection from phage infection increases as the copy number of plasmids carrying the Type II RM Esp1396I system is increased. However, since increased plasmid copy number leads to both increased absolute intracellular RM enzyme levels and to a decreased MTase/REase ratio, it is impossible to determine which factor determines resistance/susceptibility to infection. By controlled expression of individual Esp1396I MTase or REase genes in cells carrying the Esp1396I system, we show that a shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from infection. Consistently, due to stochastic variation of MTase and REase amount in individual cells, bacterial cells that are productively infected by bacteriophage have significantly higher MTase to REase ratios than cells that ward off the infection. Our results suggest that cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations.
Collapse
Affiliation(s)
- Alexander Kirillov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Natalia Morozova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Svetlana Kozlova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Vasilisa Polinovskaya
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Sergey Smirnov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Lanying Zeng
- Texas A&M University, Department of Biochemistry and Biophysics, Center for Phage Technology, College Station, TX 77843, USA
| | - Yaroslav Ispolatov
- University of Santiago of Chile (USACH), Physics Department, Av. Víctor Jara 3493, Santiago, Chile
| | - Konstantin Severinov
- To whom correspondence should be addressed. Tel: +7 9854570284; Fax: +1 848 445 5735;
| |
Collapse
|
19
|
Vornhagen J, Roberts EK, Unverdorben L, Mason S, Patel A, Crawford R, Holmes CL, Sun Y, Teodorescu A, Snitkin ES, Zhao L, Simner PJ, Tamma PD, Rao K, Kaye KS, Bachman MA. Combined comparative genomics and clinical modeling reveals plasmid-encoded genes are independently associated with Klebsiella infection. Nat Commun 2022; 13:4459. [PMID: 35915063 PMCID: PMC9343666 DOI: 10.1038/s41467-022-31990-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily K Roberts
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lavinia Unverdorben
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alieysa Patel
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Crawford
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Caitlyn L Holmes
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuang Sun
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra Teodorescu
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan S Snitkin
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keith S Kaye
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Chen H, Tao S, Li N, Wang F, Wang L, Tang Y, Liang W. Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcAHS from Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:916547. [PMID: 35967855 PMCID: PMC9366191 DOI: 10.3389/fcimb.2022.916547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-restriction proteins are typically encoded by plasmids, conjugative transposons, or phages to improve their chances of entering a new bacterial host with a type I DNA restriction and modification (RM) system. The invading DNA is normally destroyed by the RM system. The anti-restriction proteins ArdA, KlcA, and their homologues are usually encoded on plasmid of carbapenemase-resistant Klebsiella pneumoniae. We found that the plasmid sequence and restriction proteins affected horizontal gene transfer, and confirmed the anti-restriction and anti-methylation activities of ArdA and KlcA during transformation and transduction. Among the three anti-restriction proteins, ArdA shows stronger anti-restriction and anti-methylation effects, and KlcAHS was weaker. KlcA shows anti-methylation only during transformation. Understanding the molecular mechanism underlying the clinical dissemination of K. pneumoniae and other clinically resistant strains from the perspective of restrictive and anti-restrictive systems will provide basic theoretical support for the prevention and control of multidrug-resistant bacteria, and new strategies for delaying or even controlling the clinical dissemination of resistant strains in the future.
Collapse
Affiliation(s)
- Huimin Chen
- Medical School of Jiangsu University, Zhenjiang, China
| | - Shuan Tao
- Medical School of Jiangsu University, Zhenjiang, China
| | - Na Li
- Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Fang Wang
- Department of Central Laboratory, Lianyungang Second People Hospital, Lianyungang, China
| | - Lei Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yu Tang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wei Liang, ; Yu Tang,
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, China
- *Correspondence: Wei Liang, ; Yu Tang,
| |
Collapse
|
21
|
Tao S, Chen H, Li N, Wang T, Liang W. The Spread of Antibiotic Resistance Genes In Vivo Model. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3348695. [PMID: 35898691 PMCID: PMC9314185 DOI: 10.1155/2022/3348695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are a major public health threat. The emergence and spread of antibiotic resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide. Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in vivo environments. There is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-mediated conjugation transfer is the most common and effective way for the spread of multidrug resistance. Experimental studies of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro protocols might not correctly reflect the HGT of antibiotic resistance genes in realistic conditions. This calls for better models of how resistance genes transfer and disseminate in vivo. The in vivo model can better mimic the situation that occurs in patients, helping study the situation in more detail. This is crucial to develop innovative strategies to curtail the spread of antibiotic resistance genes in the future. This review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in controlling the spread of antibiotic resistance genes and their potential solutions.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tong Wang
- Nanjing Brain Hospital Affiliated Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
22
|
Shen Z, Tang CM, Liu GY. Towards a better understanding of antimicrobial resistance dissemination: what can be learnt from studying model conjugative plasmids? Mil Med Res 2022; 9:3. [PMID: 35012680 PMCID: PMC8744291 DOI: 10.1186/s40779-021-00362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.
Collapse
Affiliation(s)
- Zhen Shen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.,Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Guang-Yu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
23
|
Zaworski J, Dagva O, Kingston AW, Fomenkov A, Morgan RD, Bossi L, Raleigh EA. Genome archaeology of two laboratory Salmonella enterica enterica sv Typhimurium. G3 (BETHESDA, MD.) 2021; 11:jkab226. [PMID: 34544129 PMCID: PMC8496262 DOI: 10.1093/g3journal/jkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
The Salmonella research community has used strains and bacteriophages over decades, exchanging useful new isolates among laboratories for the study of cell surface antigens, metabolic pathways and restriction-modification (RM) studies. Here we present the sequences of two laboratory Salmonella strains (STK005, an isolate of LB5000; and its descendant ER3625). In the ancestry of LB5000, segments of ∼15 and ∼42 kb were introduced from Salmonella enterica sv Abony 803 into S. enterica sv Typhimurium LT2, forming strain SD14; this strain is thus a hybrid of S. enterica isolates. Strains in the SD14 lineage were used to define flagellar antigens from the 1950s to the 1970s, and to define three RM systems from the 1960s to the 1980s. LB5000 was also used as a host in phage typing systems used by epidemiologists. In the age of cheaper and easier sequencing, this resource will provide access to the sequence that underlies the extensive literature.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | | | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Lionello Bossi
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay, Gif-sur-Yvette 91198, France
| | | |
Collapse
|
24
|
Öztürk B, Werner J, Meier-Kolthoff JP, Bunk B, Spröer C, Springael D. Comparative Genomics Suggests Mechanisms of Genetic Adaptation toward the Catabolism of the Phenylurea Herbicide Linuron in Variovorax. Genome Biol Evol 2021; 12:827-841. [PMID: 32359160 PMCID: PMC7313664 DOI: 10.1093/gbe/evaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20–839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.
Collapse
Affiliation(s)
- Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Division of Soil and Water Management, KU Leuven, Belgium
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Jan P Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Belgium
| |
Collapse
|
25
|
Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. THE ISME JOURNAL 2021; 15:862-878. [PMID: 33149210 PMCID: PMC8026971 DOI: 10.1038/s41396-020-00819-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Horizontal gene transfer, mediated by conjugative plasmids, is a major driver of the global rise of antibiotic resistance. However, the relative contributions of factors that underlie the spread of plasmids and their roles in conjugation in vivo are unclear. To address this, we investigated the spread of clinical Extended Spectrum Beta-Lactamase (ESBL)-producing plasmids in the absence of antibiotics in vitro and in the mouse intestine. We hypothesised that plasmid properties would be the primary determinants of plasmid spread and that bacterial strain identity would also contribute. We found clinical Escherichia coli strains natively associated with ESBL-plasmids conjugated to three distinct E. coli strains and one Salmonella enterica serovar Typhimurium strain. Final transconjugant frequencies varied across plasmid, donor, and recipient combinations, with qualitative consistency when comparing transfer in vitro and in vivo in mice. In both environments, transconjugant frequencies for these natural strains and plasmids covaried with the presence/absence of transfer genes on ESBL-plasmids and were affected by plasmid incompatibility. By moving ESBL-plasmids out of their native hosts, we showed that donor and recipient strains also modulated transconjugant frequencies. This suggests that plasmid spread in the complex gut environment of animals and humans can be predicted based on in vitro testing and genetic data.
Collapse
|
26
|
Pinilla-Redondo R, Shehreen S, Marino ND, Fagerlund RD, Brown CM, Sørensen SJ, Fineran PC, Bondy-Denomy J. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat Commun 2020; 11:5652. [PMID: 33159058 PMCID: PMC7648647 DOI: 10.1038/s41467-020-19415-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Many prokaryotes employ CRISPR-Cas systems to combat invading mobile genetic elements (MGEs). In response, some MGEs have developed strategies to bypass immunity, including anti-CRISPR (Acr) proteins; yet the diversity, distribution and spectrum of activity of this immune evasion strategy remain largely unknown. Here, we report the discovery of new Acrs by assaying candidate genes adjacent to a conserved Acr-associated (Aca) gene, aca5, against a panel of six type I systems: I-F (Pseudomonas, Pectobacterium, and Serratia), I-E (Pseudomonas and Serratia), and I-C (Pseudomonas). We uncover 11 type I-F and/or I-E anti-CRISPR genes encoded on chromosomal and extrachromosomal MGEs within Enterobacteriaceae and Pseudomonas, and an additional Aca (aca9). The acr genes not only associate with other acr genes, but also with genes encoding inhibitors of distinct bacterial defense systems. Thus, our findings highlight the potential exploitation of acr loci neighborhoods for the identification of previously undescribed anti-defense systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- University College Copenhagen, Copenhagen, Denmark
| | - Saadlee Shehreen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicole D Marino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Bio-protection Research Centre, University of Otago, Dunedin, New Zealand.
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
27
|
Conquering CRISPR: how phages overcome bacterial adaptive immunity. Curr Opin Biotechnol 2020; 68:30-36. [PMID: 33113496 DOI: 10.1016/j.copbio.2020.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
The rise of antibiotic-resistant bacteria has led to renewed interest in the use of their natural enemies, phages, for the prevention and treatment of infections. However, phage therapy requires detailed knowledge of the interactions between these entities. Bacteria defend themselves against phage predation with a large repertoire of defences. Among these, CRISPR-Cas systems stand out due to their adaptive character, mechanistic complexity and diversity, and present a significant hurdle for phage infection. Here, we provide an overview of how phages can circumvent CRISPR-Cas defence, ranging from target sequence mutations and DNA modifications to anti-CRISPR proteins and nucleus-like protective structures. An in-depth understanding of these phage evasion strategies is crucial for the successful development of phage therapy applications.
Collapse
|
28
|
Wang HC, Lin SJ, Mohapatra A, Kumar R, Wang HC. A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms 2020; 8:E996. [PMID: 32635298 PMCID: PMC7409025 DOI: 10.3390/microorganisms8070996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal shrimp disease. The pathogenic agent of this disease is a special Vibrio parahaemolyticus strain that contains a pVA1 plasmid. The protein products of two toxin genes in pVA1, pirAvp and pirBvp, targeted the shrimp's hepatopancreatic cells and were identified as the major virulence factors. However, in addition to pirAvp and pirBvp, pVA1 also contains about ~90 other open-reading frames (ORFs), which may encode functional proteins. NCBI BLASTp annotations of the functional roles of 40 pVA1 genes reveal transposases, conjugation factors, and antirestriction proteins that are involved in horizontal gene transfer, plasmid transmission, and maintenance, as well as components of type II and III secretion systems that may facilitate the toxic effects of pVA1-containing Vibrio spp. There is also evidence of a post-segregational killing (PSK) system that would ensure that only pVA1 plasmid-containing bacteria could survive after segregation. Here, in this review, we assess the functional importance of these pVA1 genes and consider those which might be worthy of further study.
Collapse
Affiliation(s)
- Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Arpita Mohapatra
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Mits School of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Ramya Kumar
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan; (S.-J.L.); (R.K.)
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
29
|
Kudryavtseva AA, Okhrimenko IS, Didina VS, Zavilgelsky GB, Manukhov IV. Antirestriction Protein ArdB (R64) Interacts with DNA. BIOCHEMISTRY (MOSCOW) 2020; 85:318-325. [PMID: 32564736 DOI: 10.1134/s0006297920030074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antirestriction ArdB protein inhibits the endonuclease activity of type I restriction/modification (RM) systems in vivo; however, the mechanism of inhibition remains unknown. In this study, we showed that recombinant ArdB from Escherichia coli cells co-purified with DNA. When overexpressed in E. coli cells, a portion of ArdB protein formed insoluble DNA-free aggregates. Only native ArdB, but not the ArdBΔD141 mutant lacking the antirestriction activity, co-purified with DNA upon anion-exchange and affinity chromatography or total DNA isolation from formaldehyde-treated cells. These observations confirm the hypothesis that ArdB blocks DNA translocation via the R subunits of the R2M2S complex of type I RM enzymes.
Collapse
Affiliation(s)
- A A Kudryavtseva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141707, Russia.
| | - I S Okhrimenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141707, Russia
| | - V S Didina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141707, Russia
| | - G B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Center, Moscow, 117545, Russia
| | - I V Manukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141707, Russia.,State Research Institute of Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research Center, Moscow, 117545, Russia
| |
Collapse
|
30
|
Isaev A, Drobiazko A, Sierro N, Gordeeva J, Yosef I, Qimron U, Ivanov NV, Severinov K. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res 2020; 48:5397-5406. [PMID: 32338761 PMCID: PMC7261183 DOI: 10.1093/nar/gkaa290] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 11/12/2022] Open
Abstract
BREX (for BacteRiophage EXclusion) is a superfamily of common bacterial and archaeal defence systems active against diverse bacteriophages. While the mechanism of BREX defence is currently unknown, self versus non-self differentiation requires methylation of specific asymmetric sites in host DNA by BrxX (PglX) methyltransferase. Here, we report that T7 bacteriophage Ocr, a DNA mimic protein that protects the phage from the defensive action of type I restriction-modification systems, is also active against BREX. In contrast to the wild-type phage, which is resistant to BREX defence, T7 lacking Ocr is strongly inhibited by BREX, and its ability to overcome the defence could be complemented by Ocr provided in trans. We further show that Ocr physically associates with BrxX methyltransferase. Although BREX+ cells overproducing Ocr have partially methylated BREX sites, their viability is unaffected. The result suggests that, similar to its action against type I R-M systems, Ocr associates with as yet unidentified BREX system complexes containing BrxX and neutralizes their ability to both methylate and exclude incoming phage DNA.
Collapse
Affiliation(s)
- Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel 2000, Switzerland
| | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel 2000, Switzerland
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
- Institute of Gene Biology, Russian Academy of Sciences, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
31
|
ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range. PLoS Genet 2020; 16:e1008750. [PMID: 32348296 PMCID: PMC7213743 DOI: 10.1371/journal.pgen.1008750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmids, when transferred by conjugation in natural environments, must overpass restriction-modification systems of the recipient cell. We demonstrate that protein ArdC, encoded by broad host range plasmid R388, was required for conjugation from Escherichia coli to Pseudomonas putida. Expression of ardC was required in the recipient cells, but not in the donor cells. Besides, ardC was not required for conjugation if the hsdRMS system was deleted in P. putida recipient cells. ardC was also required if the hsdRMS system was present in E. coli recipient cells. Thus, ArdC has antirestriction activity against the HsdRMS system and consequently broadens R388 plasmid host range. The crystal structure of ArdC was solved both in the absence and presence of Mn2+. ArdC is composed of a non-specific ssDNA binding N-terminal domain and a C-terminal metalloprotease domain, although the metalloprotease activity was not needed for the antirestriction function. We also observed by RNA-seq that ArdC-dependent conjugation triggered an SOS response in the P. putida recipient cells. Our findings give new insights, and open new questions, into the antirestriction strategies developed by plasmids to counteract bacterial restriction strategies and settle into new hosts. Horizontal gene transfer is the main mechanism by which bacteria acquire and disseminate new traits, such as antibiotic resistance genes, that allow adaptation and evolution. Here we identified a gene, ardC, that enables a plasmid to increase its conjugative host range, and thus positively contributes to plasmid fitness. The crystal structure of the antirestriction protein ArdC revealed a fold different from other antirestriction proteins. Our results have wide implications for understanding how a gene enlarges the environments a plasmid can colonize and point to new targets to harness the bacterial DNA uptake control.
Collapse
|
32
|
Liang W, Zhao C, Wang Y, Zhu W, Zhang Y, Hu J, Liu X, Yang L, Zhuang W, Shang Y, Huang G, Shi H. Anti‑restriction protein KlcAHS enhances carbapenem resistance. Mol Med Rep 2020; 21:903-908. [PMID: 31974618 DOI: 10.3892/mmr.2019.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/29/2019] [Indexed: 11/05/2022] Open
Abstract
The KlcAHS gene was previously identified as coexisting with the blaKPC‑2 gene in the backbone region of a series of blaKPC‑2‑harboring plasmids. The purpose of the present study was to determine the association between the KlcAHS and blaKPC‑2 genes. KlcAHS deletion and complementation experiments were used to evaluate the association between KlcAHS and carbapenem minimal inhibition concentrations (MICs). Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis was used to detect changes in the expression levels of blaKPC‑2 upon knocking out the KlcAHS gene in a blaKPC‑2‑harboring plasmid. The imipenem MIC of the transformants harboring ΔKlcAHSpHS10842 was lower (16 µg/ml) than that of the transformants harboring wild‑type pHS10842 (32 µg/ml), whereas the kanamycin MIC of the transformants harboring pET24a was lower (1,024 µg/ml) than that of the transformants harboring pET24a‑KlcAHS (2,048 µg/ml). The imipenem MICs of the two NM1049 Escherichia coli strains carrying plasmids pHS092839 or ΔKlcAHSpHS092839 exceeded 16 µg/ml, whereas the ertapenem MIC of the host strains harboring ΔKlcAHSpHS092839 was 4 µg/ml compared with ≥8 µg/ml observed in the host strains carrying pHS092839. The RT‑qPCR results demonstrated that the messenger RNA expression levels of blaKPC‑2 in the transformants carrying ΔKlcAHSpHS092839 were significantly downregulated (P=0.007) compared with those in the transformants carrying pHS092839. These findings revealed that KlcAHS elevated the MIC values of various antibiotics by upregulating the expression levels of blaKPC‑2. Therefore, KlcAHS can confer increased resistance to carbapenems in host strains. The survival probability of clinical pathogens may be enhanced by the presence of the KlcAHS gene in antibiotics used on a large scale.
Collapse
Affiliation(s)
- Wei Liang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Cheng Zhao
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Yan Wang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Wenjun Zhu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Ying Zhang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Juan Hu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Xia Liu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Lin Yang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Wanchuan Zhuang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Yuping Shang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Guanhong Huang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| | - Hui Shi
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu 222023, P.R. China
| |
Collapse
|
33
|
Balabanov VP, Kudryavtseva AA, Melkina OE, Pustovoit KS, Khrulnova SA, Zavilgelsky GB. ArdB Protective Activity for Unmodified λ Phage Against EcoKI Restriction Decreases in UV-Treated Escherichia coli. Curr Microbiol 2019; 76:1374-1378. [PMID: 31407052 DOI: 10.1007/s00284-019-01755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
Abstract
Anti-restriction proteins ArdB/KlcA specifically inhibit restriction (endonuclease) activity of restriction-modification (RM) type I systems. Molecular mechanisms of ArdB/KlcA-based anti-restriction remain unknown. In this study, we quantitate effects of ArdB on protection of unmodified λ phage DNA from EcoKI restriction. After UV irradiations, which produce significant amounts of unmodified chromosomal DNA in Escherichia coli K12 cells, the protective activity of ArdB decreases. Unlike ArdB, DNA-mimicking protein Ocr retains its ability to protect the unmodified λ phage regardless of UV dose. We hypothesize that the observed decrease in ArdB protective activity in UV-treated cells is due to its binding to unmodified chromosomal DNA, which decreases effective concentrations of free ArdB molecules available for λ phage protection against type I restriction enzymes.
Collapse
Affiliation(s)
- Vladimir P Balabanov
- Laboratory of Genetics of Bacteria, State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia, 115454
| | - Anna A Kudryavtseva
- Molecular Genetics Lab, Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 141700.
| | - Olga E Melkina
- Laboratory of Genetics of Bacteria, State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia, 115454
| | - Klara S Pustovoit
- Laboratory of Genetics of Bacteria, State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia, 115454
| | - Svetlana A Khrulnova
- Laboratory of Genetics of Bacteria, State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia, 115454.,Laboratory of Clinical Bacteriology, Mycology, and Antibiotic Treatment, National Research Center for Hematology, Noviy Zykovskiy pr. 4, Moscow, Russia, 125167
| | - Gennadii B Zavilgelsky
- Laboratory of Genetics of Bacteria, State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center "Kurchatov Institute", Moscow, Russia, 115454
| |
Collapse
|
34
|
Liang W, Tang Y, Li G, Shen P, Tian Y, Jiang H, Jiang X, Lu Y. KlcA HS genes are ubiquitous in clinical, bla KPC-2-positive, Klebsiella pneumoniae isolates. INFECTION GENETICS AND EVOLUTION 2019; 70:84-89. [PMID: 30807842 DOI: 10.1016/j.meegid.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/28/2023]
Abstract
Carbapenemase-producing Klebsiella pneumoniae has emerged and spread widely throughout the world. The mechanisms involved remain unclear. To provide insight, five plasmids were obtained from carbapenemase-producing K. pneumoniae clinical isolates. The five sequences were acquired, aligned and analyzed. In addition to the blaKPC-2 gene, which encodes beta lactamase, essentially all the plasmids contained a putative anti-restriction protein-encoding gene, KlcAHS. The KlcAHS gene was found in 98.2% of the blaKPC-2-positive, imipenem-resistant K. pneumoniae clinical isolates and in <1% of the blaKPC-2-negative control group. A searched of the GenBank database indicated that KlcAHS was mainly submitted by Chinese investigators beginning in 2010. Seventeen different KlcA amino acid sequences were found in the database using the restricting words: KlcA and Klebsiella pneumoniae. These sequences were used to generate a phylogenetic tree via MEGA6 software, revealing a distant evolutionary relationship between KlcAHS and other KlcAs. The secondary structure of KlcAHS, predicted with PROMALS3D software, exhibited highly conserved α-helices and β-strands. KlcAHS expressed anti-restriction activity in vivo. In summary, KlcAHS genes are ubiquitous in blaKPC-2-positive Klebsiella pneumoniae clinical isolates collected at Huashan Hospital, China. The KlcAHS protein possesses a secondary structure similar to that exhibited by anti-restriction proteins and displays anti-restriction activity. As such, KlcAHS is a probable factor in the accelerated spread of blaKPC-2 and carbapenem-resistance among clinical, K. pneumoniae isolates.
Collapse
Affiliation(s)
- Wei Liang
- Department of Laboratory Medicine, the Second People's Hospital of Lianyungang City, Jiangsu Province, China
| | - Yu Tang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Li
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pinghua Shen
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yueru Tian
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
36
|
Saile N, Schuh E, Semmler T, Eichhorn I, Wieler LH, Bauwens A, Schmidt H. Determination of virulence and fitness genes associated with the pheU, pheV and selC integration sites of LEE-negative food-borne Shiga toxin-producing Escherichia coli strains. Gut Pathog 2018; 10:43. [PMID: 30337962 PMCID: PMC6174562 DOI: 10.1186/s13099-018-0271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background In the current study, nine foodborne “Locus of Enterocyte Effacement” (LEE)-negative Shiga toxin-producing Escherichia coli (STEC) strains were selected for whole genome sequencing and analysis for yet unknown genetic elements within the already known LEE integration sites selC, pheU and pheV. Foreign DNA ranging in size from 3.4 to 57 kbp was detected and further analyzed. Five STEC strains contained an insertion of foreign DNA adjacent to the selC tRNA gene and five and seven strains contained foreign DNA adjacent to the pheU and pheV tRNA genes, respectively. We characterized the foreign DNA insertion associated with selC (STEC O91:H21 strain 17584/1), pheU (STEC O8:H4 strain RF1a and O55:Hnt strain K30) and pheV (STEC O91:H21 strain 17584/1 and O113:H21 strain TS18/08) as examples. Results In total, 293 open reading frames partially encoding putative virulence factors such as TonB-dependent receptors, DNA helicases, a hemolysin activator protein precursor, antigen 43, anti-restriction protein KlcA, ShiA, and phosphoethanolamine transferases were detected. A virulence type IV toxin-antitoxin system was detected in three strains. Additionally, the ato system was found in one strain. In strain 17584/1 we were able to define a new genomic island which we designated GIselC17584/1. The island contained integrases and mobile elements in addition to genes for increased fitness and those playing a putative role in pathogenicity. Conclusion The data presented highlight the important role of the three tRNAs selC, pheU, and pheV for the genomic flexibility of E. coli. Electronic supplementary material The online version of this article (10.1186/s13099-018-0271-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadja Saile
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Elisabeth Schuh
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.,2Department Biological Safety, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | | | - Inga Eichhorn
- 4Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | | | - Andreas Bauwens
- 5Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Herbert Schmidt
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| |
Collapse
|
37
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
38
|
Clinically Relevant Plasmid-Host Interactions Indicate that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. mBio 2018; 9:mBio.02303-17. [PMID: 29691332 PMCID: PMC5915730 DOI: 10.1128/mbio.02303-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid dissemination of antimicrobial resistance (AMR) around the globe is largely due to mobile genetic elements, such as plasmids. They confer resistance to critically important drugs, including extended-spectrum beta-lactams, carbapenems, and colistin. Large, complex resistance plasmids have evolved alongside their host bacteria. However, much of the research on plasmid-host evolution has focused on small, simple laboratory plasmids in laboratory-adapted bacterial hosts. These and other studies have documented mutations in both host and plasmid genes which occur after plasmid introduction to ameliorate fitness costs of plasmid carriage. We describe here the impact of two naturally occurring variants of a large AMR plasmid (pKpQIL) on a globally successful pathogen. In our study, after pKpQIL plasmid introduction, no changes in coding domain sequences were observed in their natural host, Klebsiella pneumoniae However, significant changes in chromosomal and plasmid gene expression may have allowed the bacterium to adapt to the acquisition of the AMR plasmid. We hypothesize that this was sufficient to ameliorate the associated fitness costs of plasmid carriage, as pKpQIL plasmids were maintained without selection pressure. The dogma that removal of selection pressure (e.g., antimicrobial exposure) results in plasmid loss due to bacterial fitness costs is not true for all plasmid/host combinations. We also show that pKpQIL impacted the ability of K. pneumoniae to form a biofilm, an important aspect of virulence. This study used highly relevant models to study the interaction between AMR plasmids and pathogens and revealed striking differences from results of studies done on laboratory-adapted plasmids and strains.IMPORTANCE Antimicrobial resistance is a serious problem facing society. Many of the genes that confer resistance can be shared between bacteria through mobile genetic elements, such as plasmids. Our work shows that when two clinically relevant AMR plasmids enter their natural host bacteria, there are changes in gene expression, rather than changes to gene coding sequences. These changes in gene expression ameliorate the potential fitness costs of carriage of these AMR plasmids. In line with this, the plasmids were stable within their natural host and were not lost in the absence of selective pressure. We also show that better understanding of the impact of resistance plasmids on fundamental pathogen biology, including biofilm formation, is crucial for fighting drug-resistant infections.
Collapse
|
39
|
Kudryavtseva AA, Osetrova MS, Livinyuk VY, Manukhov IV, Zavilgelsky GB. The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein. Mol Biol 2017. [DOI: 10.1134/s0026893317050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Liang W, Xie Y, Xiong W, Tang Y, Li G, Jiang X, Lu Y. Anti-Restriction Protein, KlcA HS, Promotes Dissemination of Carbapenem Resistance. Front Cell Infect Microbiol 2017; 7:150. [PMID: 28512626 PMCID: PMC5411435 DOI: 10.3389/fcimb.2017.00150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (KPC) has emerged and spread throughout the world. A retrospective analysis was performed on carbapenem-resistant K. pneumoniae isolated at our teaching hospital during the period 2009–2010, when the initial outbreak occurred. To determine the mechanism(s) that underlies the increased infectivity exhibited by KPC, Multilocus Sequence Typing (MLST) was conducted. A series of plasmids was also extracted, sequenced and analyzed. Concurrently, the complete sequences of blaKPC−2-harboring plasmids deposited in GenBank were summarized and aligned. The blaKPC−2 and KlcAHS genes in the carbapenem-resistant K. pneumoniae isolates were examined. E. coli strains, carrying different Type I Restriction and Modification (RM) systems, were selected to study the interaction between RM systems, anti-RM systems and horizontal gene transfer (HGT). The ST11 clone predominated among 102 carbapenem-resistant K. pneumoniae isolates, all harbored the blaKPC−2 gene; 98% contained the KlcAHS gene. KlcAHS was one of the core genes in the backbone region of most blaKPC−2 carrying plasmids. Type I RM systems in the host bacteria reduced the rate of pHS10842 plasmid transformation by 30- to 40-fold. Presence of the anti-restriction protein, KlcAHS, on the other hand, increased transformation efficiency by 3- to 6-fold. These results indicate that RM systems can significantly restrict HGT. In contrast, KlcAHS can disrupt the RM systems and promote HGT by transformation. These findings suggest that the anti-restriction protein, KlcAHS, represents a novel mechanism that facilitates the increased transfer of blaKPC-2 and KlcAHS-carrying plasmids among K. pneumoniae strains.
Collapse
Affiliation(s)
- Wei Liang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yingzhou Xie
- State Key Laboratory for Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong UniversityShanghai, China
| | - Wei Xiong
- State Key Laboratory for Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong UniversityShanghai, China
| | - Yu Tang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Gang Li
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
41
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
42
|
Zavilgelsky GB, Kotova VY, Melkina OE, Balabanov VP, Mindlin SZ. Proteolytic control of the antirestriction activity of Tn21, Tn5053, Tn5045, Tn501, and Tn402 non-conjugative transposons. Mol Biol 2015. [DOI: 10.1134/s0026893315020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Zavilgelsky GB, Kotova VY, Melkina OE, Pustovoit KS. Antirestriction activity of the mercury resistance nonconjugative transposon Tn5053 is controlled by the protease ClpXP. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414090166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20-44. [PMID: 24068554 PMCID: PMC3874165 DOI: 10.1093/nar/gkt847] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - David T. F. Dryden
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
45
|
Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 4:256. [PMID: 24032028 PMCID: PMC3759002 DOI: 10.3389/fmicb.2013.00256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Outbreaks of human infection linked to the powdered infant formula (PIF) food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC) and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC)], pSP291-2, [52.1-kb (49.2% GC)], and pSP291-3, [4.4-kb (54.0% GC)]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM), we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment.
Collapse
Affiliation(s)
- Qiongqiong Yan
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Protein structure validation and identification from unassigned residual dipolar coupling data using 2D-PDPA. Molecules 2013; 18:10162-88. [PMID: 23973992 PMCID: PMC4090686 DOI: 10.3390/molecules180910162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022] Open
Abstract
More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 residues in size from a library of 619 decoy structures by using unassigned simulated RDC data. When using experimental data, 2D-PDPA successfully identified the correct NMR structures from the same library of decoy structures. In addition, the most homologous X-ray structure was also identified as the second best structural candidate. Finally, success of 2D-PDPA in identifying and evaluating the most appropriate structure from a set of computationally predicted structures in the case of a previously uncharacterized protein Pf2048.1 has been demonstrated. This protein exhibits less than 20% sequence identity to any protein with known structure and therefore presents a compelling and practical application of our proposed work.
Collapse
|
47
|
Ludwiczak M, Dolowy P, Markowska A, Szarlak J, Kulinska A, Jagura-Burdzy G. Global transcriptional regulator KorC coordinates expression of three backbone modules of the broad-host-range RA3 plasmid from IncU incompatibility group. Plasmid 2013; 70:131-45. [PMID: 23583562 DOI: 10.1016/j.plasmid.2013.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
Abstract
The broad-host-range conjugative RA3 plasmid from IncU incompatibility group has been isolated from the fish pathogen Aeromonas hydrophila. DNA sequencing has revealed a mosaic modular structure of RA3 with the stabilization module showing some similarity to IncP-1 genes and the conjugative transfer module highly similar to that from PromA plasmids. The integrity of the mosaic plasmid genome seems to be specified by its regulatory network. In this paper the transcriptional regulator KorC was analyzed. KorCRA3 (98 amino acids) is encoded in the stabilization region and represses four strong promoters by binding to a conserved palindrome sequence, designated OC on the basis of homology to the KorC operator sequences in IncP-1 plasmids. Two of the KorCRA3-regulated promoters precede the first two cistrons in the stabilization module, one fires towards replication module, remaining one controls a tricistronic operon, whose products are involved in the conjugative transfer process. Despite the similarity between the binding sites in IncU and IncP-1 plasmids, no cross-reactivity between their KorC proteins has been detected. KorC emerges as a global regulator of RA3, coordinating all its backbone functions: replication, stable maintenance and conjugative transfer.
Collapse
Affiliation(s)
- M Ludwiczak
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
48
|
Balabanov VP, Kotova VY, Kholodii GY, Mindlin SZ, Zavilgelsky GB. A novel gene, ardD, determines antirestriction activity of the non-conjugative transposon Tn5053 and is located antisense within the tniA gene. FEMS Microbiol Lett 2012; 337:55-60. [PMID: 22967207 PMCID: PMC3533173 DOI: 10.1111/1574-6968.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/03/2022] Open
Abstract
The mercury-resistance transposon Tn5053 inhibits restriction activity of the type I restriction-modification endonuclease EcoKI in Escherichia coli K12 cells. This is the first report of antirestriction activity of a non-conjugative transposon. The gene (ardD) coding for the antirestriction protein has been cloned. The ardD gene is located within the tniA gene, coding for transposase, on the complementary strand. The direction of transcription is opposite to transcription of the tniA gene.
Collapse
Affiliation(s)
- Vladimir P Balabanov
- State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | | | | | | | | |
Collapse
|
49
|
Balabanov VP, Pustovoit KS, Zavilgelsky GB. Comparative analysis of antirestriction activity of the ArdA and ArdB proteins encoded by genes of the R64 transmissible plasmid (IncI1). Mol Biol 2012. [DOI: 10.1134/s0026893312010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Garcillán-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev 2011; 35:936-56. [PMID: 21711366 DOI: 10.1111/j.1574-6976.2011.00291.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Plasmids contain a backbone of core genes that remains relatively stable for long evolutionary periods, making sense to speak about plasmid species. The identification and characterization of the core genes of a plasmid species has a special relevance in the study of its epidemiology and modes of transmission. Besides, this knowledge will help to unveil the main routes that genes, for example antibiotic resistance (AbR) genes, use to travel from environmental reservoirs to human pathogens. Global dissemination of multiple antibiotic resistances and virulence traits by plasmids is an increasing threat for the treatment of many bacterial infectious diseases. To follow the dissemination of virulence and AbR genes, we need to identify the causative plasmids and follow their path from reservoirs to pathogens. In this review, we discuss how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in Gammaproteobacteria, as well as their cargo genes, in complex ecosystems. Once the dissemination routes are known, designing antidissemination drugs and testing their efficacy will become feasible. We discuss in this review how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, by using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in ?-proteobacteria, as well as their cargo genes, in complex ecosystems.
Collapse
Affiliation(s)
- Maria Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, C. Herrera Oria s/n, Santander, Spain
| | | | | |
Collapse
|