1
|
Lye LF, Dobson DE, Beverley SM, Tung MC. RNA interference in protozoan parasites and its application. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:281-287. [PMID: 39884870 DOI: 10.1016/j.jmii.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression, via small RNA triggers derived from double-stranded RNA that can target specific genes; it is a natural process that plays a role in both the regulation of protein synthesis and in immunity. Discovery of RNAi by Fire and Mello in 1998 had a profound impact on unraveling novel aspects of eukaryotic biology. RNA interference (RNAi) has proven to be an immensely useful tool for studying gene function and validation of potential drug targets in almost all organisms. A great advance in parasitic protozoa was achieved by the experimental demonstration of RNAi in Trypanosoma brucei, and in other protists such as Leishmania braziliensis, Entamoeba histolytica and Giardia lamblia/intestinalis. These organisms exhibit numerous differences beyond the core 'dicer' and 'slicer' activities, thereby expanding knowledge of the evolutionary diversification of this pathway in eukaryotes. When present, RNAi has led to new technologies for engineering powerful and facile knockdowns in gene expression, revolutionizing biomedical research and opening clinical potentialities. In this review, we discuss the distribution of RNAi pathways, their biological roles, and experimental applications in protozoan parasites.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Min-Che Tung
- Department of Urology, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Yang S, Wei Y, Quansah E, Zhang Z, Da W, Wang B, Wang K, Sun D, Tao Z, Zhang C. Cas12a is competitive for gene editing in the malaria parasites. Microb Pathog 2025; 200:107340. [PMID: 39880137 DOI: 10.1016/j.micpath.2025.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Malaria, caused by the Plasmodium parasites, has always been one of the worst infectious diseases that threaten human health, making it necessary for us to study the genetic function and physiological mechanisms of Plasmodium parasites from the molecular level to find more effective ways of addressing the increasingly pressing threat. The CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) is an RNA-guided adaptive immune system, which has been extensively developed and used as a genome editing tool in many organisms, including Plasmodium parasites. However, due to the physiological characteristics and special genomic characteristics of Plasmodium parasites, most of the tools currently used for genome editing of Plasmodium parasites have not met expectations. CRISPR-Cas12a (also known as Cpf1), one of the CRISPR-Cas systems, has attracted considerable attention because of its characteristics of being used for biological diagnosis and multiple genome editing. Recent studies have shown that its unique properties fit the genetic makeup of Plasmodium parasites making it a promising tool for gene editing in these parasites. In this review, we have summarized the relevant content of the Cas12 family, especially the frequently used Cas12a, its advantages for gene editing, and the application prospects in Plasmodium parasites.
Collapse
Affiliation(s)
- Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yiming Wei
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Elvis Quansah
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ziyu Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Weiran Da
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bingjie Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kaige Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Zhiyong Tao
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, People's Republic of China.
| | - Chao Zhang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
3
|
Gaona-Lopez C, Rivera G. Exploring Genetic Silencing: RNAi and CRISPR-Cas Potential against Drug Resistance in Malaria. Mini Rev Med Chem 2025; 25:128-137. [PMID: 38932611 DOI: 10.2174/0113895575306957240610102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Malaria has been one of the most lethal infectious diseases throughout history, claiming a high number of human lives. The genomic plasticity of Plasmodium falciparum, the causative agent of the most severe and deadly form of malaria, gives the parasite a constant resistance to drugs developed for its control. Despite efforts to control and even eradicate the disease, these have largely been unsuccessful due to the parasite's continuous adaptations. This study aims to examine the key genes involved in parasite resistance and propose a shift in the combat strategy. Gene silencing techniques offer promise in combating malaria, yet further research is needed to harness their potential for disease control fully. Although there is still a long way to go for the implementation of gene silencing-based therapeutic strategies, this review addresses examples of the use of such techniques in various human diseases and how they could be extrapolated for malaria treatment.
Collapse
Affiliation(s)
- Carlos Gaona-Lopez
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa, 88710, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa, 88710, Mexico
| |
Collapse
|
4
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024; 7:310-326. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Ali M, Xu C, Wang J, Kulyar MFEA, Li K. Emerging therapeutic avenues against Cryptosporidium: A comprehensive review. Vet Parasitol 2024; 331:110279. [PMID: 39116547 DOI: 10.1016/j.vetpar.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Cryptosporidium is among the top causes of life-threatening diarrheal infection in public health and livestock sectors. Despite its high prevalence and economic importance, currently, there is no vaccine. Control of this protozoan is difficult due to the excretion of many resistant oocysts in the feces of the infected host, which contaminate the environment. Paromomycin shows inconsistent results and isn't considered a reliable therapy for cryptosporidiosis. Nitazoxanide (NTZ), the only FDA-approved drug against this parasite, is less productive in impoverished children and PLWHA (people living with HIV/AIDS). The absence of mitochondria and apicoplast, its unique location inside enterocytes separated by parasitophorous vacuole, and, most importantly, challenges in its genetic manipulations are some hurdles to the drug-discovery process. A library of compounds has been tested against Cryptosporidium during in vitro and in vivo trials. However, there has still not been sufficient success in finding the drug of choice against this parasite. Recent genome editing technologies based on CRISPR/Cas-9 have explored the functions of the vital genes by producing transgenic parasites that help to screen a collection of compounds to find target-specific drugs, provided the sufficient availability of in vitro culturing platforms, efficient transfection methods, and analytic techniques. The use of herbal remedies against Cryptosporidium is also an emerging area of interest with sufficient clinical success due to enhanced concern regarding anthelmintic resistance. Here, we highlighted present treatment options with their associated limitations, the use of genetic tools and natural products against it to find safe, effective, and inexpensive drugs to control the ever-increasing global burden of this disease.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Jabeena CA, Rajavelu A. Histone globular domain epigenetic modifications: The regulators of chromatin dynamics in malaria parasite. Chembiochem 2024; 25:e202300596. [PMID: 38078518 DOI: 10.1002/cbic.202300596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/09/2023] [Indexed: 01/31/2024]
Abstract
Plasmodium species adapt a complex lifecycle with multiple phenotypes to survive inside various cell types of humans and mosquitoes. Stage-specific gene expression in the developmental stages of parasites is tightly controlled in Plasmodium species; however, the underlying mechanisms have yet to be explored. Genome organization and gene expression for each stage of the malaria parasite need to be better characterized. Recent studies indicated that epigenetic modifications of histone proteins play a vital role in chromatin plasticity. Like other eukaryotes, Plasmodium species N-terminal tail modifications form a distinct "histone code," which creates the docking sites for histone reader proteins, including gene activator/repressor complexes, to regulate gene expression. The emerging research findings shed light on various unconventional epigenetic changes in histone proteins' core/globular domain regions, which might contribute to the chromatin organization in different developmental stages of the malaria parasite. The malaria parasite lost many transcription factors during evolution, and it is proposed that the nature of local chromatin structure essentially regulates the stage-specific gene expression. This review highlights recent discoveries of unconventional histone globular domain epigenetic modifications and their functions in regulating chromatin structure dynamics in various developmental stages of malaria parasites.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600 036, India
| |
Collapse
|
7
|
Abstract
Plasmodium falciparum, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in P. falciparum. Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA;
| |
Collapse
|
8
|
Mori T, Nakashima M. Sequence-dependent heterochromatin formation in the human malaria parasite Plasmodium falciparum. Heliyon 2023; 9:e19164. [PMID: 37681121 PMCID: PMC10480601 DOI: 10.1016/j.heliyon.2023.e19164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum represses transcription of the gene encoding AP2-G, which is the master regulator of germ cell differentiation, via heterochromatin condensation following histone H3 lysine 9 trimethylation (H3K9me3). Although H3K9me3-marked heterochromatin is typically constitutive and its establishment depends on the RNA interference (RNAi) pathway in fission yeast centromeres, malaria parasites lack molecular members essential for RNAi. We developed a strategy to assess heterochromatin establishment on artificial chromosomes introduced into P. falciparum. We show that a particular DNA sequence in the AP2-G promoter is able to induce de novo H3K9me3 nucleosome deposition. In addition, we also found that the AP2-G promoter contains a distinct element required in maintenance of the repression memory. Thus, we speculate that malaria parasites have evolutionarily acquired a sequence-dependent establishment system of non-constitutive, i.e. facultative, H3K9me3-marked heterochromatin.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Corresponding author. Department of Molecular Protozoology, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
9
|
Shivam S, Ertl R, Sexl V, El-Matbouli M, Kumar G. Differentially expressed transcripts of Tetracapsuloides bryosalmonae (Cnidaria) between carrier and dead-end hosts involved in key biological processes: novel insights from a coupled approach of FACS and RNA sequencing. Vet Res 2023; 54:51. [PMID: 37365650 PMCID: PMC10291810 DOI: 10.1186/s13567-023-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Tetracapsuloides bryosalmonae is a malacosporean endoparasite that infects a wide range of salmonids and causes proliferative kidney disease (PKD). Brown trout serves as a carrier host whereas rainbow trout represents a dead-end host. We thus asked if the parasite adapts to the different hosts by changing molecular mechanisms. We used fluorescent activated cell sorting (FACS) to isolate parasites from the kidney of brown trout and rainbow trout following experimental infection with T. bryosalmonae. The sorted parasite cells were then subjected to RNA sequencing. By this approach, we identified 1120 parasite transcripts that were expressed differentially in parasites derived from brown trout and rainbow trout. We found elevated levels of transcripts related to cytoskeleton organisation, cell polarity, peptidyl-serine phosphorylation in parasites sorted from brown trout. In contrast, transcripts related to translation, ribonucleoprotein complex biogenesis and subunit organisation, non-membrane bounded organelle assembly, regulation of protein catabolic process and protein refolding were upregulated in rainbow trout-derived parasites. These findings show distinct molecular adaptations of parasites, which may underlie their distinct outcomes in the two hosts. Moreover, the identification of these differentially expressed transcripts may enable the identification of novel drug targets that may be exploited as treatment against T. bryosalmonae. We here also describe for the first time how FACS based isolation of T. bryosalmonae cells from infected kidney of fish fosters research and allows to define differentially expressed parasite transcripts in carrier and dead-end fish hosts.
Collapse
Affiliation(s)
- Saloni Shivam
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Karwar Regional Station of Indian Council of Agricultural Research, Central Marine Fisheries Research Institute, Karwar, Karnataka, India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mansour El-Matbouli
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Gokhlesh Kumar
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Lamba S, Roy A. Demystifying the potential of inhibitors targeting DNA topoisomerases in unicellular protozoan parasites. Drug Discov Today 2023; 28:103574. [PMID: 37003515 DOI: 10.1016/j.drudis.2023.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
DNA topoisomerases are a group of enzymes omnipresent in all organisms. They maintain the DNA topology during replication, repair, recombination, and transcription. However, the structure of topoisomerase in protozoan parasites differs significantly from that of human topoisomerases; thus, this enzyme acts as a crucial target in drug development against parasitic diseases. Although the therapeutic potential of drugs targeting the parasitic topoisomerase is well known, to manage the shortcomings of currently available therapeutics and the emergence of drug resistance, the discovery of novel antiparasitic molecules is an urgent need. In this review, we describe various investigational and repurposed topoisomerase inhibitors developed against protozoan parasites over the past few years. Teaser: Fatal parasitic diseases are an increasing cause for concern; here, we provide a compilation of different inhibitors targeting DNA topoisomerases, enzymes that are essential for, and unique to, protozoan parasites; therefore, inhibitors are efficient and have few adverse effects.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
11
|
Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y, Chen M, Yu L, Zhang C. CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Front Microbiol 2023; 14:1076947. [PMID: 36760507 PMCID: PMC9905151 DOI: 10.3389/fmicb.2023.1076947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Malaria caused by Plasmodium is still a serious public health problem. Genomic editing is essential to understand parasite biology, elucidate mechanical pathways, uncover gene functions, identify novel therapeutic targets, and develop clinical diagnostic tools. Recent advances have seen the development of genomic diagnostic technologies and the emergence of genetic manipulation toolbox comprising a host of several systems for editing the genome of Plasmodium at the DNA, RNA, and protein level. Genomic manipulation at the RNA level is critical as it allows for the functional characterization of several transcripts. Of notice, some developed artificial RNA genome editing tools hinge on the endogenous RNA interference system of Plasmodium. However, Plasmodium lacks a robust RNAi machinery, hampering the progress of these editing tools. CRISPR-Cas13, which belongs to the VI type of the CRISPR system, can specifically bind and cut RNA under the guidance of crRNA, with no or minimal permanent genetic scar on genes. This review summarizes CRISPR-Cas13 system from its discovery, classification, principle of action, and diagnostic platforms. Further, it discusses the application prospects of Cas13-based systems in Plasmodium and highlights its advantages and drawbacks.
Collapse
Affiliation(s)
- Elvis Quansah
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yihuan Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Junyan Wang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yangxi Zhao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ming Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,*Correspondence: Li Yu, ✉
| | - Chao Zhang
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,Chao Zhang, ✉
| |
Collapse
|
12
|
Diffendall GM, Barcons-Simon A, Baumgarten S, Dingli F, Loew D, Scherf A. Discovery of RUF6 ncRNA-interacting proteins involved in P. falciparum immune evasion. Life Sci Alliance 2022; 6:6/1/e202201577. [PMID: 36379669 PMCID: PMC9670795 DOI: 10.26508/lsa.202201577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are emerging regulators of immune evasion and transmission of Plasmodium falciparum RUF6 is an ncRNA gene family that is transcribed by RNA polymerase III but actively regulates the Pol II-transcribed var virulence gene family. Understanding how RUF6 ncRNA connects to downstream effectors is lacking. We developed an RNA-directed proteomic discovery (ChIRP-MS) protocol to identify in vivo RUF6 ncRNA-protein interactions. The RUF6 ncRNA interactome was purified with biotinylated antisense oligonucleotides. Quantitative label-free mass spectrometry identified several unique proteins linked to gene transcription including RNA Pol II subunits, nucleosome assembly proteins, and a homologue of DEAD box helicase 5 (DDX5). Affinity purification of Pf-DDX5 identified proteins originally found by our RUF6-ChIRP protocol, validating the technique's robustness for identifying ncRNA interactomes in P. falciparum Inducible displacement of nuclear Pf-DDX5 resulted in significant down-regulation of the active var gene. Our work identifies a RUF6 ncRNA-protein complex that interacts with RNA Pol II to sustain the var gene expression, including a helicase that may resolve G-quadruplex secondary structures in var genes to facilitate transcriptional activation and progression.
Collapse
Affiliation(s)
- Gretchen M Diffendall
- Universite Paris Cité, Institut Pasteur, Biology of Host-Parasite Interactions Unit, INSERM U1201, CNRS EMR9195, Paris, France,Sorbonne Université Ecole doctorale Complexité du Vivant ED515, Paris, France
| | - Anna Barcons-Simon
- Universite Paris Cité, Institut Pasteur, Biology of Host-Parasite Interactions Unit, INSERM U1201, CNRS EMR9195, Paris, France,Sorbonne Université Ecole doctorale Complexité du Vivant ED515, Paris, France,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Artur Scherf
- Universite Paris Cité, Institut Pasteur, Biology of Host-Parasite Interactions Unit, INSERM U1201, CNRS EMR9195, Paris, France
| |
Collapse
|
13
|
Dumarchey A, Lavazec C, Verdier F. Erythropoiesis and Malaria, a Multifaceted Interplay. Int J Mol Sci 2022; 23:ijms232112762. [PMID: 36361552 PMCID: PMC9657351 DOI: 10.3390/ijms232112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
One of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis.
Collapse
Affiliation(s)
- Aurélie Dumarchey
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Zhang L, Chen L, Zhang H, Si H, Liu X, Suo X, Hu D. A comparative study of microRNAs in different stages of Eimeria tenella. Front Vet Sci 2022; 9:954725. [PMID: 35937295 PMCID: PMC9353057 DOI: 10.3389/fvets.2022.954725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Apicomplexan parasites have divergent biogenesis machinery for small RNA generation. Analysis has shown that parasites in Plasmodium and Cryptosporidium as well as many species in Leishmania or Trypanosoma do not have a complete machinery in small RNA biogenesis. Recently, the miRNA-generating system of Toxoplasma has been identified as plant/fungal-like and its miRNAome has been elucidated. However, the microRNA (miRNA) expression profiles and their potential regulatory functions in different stages of Eimeria tenella remain largely unknown. In this study, we characterized the RNA silencing machinery of E. tenella and investigated the miRNA population distribution at different life stages by high-throughput sequencing. We characterized the expression of miRNAs in the unsporulated oocyst, sporulated oocyst and schizogony stages, obtaining a total of 392 miRNAs. We identified 58 differentially expressed miRNAs between USO (unsporulated oocysts) and SO (sporulated oocysts) that were significantly enriched for their potential target genes in the regulation of gene expression and chromatin binding, suggesting an epigenetic modulation of sporulating by these miRNAs. In comparing miRNA expression at endogenous and exogenous developmental stages, twenty-four miRNAs were identified differently expressed. Those were mainly associated with the regulation of genes with protein kinase activity, suggesting control of protein phosphorylation. This is the first study about the evolution of miRNA biogenesis system and miRNA control of gene expression in Eimeria species. Our data may lead to functional insights into of the regulation of gene expression during parasite life cycle in apicomplexan parasites.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linlin Chen
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongtao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Dandan Hu
| |
Collapse
|
15
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
16
|
Ishizaki T, Hernandez S, Paoletta MS, Sanderson T, Bushell ES. CRISPR/Cas9 and genetic screens in malaria parasites: small genomes, big impact. Biochem Soc Trans 2022; 50:1069-1079. [PMID: 35621119 PMCID: PMC9246331 DOI: 10.1042/bst20210281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022]
Abstract
The ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein 9 (CRISPR/Cas9) technology has dramatically improved gene editing efficiency at the single gene level. Here, we review the arrival of genetic screens in malaria parasites to analyse parasite gene function at a genome-scale and their impact on understanding parasite biology. CRISPR/Cas9 screens, which have revolutionised human and model organism research, have not yet been implemented in malaria parasites due to the need for more complex CRISPR/Cas9 gene targeting vector libraries. We therefore introduce the reader to CRISPR-based screens in the related apicomplexan Toxoplasma gondii and discuss how these approaches could be adapted to develop CRISPR/Cas9 based genome-scale genetic screens in malaria parasites. Moreover, since more than half of Plasmodium genes are required for normal asexual blood-stage reproduction, and cannot be targeted using knockout methods, we discuss how CRISPR/Cas9 could be used to scale up conditional gene knockdown approaches to systematically assign function to essential genes.
Collapse
Affiliation(s)
- Takahiro Ishizaki
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Sophia Hernandez
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Martina S. Paoletta
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA - CONICET, Hurlingham, Argentina
| | - Theo Sanderson
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
| | - Ellen S.C. Bushell
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| |
Collapse
|
17
|
Sethumadhavan DV, Tiburcio M, Kanyal A, Jabeena CA, Govindaraju G, Karmodiya K, Rajavelu A. Chromodomain Protein Interacts with H3K9me3 and Controls RBC Rosette Formation by Regulating the Expression of a Subset of RIFINs in the Malaria Parasite. J Mol Biol 2022; 434:167601. [PMID: 35460670 DOI: 10.1016/j.jmb.2022.167601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum expresses clonally variant proteins on the surface of infected erythrocytes to evade the host immune system. The clonally variant multigene families include var, rifin, and stevor, which express Erythrocyte Membrane Protein 1 (EMP1), Repetitive Interspersed Families of polypeptides (RIFINs), and Sub-telomeric Variable Open Reading frame (STEVOR) proteins, respectively. The rifins are the largest multigene family and are essentially involved in the RBC rosetting, the hallmark of severe malaria. The molecular regulators that control the RIFINs expression in Plasmodium spp. have not been reported so far. This study reports a chromodomain-containing protein (PfCDP) that binds to H3K9me3 modification on P. falciparum chromatin. Conditional deletion of the chromodomain (CD) gene in P. falciparum using an inducible DiCre-LoxP system leads to selective up-regulation of a subset of virulence genes, including rifins, a few var, and stevor genes. Further, we show that PfCDP conditional knockout (PfΔCDP) promotes RBC rosette formation. This study provides the first evidence of an epigenetic regulator mediated control on a subset of RIFINs expression and RBC rosetting by P. falciparum.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Marta Tiburcio
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India. https://twitter.com/AbhishekKanyal7
| | - C A Jabeena
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Gayathri Govindaraju
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India. https://twitter.com/Krishanpal_K
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
18
|
Liang X, Boonhok R, Siddiqui FA, Xiao B, Li X, Qin J, Min H, Jiang L, Cui L, Miao J. A Leak-Free Inducible CRISPRi/a System for Gene Functional Studies in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0278221. [PMID: 35510853 PMCID: PMC9241666 DOI: 10.1128/spectrum.02782-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
By fusing catalytically dead Cas9 (dCas9) to active domains of histone deacetylase (Sir2a) or acetyltransferase (GCN5), this CRISPR interference/activation (CRISPRi/a) system allows gene regulation at the transcriptional level without causing permanent changes in the parasite genome. However, the constitutive expression of dCas9 poses a challenge for studying essential genes, which may lead to adaptive changes in the parasite, masking the true phenotypes. Here, we developed a leak-free inducible CRISPRi/a system by integrating the DiCre/loxP regulon to allow the expression of dCas9-GCN5/-Sir2a upon transient induction with rapamycin, which allows convenient transcriptional regulation of a gene of interest by introducing a guide RNA targeting its transcription start region. Using eight genes that are either silent or expressed from low to high levels during asexual erythrocytic development, we evaluated the robustness and versatility of this system in the asexual parasites. For most genes analyzed, this inducible CRISPRi/a system led to 1.5- to 3-fold up-or downregulation of the target genes at the mRNA level. Alteration in the expression of PfK13 and PfMYST resulted in altered sensitivities to artemisinin. For autophagy-related protein 18, an essential gene related to artemisinin resistance, a >2-fold up- or downregulation was obtained by inducible CRISPRi/a, leading to growth retardation. For the master regulator of gametocytogenesis, PfAP2-G, a >10-fold increase of the PfAP2-G transcripts was obtained by CRISPRa, resulting in >4-fold higher gametocytemia in the induced parasites. Additionally, inducible CRISPRi/a could also regulate gene expression in gametocytes. This inducible epigenetic regulation system offers a fast way of studying gene functions in Plasmodium falciparum. IMPORTANCE Understanding the fundamental biology of malaria parasites through functional genetic/genomic studies is critical for identifying novel targets for antimalarial development. Conditional knockout/knockdown systems are required to study essential genes in the haploid blood stages of the parasite. In this study, we developed an inducible CRISPRi/a system via the integration of DiCre/loxP. We evaluated the robustness and versatility of this system by activating or repressing eight selected genes and achieved up- and downregulation of the targeted genes located in both the euchromatin and heterochromatin regions. This system offers the malaria research community another tool for functional genetic studies.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Faiza Amber Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bo Xiao
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
19
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
21
|
Aroonsri A, Wongsombat C, Shaw P, Franke S, Przyborski J, Kaiser A. Investigation of an Allosteric Deoxyhypusine Synthase Inhibitor in P. falciparum. Molecules 2022; 27:molecules27082463. [PMID: 35458660 PMCID: PMC9030622 DOI: 10.3390/molecules27082463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites’ genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.
Collapse
Affiliation(s)
- Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand; (A.A.); (C.W.); (P.S.)
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand; (A.A.); (C.W.); (P.S.)
| | - Philip Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand; (A.A.); (C.W.); (P.S.)
| | - Siegrid Franke
- Interdisziplinäres Forschungszentrum IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.F.); (J.P.)
| | - Jude Przyborski
- Interdisziplinäres Forschungszentrum IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.F.); (J.P.)
| | - Annette Kaiser
- Medical Research Centre, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence:
| |
Collapse
|
22
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Alvarez DR, Ospina A, Barwell T, Zheng B, Dey A, Li C, Basu S, Shi X, Kadri S, Chakrabarti K. The RNA structurome in the asexual blood stages of malaria pathogen plasmodium falciparum. RNA Biol 2021; 18:2480-2497. [PMID: 33960872 DOI: 10.1080/15476286.2021.1926747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Plasmodium falciparum is a deadly human pathogen responsible for the devastating disease called malaria. In this study, we measured the differential accumulation of RNA secondary structures in coding and non-coding transcripts from the asexual developmental cycle in P. falciparum in human red blood cells. Our comprehensive analysis that combined high-throughput nuclease mapping of RNA structures by duplex RNA-seq, SHAPE-directed RNA structure validation, immunoaffinity purification and characterization of antisense RNAs collectively measured differentially base-paired RNA regions throughout the parasite's asexual RBC cycle. Our mapping data not only aligned to a diverse pool of RNAs with known structures but also enabled us to identify new structural RNA regions in the malaria genome. On average, approximately 71% of the genes with secondary structures are found to be protein coding mRNAs. The mapping pattern of these base-paired RNAs corresponded to all regions of mRNAs, including the 5' UTR, CDS and 3' UTR as well as the start and stop codons. Histone family genes which are known to form secondary structures in their mRNAs and transcripts from genes which are important for transcriptional and post-transcriptional control, such as the unique plant-like transcription factor family, ApiAP2, DNA-/RNA-binding protein, Alba3 and proteins important for RBC invasion and malaria cytoadherence also showed strong accumulation of duplex RNA reads in various asexual stages in P. falciparum. Intriguingly, our study determined stage-specific, dynamic relationships between mRNA structural contents and translation efficiency in P. falciparum asexual blood stages, suggesting an essential role of RNA structural changes in malaria gene expression programs.
Collapse
Affiliation(s)
- Diana Renteria Alvarez
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Alejandra Ospina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Tiffany Barwell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Bo Zheng
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Abhishek Dey
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Chong Li
- Temple University, Philadelphia, PA, USA
| | - Shrabani Basu
- Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Sabah Kadri
- Division of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
24
|
Grinev A, Fokina N, Bogomolov D, Berechikidze I, Lazareva Y. Prediction of gene expression regulation by human microRNAs in Plasmodium falciparum. Genes Environ 2021; 43:22. [PMID: 34130734 PMCID: PMC8204574 DOI: 10.1186/s41021-021-00198-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Malaria is a disease annually causing over 400,000 deaths. Deep understanding of molecular and genetic processes underlying its life cycle and pathogenicity is required to efficiently resist it. RNA interference is a mechanism of the gene expression regulation typical for a wide variety of species. Even though the existence of this phenomenon in Plasmodium falciparum has long been rejected, several recent works pose hypotheses and provide direct and indirect evidence of the existence of mechanisms similar to RNA interference in this organism. In particular, the possibility of regulation of P. falciparum gene expression through human microRNAs is of great importance both for fundamental biology and for medicine. In the present work we address the problem of possibility of the existence in the P. falciparum genome of the nucleotide sequences such that mRNAs transcribed from genes containing these sequences could form duplexes with human microRNAs. Using bioinformatics methods we have analysed genomes of 15 P. falciparum isolates for sequences homological to these microRNAs. RESULTS The analysis has demonstrated the existence of a vast number of genes that could potentially be regulated by the human microRNAs in the plasmodial genome. CONCLUSIONS Despite the fact that the numbers of homological intervals vary significantly between isolates, the hsa-miR-451a and hsa-miR-223-3p microRNAs are expected to make the most notable contribution to the pathogenesis of P. falciparum malaria. The majority of homological intervals occur in genes encoding cell adhesion proteins.
Collapse
Affiliation(s)
- Alexandr Grinev
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Natalya Fokina
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Denis Bogomolov
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Iza Berechikidze
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yuliya Lazareva
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
25
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
26
|
Abstract
Malaria, caused by infection with Plasmodium parasites, remains a significant global health concern. For decades, genetic intractability and limited tools hindered our ability to study essential proteins and pathways in Plasmodium falciparum, the parasite associated with the most severe malaria cases. However, recent years have seen major leaps forward in the ability to genetically manipulate P. falciparum parasites and conditionally control protein expression/function. The conditional knockdown systems used in P. falciparum target all 3 components of the central dogma, allowing researchers to conditionally control gene expression, translation, and protein function. Here, we review some of the common knockdown systems that have been adapted or developed for use in P. falciparum. Much of the work done using conditional knockdown approaches has been performed in asexual, blood-stage parasites, but we also highlight their uses in other parts of the life cycle and discuss new ways of applying these systems outside of the intraerythrocytic stages. With the use of these tools, the field’s understanding of parasite biology is ever increasing, and promising new pathways for antimalarial drug development are being discovered.
Collapse
|
27
|
Aishanjiang K, Wei XD, Fu Y, Lin X, Ma Y, Le J, Han Q, Wang X, Kong X, Gu J, Wu H. Circular RNAs and Hepatocellular Carcinoma: New Epigenetic Players With Diagnostic and Prognostic Roles. Front Oncol 2021; 11:653717. [PMID: 33959506 PMCID: PMC8093866 DOI: 10.3389/fonc.2021.653717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.
Collapse
Affiliation(s)
- Kedeerya Aishanjiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Dong Wei
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yi Fu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Jiamei Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xuan Wang
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
28
|
Jabeena CA, Govindaraju G, Rawat M, Gopi S, Sethumadhavan DV, Jaleel A, Sasankan D, Karmodiya K, Rajavelu A. Dynamic association of the H3K64 trimethylation mark with genes encoding exported proteins in Plasmodium falciparum. J Biol Chem 2021; 296:100614. [PMID: 33839154 PMCID: PMC8095176 DOI: 10.1016/j.jbc.2021.100614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation –sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Gayathri Govindaraju
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Abdul Jaleel
- Cardiovascular Disease Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Dhakshmi Sasankan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
29
|
Gunnarsson S, Prabakaran S. In silico identification of novel open reading frames in Plasmodium falciparum oocyte and salivary gland sporozoites using proteogenomics framework. Malar J 2021; 20:71. [PMID: 33546698 PMCID: PMC7866754 DOI: 10.1186/s12936-021-03598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium falciparum causes the deadliest form of malaria, which remains one of the most prevalent infectious diseases. Unfortunately, the only licensed vaccine showed limited protection and resistance to anti-malarial drug is increasing, which can be largely attributed to the biological complexity of the parasite’s life cycle. The progression from one developmental stage to another in P. falciparum involves drastic changes in gene expressions, where its infectivity to human hosts varies greatly depending on the stage. Approaches to identify candidate genes that are responsible for the development of infectivity to human hosts typically involve differential gene expression analysis between stages. However, the detection may be limited to annotated proteins and open reading frames (ORFs) predicted using restrictive criteria. Methods The above problem is particularly relevant for P. falciparum; whose genome annotation is relatively incomplete given its clinical significance. In this work, systems proteogenomics approach was used to address this challenge, as it allows computational detection of unannotated, novel Open Reading Frames (nORFs), which are neglected by conventional analyses. Two pairs of transcriptome/proteome were obtained from a previous study where one was collected in the mosquito-infectious oocyst sporozoite stage, and the other in the salivary gland sporozoite stage with human infectivity. They were then re-analysed using the proteogenomics framework to identify nORFs in each stage. Results Translational products of nORFs that map to antisense, intergenic, intronic, 3′ UTR and 5′ UTR regions, as well as alternative reading frames of canonical proteins were detected. Some of these nORFs also showed differential expression between the two life cycle stages studied. Their regulatory roles were explored through further bioinformatics analyses including the expression regulation on the parent reference genes, in silico structure prediction, and gene ontology term enrichment analysis. Conclusion The identification of nORFs in P. falciparum sporozoites highlights the biological complexity of the parasite. Although the analyses are solely computational, these results provide a starting point for further experimental validation of the existence and functional roles of these nORFs,
Collapse
Affiliation(s)
- Sophie Gunnarsson
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Sudhakaran Prabakaran
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
30
|
Berkhout B, Herrera-Carrillo E. Design and Evaluation of AgoshRNAs with 3'-Terminal HDV Ribozymes to Enhance the Silencing Activity. Methods Mol Biol 2021; 2167:225-252. [PMID: 32712923 DOI: 10.1007/978-1-0716-0716-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNA (shRNA) molecules for targeted gene silencing has become a benchmark technology. Plasmid and viral vector systems can be used to express shRNA precursor transcripts that are processed by the cellular RNAi pathway to trigger sequence-specific gene knockdown. Intensive RNAi investigations documented that only a small percentage of computationally predicted target sequences can be used for efficient gene silencing, in part because not all shRNA designs are active. Many factors influence the shRNA activity and guidelines for optimal shRNA design have been proposed. We recently described an alternatively processed shRNA molecule termed AgoshRNA with a ~18 base pairs (bp) stem and a 3-5 nucleotides (nt) loop. This molecule is alternatively processed by the Argonaute (Ago) protein into a single guide RNA strand that efficiently induces the RNAi mechanism. The design rules proposed for regular shRNAs do not apply to AgoshRNA molecules and therefore new rules had to be defined. We optimized the AgoshRNA design and managed to create a set of active AgoshRNAs targeted against the human immunodeficiency virus (HIV). In an attempt to enhance the silencing activity of the AgoshRNA molecules, we included the hepatitis delta virus (HDV) ribozyme at the 3' terminus, which generates a uniform 3' end instead of a 3' U-tail of variable length. We evaluated the impact of this 3'-end modification on AgoshRNA processing and its gene silencing activity and we demonstrate that this novel AgoshRNA-HDV design exhibits enhanced antiviral activity.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
32
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
33
|
Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Mol Biochem Parasitol 2020; 241:111336. [PMID: 33166572 DOI: 10.1016/j.molbiopara.2020.111336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023]
Abstract
Leishmania parasites include important pathogens and model organisms and are even used for the production of recombinant proteins. However, functional genomics and the characterization of essential genes are often limited in Leishmania because of low-throughput technologies for gene disruption or tagging and the absence of components for RNA interference. Here, we tested the T7 RNA polymerase-dependent CRISPR-Cas9 system by Beneke et al. and the glmS ribozyme-based knock-down system in the model parasite Leishmania tarentolae. We successfully deleted two reference genes encoding the flagellar motility factor Pf16 and the salvage-pathway enzyme adenine phosphoribosyltransferase, resulting in immotile and drug-resistant parasites, respectively. In contrast, we were unable to disrupt the gene encoding the mitochondrial flavoprotein Erv. Cultivation of L. tarentolae in standard BHI medium resulted in a constitutive down-regulation of an episomal mCherry-glmS reporter by 40 to 60%. For inducible knock-downs, we evaluated the growth of L. tarentolae in alternative media and identified supplemented MEM, IMDM and McCoy's 5A medium as candidates. Cultivation in supplemented MEM allowed an inducible, glucosamine concentration-dependent down-regulation of the episomal mCherry-glmS reporter by more than 70%. However, chromosomal glmS-tagging of the genes encoding Pf16, adenine phosphoribosyltransferase or Erv did not reveal a knock-down phenotype. Our data demonstrate the suitability of the CRISPR-Cas9 system for the disruption and tagging of genes in L. tarentolae as well as the limitations of the glmS system, which was restricted to moderate efficiencies for episomal knock-downs and caused no detectable phenotype for chromosomal knock-downs.
Collapse
|
34
|
Ketprasit N, Cheng IS, Deutsch F, Tran N, Imwong M, Combes V, Palasuwan D. The characterization of extracellular vesicles-derived microRNAs in Thai malaria patients. Malar J 2020; 19:285. [PMID: 32778117 PMCID: PMC7418320 DOI: 10.1186/s12936-020-03360-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
Background Extracellular vesicles (EVs) have been broadly studied in malaria for nearly a decade. These vesicles carry various functional biomolecules including RNA families such as microRNAs (miRNA). These EVs-derived microRNAs have numerous roles in host-parasite interactions and are considered promising biomarkers for disease severity. However, this field lacks clinical studies of malaria-infected samples. In this study, EV specific miRNAs were isolated from the plasma of patients from Thailand infected with Plasmodium vivax and Plasmodium falciparum. In addition, it is postulated that these miRNAs were differentially expressed in these groups of patients and had a role in disease onset through the regulation of specific target genes. Methods EVs were purified from the plasma of Thai P. vivax-infected patients (n = 19), P. falciparum-infected patients (n = 18) and uninfected individuals (n = 20). EV-derived miRNAs were then prepared and abundance of hsa-miR-15b-5p, hsa-miR-16-5p, hsa-let-7a-5p and hsa-miR-150-5p was assessed in these samples. Quantitative polymerase chain reaction was performed, and relative expression of each miRNA was calculated using hsa-miR-451a as endogenous control. Then, the targets of up-regulated miRNAs and relevant pathways were predicted by using bioinformatics. Receiver Operating Characteristic with Area under the Curve (AUC) was then calculated to assess their diagnostic potential. Results The relative expression of hsa-miR-150-5p and hsa-miR-15b-5p was higher in P. vivax-infected patients compared to uninfected individuals, but hsa-let-7a-5p was up-regulated in both P. vivax-infected patients and P. falciparum-infected patients. Bioinformatic analysis revealed that these miRNAs might regulate genes involved in the malaria pathway including the adherens junction and the transforming growth factor-β pathways. All up-regulated miRNAs could potentially be used as disease biomarkers as determined by AUC; however, the sensitivity and specificity require further investigation. Conclusion An upregulation of hsa-miR-150-5p and hsa-miR-15b-5p was observed in P. vivax-infected patients while hsa-let-7a-5p was up-regulated in both P. vivax-infected and P. falciparum-infected patients. These findings will require further validation in larger cohort groups of malaria patients to fully understand the contribution of these EVs miRNAs to malaria detection and biology.
Collapse
Affiliation(s)
- Nutpakal Ketprasit
- Graduate Programme in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Malaria and Microvesicles Research Group, School of Life Sciences, Faculty of Sciences, University Technology of Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Iris Simone Cheng
- Malaria and Microvesicles Research Group, School of Life Sciences, Faculty of Sciences, University Technology of Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Fiona Deutsch
- Non-coding RNA Cancer Group, School of Biomedical Engineering, Faculty of Engineering and IT, University Technology of Sydney, Sydney, NSW, Australia
| | - Nham Tran
- Non-coding RNA Cancer Group, School of Biomedical Engineering, Faculty of Engineering and IT, University Technology of Sydney, Sydney, NSW, Australia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Sciences, Faculty of Sciences, University Technology of Sydney, Ultimo, Sydney, NSW, 2007, Australia.
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama 1 Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
35
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 02/15/2024] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
36
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
37
|
Hentzschel F, Mitesser V, Fraschka SAK, Krzikalla D, Carrillo EH, Berkhout B, Bártfai R, Mueller AK, Grimm D. Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Res 2020; 48:e2. [PMID: 31680162 PMCID: PMC7145648 DOI: 10.1093/nar/gkz927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The lack of endogenous RNAi machinery in the malaria parasite Plasmodium hampers gene annotation and hence antimalarial drug and vaccine development. Here, we engineered rodent Plasmodium berghei to express a minimal, non-canonical RNAi machinery that solely requires Argonaute 2 (Ago2) and a modified short hairpin RNA, so-called AgoshRNA. Using this strategy, we achieved robust and specific gene knockdown throughout the entire parasite life cycle. We also successfully silenced the endogenous gene perforin-like protein 2, phenocopying a full gene knockout. Transcriptionally restricting Ago2 expression to the liver stage further enabled us to perform a stage-specific gene knockout. The RNAi-competent Plasmodium lines reported here will be a valuable resource for loss-of-function phenotyping of the many uncharacterized genes of Plasmodium in low or high throughput, without the need to engineer the target gene locus. Thereby, our new strategy and transgenic Plasmodium lines will ultimately benefit the discovery of urgently needed antimalarial drug and vaccine candidates. Generally, the ability to render RNAi-negative organisms RNAi-competent by mere introduction of two components, Ago2 and AgoshRNA, is a unique paradigm that should find broad applicability in other species.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Vera Mitesser
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | - Daria Krzikalla
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Elena Herrera Carrillo
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Richárd Bártfai
- Radboud University, Dept. of Molecular Biology, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Ann-Kristin Mueller
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg
| | - Dirk Grimm
- Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg
| |
Collapse
|
38
|
Yin S, Fan Y, He X, Wei G, Wen Y, Zhao Y, Shi M, Wei J, Chen H, Han J, Jiang L, Zhang Q. The cryptic unstable transcripts are associated with developmentally regulated gene expression in blood-stage Plasmodium falciparum. RNA Biol 2020; 17:828-842. [PMID: 32079470 DOI: 10.1080/15476286.2020.1732032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The tight gene expression regulation controls the development and pathogenesis of human malaria parasite Plasmodium falciparum throughout the complex life cycle. Recent studies have revealed the pervasive nascent transcripts in the genome of P. falciparum, suggesting the existence of a hidden transcriptome involved in the dynamic gene expression. However, the landscape and related biological functions of nascent non-coding RNAs (ns-ncRNAs) are still poorly explored. Here we profiled the transcription dynamics of nascent RNAs by rRNA-depleted and stranded RNA sequencing over the course of 48-h intraerythrocytic developmental cycle (IDC). We identified the genome-wide sources of a total of 2252 ns-ncRNAs, mostly originating from intergenic and untranslated regions of annotated genes. By integrating the nascent RNA abundances with ATAC-seq and ChIP-seq analysis, we uncovered the euchromatic microenvironment surrounding the ns-ncRNA loci, and revealed a positive correlation between ns-ncRNAs and corresponding mRNA abundances. Finally, by gene knock-down strategy, we showed that the cooperation of RNA exosome catalytic subunit PfDis3 and PfMtr4 cofactor played a major role in ns-ncRNAs degradation. Collectively, this study contributes to understanding of the potential roles of short-lived nascent ncRNAs in regulating gene expression in malaria parasites.
Collapse
Affiliation(s)
- Shigang Yin
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China.,Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China.,Laboratory of Nervous System Disease and Brain Functions, The Affiliated Hospital of Southwest Medical University , Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University , Luzhou, China
| | - Yanting Fan
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xiaohui He
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Guiying Wei
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Yuhao Wen
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yuemeng Zhao
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Mingli Shi
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jieqiong Wei
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Huiling Chen
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jiping Han
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, China.,China School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| | - Qingfeng Zhang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
39
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
40
|
Shapiro RS, Chavez A, Collins JJ. CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat Rev Microbiol 2019; 16:333-339. [PMID: 29599458 DOI: 10.1038/s41579-018-0002-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic manipulation of microorganisms has been crucial in understanding their biology, yet for many microbial species, robust tools for comprehensive genetic analysis were lacking until the advent of CRISPR-Cas-based gene editing techniques. In this Progress article, we discuss advances in CRISPR-based techniques for the genetic analysis of genetically intractable microorganisms, with an emphasis on mycobacteria, fungi and parasites. We discuss how CRISPR-based analyses in these organisms have enabled the discovery of novel gene functions, the investigation of genetic interaction networks and the identification of virulence factors.
Collapse
Affiliation(s)
- Rebecca S Shapiro
- Department of Biological Engineering, Institute for Medical Engineering and Science, Synthetic Biology Center, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - James J Collins
- Department of Biological Engineering, Institute for Medical Engineering and Science, Synthetic Biology Center, MIT, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
41
|
Sexton AE, Doerig C, Creek DJ, Carvalho TG. Post-Genomic Approaches to Understanding Malaria Parasite Biology: Linking Genes to Biological Functions. ACS Infect Dis 2019; 5:1269-1278. [PMID: 31243988 DOI: 10.1021/acsinfecdis.9b00093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium species are evolutionarily distant from model eukaryotes, and as a consequence they exhibit many non-canonical cellular processes. In the post-genomic era, functional "omics" disciplines (transcriptomics, proteomics, and metabolomics) have accelerated our understanding of unique aspects of the biology of malaria parasites. Functional "omics" tools, in combination with genetic manipulations, have offered new opportunities to investigate the function of previously uncharacterized genes. Knowledge of basic parasite biology is fundamental to understanding drug modes of action, mechanisms of drug resistance, and relevance of vaccine candidates. This Perspective highlights recent "omics"-based discoveries in basic biology and gene function of the most virulent human malaria parasite, Plasmodium falciparum.
Collapse
Affiliation(s)
- Anna E. Sexton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christian Doerig
- Centre for Chronic, Inflammatory and Infectious Diseases, Biomedical Sciences Cluster, School of Health and Biomedical Sciences, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Teresa G. Carvalho
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Kingsbury Drive, Bundoora, VIC 3086, Australia
| |
Collapse
|
42
|
Walker MP, Lindner SE. Ribozyme-mediated, multiplex CRISPR gene editing and CRISPR interference (CRISPRi) in rodent-infectious Plasmodium yoelii. J Biol Chem 2019; 294:9555-9566. [PMID: 31043479 PMCID: PMC6579477 DOI: 10.1074/jbc.ra118.007121] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/23/2019] [Indexed: 11/06/2022] Open
Abstract
Malaria remains a major global health issue, affecting millions and killing hundreds of thousands of people annually. Efforts to break the transmission cycle of the causal Plasmodium parasite, and to cure those that are afflicted, rely upon functional characterization of genes essential to the parasite's growth and development. These studies are often based upon manipulations of the parasite genome to disrupt or modify a gene of interest to understand its importance and function. However, these approaches can be limited by the availability of selectable markers and the time required to generate transgenic parasites. Moreover, there also is a risk of disrupting native gene regulatory elements with the introduction of exogenous sequences. To address these limitations, we have developed CRISPR-RGR, a Streptococcus pyogenes (Sp)Cas9-based gene editing system for Plasmodium that utilizes a ribozyme-guide-ribozyme (RGR) single guide RNA (sgRNA) expression strategy with RNA polymerase II promoters. Using rodent-infectious Plasmodium yoelii, we demonstrate that both gene disruptions and coding sequence insertions are efficiently generated, producing marker-free parasites with homology arms as short as 80-100 bp. Additionally, we find that the common practice of using one sgRNA can produce both unintended plasmid integration and desired locus replacement editing events, whereas the use of two sgRNAs results in only locus replacement editing. Lastly, we show that CRISPR-RGR can be used for CRISPR interference (CRISPRi) by binding catalytically dead SpCas9 (dSpCas9) to the region upstream of a gene of interest, resulting in a position-dependent, but strand-independent reduction in gene expression. This robust and flexible system facilitates efficient genetic characterizations of rodent-infectious Plasmodium species.
Collapse
Affiliation(s)
- Michael P Walker
- From the Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Scott E Lindner
- From the Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
43
|
Dandewad V, Vindu A, Joseph J, Seshadri V. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression. J Biosci 2019; 44:50. [PMID: 31180063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Vishal Dandewad
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | |
Collapse
|
44
|
Bryant JM, Baumgarten S, Glover L, Hutchinson S, Rachidi N. CRISPR in Parasitology: Not Exactly Cut and Dried! Trends Parasitol 2019; 35:409-422. [DOI: 10.1016/j.pt.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
|
45
|
Dandewad V, Vindu A, Joseph J, Seshadri V. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression. J Biosci 2019. [DOI: 10.1007/s12038-019-9870-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Wang Z, Wei C, Hao X, Deng W, Zhang L, Wang Z, Wang H. Genome-wide identification and characterization of transfer RNA-derived small RNAs in Plasmodium falciparum. Parasit Vectors 2019; 12:36. [PMID: 30646930 PMCID: PMC6332904 DOI: 10.1186/s13071-019-3301-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/07/2019] [Indexed: 01/16/2023] Open
Abstract
Background Transfer RNA (tRNA)-derived fragments (tRFs) have been widely identified in nature, functioning in diverse biological and pathological situations. Yet, the presence of these small RNAs in Plasmodium spp. remains unknown. Systematic identification and characterization of tRFs is therefore highly needed to understand further their roles in Plasmodium parasites, particularly in the virulent Plasmodium falciparum parasite. Results Genome-wide small RNAs with sizes ranging from 18–30 nucleotides from P. falciparum were deep-sequenced via Illumina HiSeq 2000 technology. In-depth analysis revealed the presence of a vast number of small RNAs originating from tRNA-coding genes, responsible for 22.4% of the total reads as the second predominant group. Three P. falciparum-derived tRF types (ptRFs) were identified as 5'ptRFs, mid-ptRFs and 3'ptRFs. The majority (90%) of ptRFs were derived from tRNAs that coded eight amino acids: Pro, Phe, Asn, Gly, Cys, Gln, His and Ala. Stem-loop reverse transcription polymerase chain reaction further confirmed the presence of tRFs in the blood stages of P. falciparum. Four new motifs with an enriched G/C feature were determined at cleavage sites that might guide the generation of ptRFs. Conclusions To our knowledge, this is the first report of a genome-wide investigation of ptRFs from Plasmodium species. The identification of ptRFs reveals a complex small RNA system manipulated by the malaria parasite, and might promote research on the function of tRFs in the pathogenesis of Plasmodium infections. Electronic supplementary material The online version of this article (10.1186/s13071-019-3301-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, People's Republic of China
| | - Chunyan Wei
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, People's Republic of China
| | - Xiao Hao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, People's Republic of China
| | - Weiwei Deng
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, People's Republic of China
| | - Lianhui Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, People's Republic of China
| | - Zenglei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, People's Republic of China.
| |
Collapse
|
47
|
A new level of complexity in parasite-host interaction: The role of extracellular vesicles. ADVANCES IN PARASITOLOGY 2019; 104:39-112. [PMID: 31030771 DOI: 10.1016/bs.apar.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans and animals have co-existed with parasites in a battle of constant adaptation to one another. It is becoming increasingly clear that extracellular vesicles (EVs) play important roles in this co-existence and pathology. This chapter reviews the current research on EVs released by protozoa, nematodes, trematodes, and cestodes with a special focus on EVs in parasite life cycles. The environmental changes experienced by the parasite during its life cycle is associated with distinct changes in EV release and content. The function of these EV seems to have a significant influence on parasite pathology and survival in the host by concomitantly modulating host immune responses and triggering parasite differentiation. The role of EVs in communication between the parasites and the host adds a new level of complexity in our understanding of parasite biology, which may be a key to further understand the complexity behind host-parasite interactions and communication. This increased understanding can, in turn, open up new avenues for vaccine, diagnostic, and therapeutic development for a wide variety of diseases such as parasite infection, cancers, and immunological disorders.
Collapse
|
48
|
Morales L, Hernández P, Chaparro-Olaya J. Systematic Comparison of Strategies to Achieve Soluble Expression of Plasmodium falciparum Recombinant Proteins in E. coli. Mol Biotechnol 2018; 60:887-900. [PMID: 30259259 DOI: 10.1007/s12033-018-0125-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Constructs containing partial coding sequences of myosin A, myosin B, and glideosome-associated protein (50 kDa) of Plasmodium falciparum were used to challenge several strategies designed in order to improve the production and solubility of recombinant proteins in Escherichia coli. Assays were carried out inducing expression in a late log phase culture, optimizing the inductor concentration, reducing the growth temperature for induced cultures, and supplementing additives in the lysis buffer. In addition, recombinant proteins were expressed as fusion proteins with three different tags (6His, GST, and MBP) in four different E. coli strains. We found that the only condition that consistently produced soluble proteins was the use of MBP as a fusion tag, which became a valuable tool for detecting the proteins used in this study and did not caused any interference in protein-protein interaction assays (Far Western Blot). Besides, we found that BL21-pG-KJE8 strain did not improve the solubility of any of the recombinant protein produced, while the BL21-CodonPlus(DE3)-RIL strain improved the expression of some of them independent of the rare codon content. Proteins with rare codons occurring at high frequencies (» 10%) were expressed efficiently in strains that do not supplement tRNAs for these triplets.
Collapse
Affiliation(s)
- Liliana Morales
- Laboratorio de Parasitología Molecular, Instituto de Biología Molecular, Universidad El Bosque, Edificio O. Segundo piso, Avenida Cra. 9 No. 131 A - 02, Bogotá, Colombia
| | - Paula Hernández
- Laboratorio de Parasitología Molecular, Instituto de Biología Molecular, Universidad El Bosque, Edificio O. Segundo piso, Avenida Cra. 9 No. 131 A - 02, Bogotá, Colombia
| | - Jacqueline Chaparro-Olaya
- Laboratorio de Parasitología Molecular, Instituto de Biología Molecular, Universidad El Bosque, Edificio O. Segundo piso, Avenida Cra. 9 No. 131 A - 02, Bogotá, Colombia.
| |
Collapse
|
49
|
Abstract
Genetic manipulation remains a major obstacle for understanding the functional genomics of the deadliest malaria parasite Plasmodium falciparum Although the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9) system has been successfully applied to introduce permanent changes in the parasite genome, its use is still limited. Here we show that fusing different epigenetic effector domains to a Cas9 null mutant efficiently and specifically reprograms the expression of target genes in P. falciparum By precisely writing and erasing histone acetylation at the transcription start site regions of the invasion-related genes reticulocyte binding protein homolog 4 (rh4) and erythrocyte binding protein 175 (eba-175), respectively, we achieved significant activation of rh4 and repression of eba-175, leading to the switch of the parasite invasion pathways into human erythrocytes. By using the epigenetic knockdown system, we have also characterized the effects of PfSET1, previously identified as an essential gene, on expression of mainly trophozoite- and schizont-specific genes, and therefore regulation of the growth of the mature forms of P. falciparum This epigenetic CRISPR/dCas9 system provides a powerful approach for regulating gene expression at the transcriptional level in P. falciparum.
Collapse
|
50
|
Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, Sun M, Liang S, Jiang L. Plasmodium falciparum var Gene Is Activated by Its Antisense Long Noncoding RNA. Front Microbiol 2018; 9:3117. [PMID: 30619191 PMCID: PMC6305453 DOI: 10.3389/fmicb.2018.03117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1, encoded by var gene, is an immunodominant antigen mediating immune evasion in humans. At a given time, only a single var gene is commonly expressed in one parasite. However, the regulation mechanism of var transcription remains largely unknown. In this study, we identified the antisense long non-coding RNA (aslncRNA) derived from var intron as an activation factor for the corresponding var gene. The exogenous artificial var aslncRNA transcribed by T7 RNA polymerase from episome can specifically activate the homologous var gene, and the exogenous aslncRNA activates transcription of both var mRNA and endogenous aslncRNA in a manner independent of the conserved intron sequence within the var gene family. Interestingly, the newly activated var gene and the previously dominant var gene then could be co-expressed in the same parasite nuclei, which suggests that the aslncRNA-mediated var gene activation could escape from the control of mutually exclusively expression of the var gene family. Together, our work shows that var aslncRNA is the activator responsible for var gene transcriptional regulation.
Collapse
Affiliation(s)
- Qingqing Jing
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Long Cao
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Liangliang Zhang
- Clinical Laboratory Medicine, Changzhi People's Hospital, Changzhi, China.,Department of Parasitology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiu Cheng
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Gilbert
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Xueyu Dai
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maoxin Sun
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,ShanghaiTech University, Shanghai, China
| | - Shaohui Liang
- Department of Parasitology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,ShanghaiTech University, Shanghai, China
| |
Collapse
|